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Plan of the Talk

1. numerical irreducible decomposition: compute a sequence of

“witness sets” to represent the solution set of a polynomial

systems, arranged along dimensions.

2. intersect solution sets: given two witness sets, compute all

components of their intersection using diagonal homotopies.

3. intrinsic coordinates for efficiency: represent the linear spaces

to cut out the witness sets by generators instead of equations.

4. equation-by-equation solving: applying diagonal homotopies

repeatedly, adding one equation after the other.

5. Examples illustrate effectiveness of the new solver.

Joint work with Andrew Sommese (University of Notre Dame) and

Charles Wampler (General Motors Research Laboratories).
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This talk is about three papers

A.J. Sommese, J. Verschelde, and C.W. Wampler: Homotopies

for intersecting solution components of polynomial

systems. To appear in SIAM J. Numer. Anal.

A.J. Sommese, J. Verschelde, and C.W. Wampler: An intrinsic

homotopy for intersecting algebraic varieties.

To appear in J. Complexity.

A.J. Sommese, J. Verschelde, and C.W. Wampler: Solving

polynomial systems equation by equation. In

preparation.
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Towards a numerical implementation of Kronecker’s ideas

M. Giusti and J. Heintz: La détermination de la dimension et des

points isolées d’une variété algébrique peuvent s’effectuer en

temps polynomial. In Computational Algebraic Geometry and

Commutative Algebra, Cortona 1991, edited by D. Eisenbud and L.

Robbiano, Symposia Mathematica XXXIV, pages 216–256, Cambridge UP,

1993.

M. Giusti and J. Heintz: Kronecker’s smart, little black boxes, In

Foundations of Computational Mathematics, edited by R.A. DeVore,

A. Iserles and E. Süli, pages 69–104, Cambridge UP, 2001.

M. Giusti, G. Lecerf, and B. Salvy: A Gröbner free alternative for

polynomial system solving, J. Complexity 17(1): 154–211, 2001.

G. Lecerf: Computing the equidimensional decomposition of an

algebraic closed set by means of lifting fibers, J. Complexity 19(4):

564–596, 2003.
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1. Numerical Irreducible Decomposition

f =







(y − x2)(x2 + y2 + z2 − 1)(x− 0.5)

(z − x3)(x2 + y2 + z2 − 1)(y − 0.5)

(y − x2)(z − x3)(x2 + y2 + z2 − 1)(z − 0.5)






= 0.

The irreducible decomposition of Z = f−1(0) is

Z = Z2 ∪ Z1 ∪ Z0 = {Z21} ∪ {Z11 ∪ Z12 ∪ Z13 ∪ Z14} ∪ {Z01}

where Z21 is the sphere x2 + y2 + z2 − 1 = 0;

Z11 is the line (x = 0.5, z = 0.53);

Z12 is the line (x =
√
0.5, y = 0.5);

Z13 is the line (x = −
√
0.5, y = 0.5);

Z14 is the twisted cubic (y − x2 = 0, z − x3 = 0);

Z01 is the point (x = 0.5, y = 0.5, z = 0.5).
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Representing Positive Dimensional Solutions

Let f(x) = 0, x ∈ C3, define a surface S, a curve C, and a point P .

Choosing random hyperplanes, we cut the solution set of f(x) = 0:

cut with line ⊂ plane ⊂ space






a1x = b1

a2x = b2
⊂

{

a1x = b1 ⊂
{

0 = 0

↓ ↓ ↓
to find surface S curve C point P

a1, a2, b1, b2 at random =⇒ generic points

avoiding nasty, singular points on solution sets
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Witness Sets

A witness point is a solution of a polynomial system which lies

on a set of generic hyperplanes.

• The number of generic hyperplanes used to isolate a point

from a solution component

equals the dimension of the solution component.

• The number of witness points on one component cut out by

the same set of generic hyperplanes

equals the degree of the solution component.

A witness set for a k-dimensional solution component consists of

k random hyperplanes and the set of isolated solutions

comprising the intersection of the component with those

hyperplanes.
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A Cascade of Polynomial Systems







f1(x) + c11z1 + c12z2 = 0

f2(x) + c21z1 + c22z2 = 0

f3(x) + c31z1 + c32z2 = 0

L1(x) + z1 = 0

L2(x) + z2 = 0

→







f1(x) + c11z1 + c12z2 = 0

f2(x) + c21z1 + c22z2 = 0

f3(x) + c31z1 + c32z2 = 0

L1(x) + z1 = 0

z2 = 0

↓
L1 : a1x− b1

L2 : a2x− b2

z1, z2 : slack variables

cij ∈ C, random numbers







f1(x) + c11z1 = 0

f2(x) + c21z1 = 0

f3(x) + c31z1 = 0

z1 = 0
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A Cascade of Homotopies

Denote Ei as an embedding of f(x) = 0 with i random hyperplanes

and i slack variables z = (z1, z2, . . . , zi).

Theorem (Sommese - Verschelde): J. Complexity 16(3):572–602, 2000

1. Solutions with (z1, z2, . . . , zi) = 0 contain degW generic

points on every i-dimensional component W of f(x) = 0.

2. Solutions with (z1, z2, . . . , zi) 6= 0 are regular; and

solution paths defined by

Hi(x, z, t) = tEi(x, z) + (1− t)




Ei−1(x, z)

zi



 = 0

starting at t = 1 with all solutions with zi 6= 0

reach at t = 0 all isolated solutions of Ei−1(x, z) = 0.
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Cascade on the Illustrative Example
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Joint Work with A.J. Sommese and C.W. Wampler

Numerical decomposition of the solution sets of polynomial systems into

irreducible components. SIAM J. Numer. Anal. 38(6):2022–2046, 2001.

Using monodromy to decompose solution sets of polynomial systems

into irreducible components. In Application of Algebraic Geometry to

Coding Theory, Physics and Computation, ed. by C. Ciliberto et al.,

Proceedings of a NATO Conference, February 25 - March 1, 2001, Eilat, Israel.

Pages 297–315, Kluwer AP.

Symmetric functions applied to decomposing solution sets of polynomial

systems. SIAM J. Numer. Anal. 40(6):2026–2046, 2002.

Numerical irreducible decomposition using PHCpack. In Algebra,

Geometry, and Software Systems, edited by M. Joswig and N. Takayama, pages

109–130, Springer-Verlag, 2003.

Bottleneck: compute numerical representations of solution sets efficiently,

without any assumption on the top dimension.
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Membership Test

Does the point p belong to a component?

Given: a point in space p ∈ CN ; a system f(x) = 0;

and a witness set W , W = (Z,L):

for all w ∈ Z : f(w) = 0 and L(w) = 0.

1. Let Lp be a set of hyperplanes through p, and define

H(x, t) =







f(x) = 0

Lp(x)t+ L(x)(1− t) = 0

2. Trace all paths starting at w ∈ Z, for t from 0 to 1.

3. The test (p, 1) ∈ H−1(0)? answers the question above.
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Membership Test – an example

L Lp f−1(0)

sp 6∈ f−1(0)

H(x, t) =







f(x) = 0

Lp(x)t+ L(x)(1− t) = 0
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2. Diagonal Homotopies: Problem Statement

Input: two irreducible components A and B, given by

polynomial systems fA and fB (possibly identical),

random hyperplanes LA and LB , and the solutions to






fA(x) = 0

LA(x) = 0

#LA = dim(A) = a

{ α1, α2, . . . , αdegA }
degA generic points
︸ ︷︷ ︸

a witness set for A

and







fB(x) = 0

LB(x) = 0

#LB = dim(B) = b

{ β1, β2, . . . , βdegB }
degB generic points
︸ ︷︷ ︸

a witness set for B

Output: witness sets for all pure dimensional components of A ∩B.
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Why new homotopies are needed

stacking two (possibly identical) systems is not sufficient!

For example: find A ∩B,

where A is line x2 = 0, solution of f(x1, x2) = x1x2 = 0,

and B is line x1 − x2 = 0, solution of g(x1, x2) = x1(x1 − x2) = 0.

Problem: A ∩B = (0, 0) does not occur as an irreducible

solution component of







f(x1, x2) = x1x2 = 0

g(x1, x2) = x1(x1 − x2) = 0.

page 15 of 35



Solving Systems restricted to an Algebraic Set

Consider f(x,y) = 0 over X × Y , Y = parameter space.

Wanted: Solutions to f(x,y∗) = 0, for some y∗ ∈ Y .

1. Choose a general y′ ∈ Y (y′ 6= y∗).

D = #{ x | f(x,y′) = 0 } is maximal for all y′ ∈ Y .

2. Construct a curve B ⊂ Y connecting y′ to y∗.

3. Construct a map c : [0, 1]× Γ→ B, Γ = { γ ∈ C | |γ| = 1 },
so that c(0,Γ) = y∗ and c(1,Γ) = y′.

4. Choose γ ∈ Γ at random and track D solution paths defined

by the homotopy f(x, c(t, γ)) = 0, starting at t = 1 at the

solutions of f(x,y′) = 0 and ending at t = 0 at the desired

solutions of f(x,y∗) = 0.
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Abstract Embeddings of Polynomial Systems

X is reduced pure N -dimensional algebraic set
(abstract means: no equations specified for X)

f is system of restrictions of polynomials to X

E(f,x, z, Y ) =




f(x) +AT

2 z

z−A0 − A1x




Y = (A0, A1, A2), A0 ∈ CN×1,

A1 ∈ CN×m, A2 ∈ CN×N .

Stratification: Y0 ⊂ Y1 ⊂ · · · ⊂ YN , last N − i rows of Yi are zero.

Cascade of embeddings: Ei(f) is restricted to Yi,

EN (f) = E(f) and E0(f) = f.
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A Generalized Cascade of Homotopies

For random γi ∈ C, |γi| = 1, the homotopy Hi(x, z, t, Y, γi)

= γi t Ei(f)(x, z, Yi) + (1− t)




Ei−1(f)(x, z, Yi−1)

zi



 = 0,

defines paths starting at t = 1 at the solutions of Ei(f),

ending at t = 0 at the solutions of Ei−1(f).

Theorem:

1. Solutions with z = (z1, z2, . . . , zi) 6= 0 of Hi(x, z, 1, Y, γi) = 0

are regular, and stay regular for all t > 0.

2. As t→ 0, the solutions of Hi(x, z, t, Y, γi) = 0, contain all

witness sets on the (i− 1)-dimensional components of f−1(0).
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A Numerical Embedding

Let X be an N -dimensional solution component of g(x) = 0,

a system of n equations g = (g1, g2, . . . , gn) in x ∈ Cm.

Randomize g to have as many equations as co-dimension of X:

G(x) := R(g(x),m−N) = Λg(x), Λ ∈ C(m−N)×n,

where Λ is a random matrix.

In the cascade of homotopies, replace Ei(f) by




G(x)

Ei(f)(x, z)



.
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Decomposing the Diagonal

Given two irreducible components A and B in Ck,

consider their product X := A×B ⊂ Ck+k.

Then A ∩B ∼= X ∩∆ where ∆ is the diagonal of Ck+k defined by

δ(u,v) :=











u1 − v1 = 0

u2 − v2 = 0
...

uk − vk = 0











on X.

Notice: δ plays role of f in the abstract embedding.
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Input Data for Diagonal Homotopies

Let A ∈ Ck be an irreducible component of f−1A (0), dimA = a; and

B ∈ Ck be an irreducible component of f−1B (0), dimB = b.

Assuming a ≥ b and B 6⊆ A, then dim(A ∩B) ≤ b− 1.

Randomize: FA(u) := R(fA, k − a) and FB(v) := R(fB, k − b).

A×B is a solution component of F(u,v) :=




FA(u)

FB(v)



 = 0.

Let {α1, α2, . . . , αdegA} satisfy FA(u) = 0 and LA(u) = 0; and

{β1, β2, . . . , βdegB} satisfy FB(v) = 0 and LB(v) = 0,

where LA(u) = 0 is a system of a general hyperplanes; and

LB(v) = 0 is a system of b general hyperplanes.
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Diagonal Homotopies, when a + b < k

Randomize the diagonal D(u,v) := R(δ(u,v), a+ b).

At the start of the cascade (denote z1:b = (z1, z2, . . . , zb)
T ):

Eb(u,v, z1:b) =







F(u,v)

R(D(u,v), z1, . . . , zb; a+ b)

z1:b −R(1,u,v; b)






= 0.

The homotopy










t γ










F(u,v)

LA(u)

LB(v)

z1:b










+ (1− t) Eb(u,v, z1:b)










= 0

starts the cascade at t = 1, at the degA× degB solutions,

at the product {(α1, β1), (α1, β2), . . . , (αdegA, βdegB)} ⊂ C2k.
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Diagonal Homotopies, when a + b ≥ k

As A ∩B 6= ∅ ⇒ dim(A ∩B) ≥ a+ b− k, the cascade starts at

Eb(u,v, z(a+b−k+1):b) =










F(u,v)

R(δ(u,v), za+b−k+1, . . . , zb; k)

R(1,u,v; a+ b− k)

z(a+b−k+1):b −R(1,u,v; k − a)










= 0,

where z(a+b−k+1):b = (za+b−k+1, . . . , zb)
T .

Use










t γ










F(u,v)

LA(u)

LB(v)

z(a+b−k+1):b










+ (1− t)Eb(u,v, z(a+b−k+1):b)










= 0

as before to start the cascade at t = 1.
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Application: Adding a Leg to a Moving Platform

A special case of a Stewart-Gough platform, proposed in

M. Griffis and J. Duffy: Method and apparatus for controlling geometrically

simple parallel mechanisms with distinctive connections. US Patent

5,179,525, 1993.

was analyzed in

M.L. Husty and A. Karger: Self-motions of Griffis-Duffy type parallel

manipulators. In Proc. 2000 IEEE Int. Conf. Robotics and Automation

(CDROM), 2000.

Formulation of the kinematic equations using Study coordinates

has one irreducible curve of degree 28 (plus irrelevant lines).

Intersecting this motion curve with quadratic hypersurface is

equivalent to adding seventh leg to the platform, reducing the

motion of the platform to a number of fixed postures.
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Running the Cascade

• k = 8: #variables = #equations of original system

• a = 7: dimension of hypersurface, degA = 2

• b = 1: dimension of motion curve, degB = 28

• 2k + b = 17: #variables in the cascade

• degA× degB = 56: #solution paths

20.3 seconds CPU time to start the cascade tracing 56 paths,

followed by the removal of the hyperplane to get to the 40

intersection points (16 of the 56 paths diverged) in 14.4 CPU

seconds, so a total 34.7 CPU seconds.

Compared to the direct approach: 108.5 seconds (1.8 minutes)

CPU time, for 124 of the 164 solution paths diverged.

done on a 2.4 Ghz Linux machine
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3. Intrinsic Coordinates

f(x) = 0 one equation in n unknowns x = (x1, x2, . . . , xn)

defines a hypersurface in Cn







f(x) = 0

L(x) = 0

n equations in n unknowns x

to get deg(f) generic points

L(x(λ)) = 0⇔ x(λ) = b + λv, b,v ∈ Cn

now reduced to f(x(λ)) = 0, one equation in one unknown λ

in general: sample k-dimensional algebraic set in Cn

using n− k intrinsic coordinates
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Embedding in Intrinsic Coordinates

Ei(u,v, z) =







F(u,v)

Aw + Bπiz

z− πi (Cw + d)






= 0,

w = (u v)T ,u,v ∈ Ck

πi projects to Ci

z ∈ Ch, h = top dim

A = [A − A] ∈ C(a+b)×2k,B ∈ C(a+b)×k,C ∈ Ck×2k,d ∈ Ck×1

Eliminate z (π2i = πi): L(w) = Aw + Bπi(Cw + d) = 0.

L(w(y)) = 0⇔ w(y) = b + V y : Ei(y) = F(b + V y) = 0

nonsolution if z = πi(Cw + d) 6= 0

avoids doubling of variables
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Cascade in Intrinsic Coordinates

Homotopy between Ei and Ei−1:

Hi(u,v, τ) =




F(u,v)

Aw + B (τπi + (1− τ)πi−1) (Cw + d)



 = 0,

for τ from 1 to 0. Define τ =
t

t+ γ(1− t)
, γ ∈ C random.

Let Yi = Aw + BπiCw = 0, Li(w) = Aw + Bπi(Cw + d) = 0.

Yi and Yi−1 share a common null space of dimension 2k−a− b+1:

NullYi−1 = [E F ] and NullYi = [E G].

With b a particular solution common to Li(w) = 0 and

Li−1(w) = 0, the homotopy in intrinsic coordinates is

Hi(y, t) = F(b + [E tF + γ(1− t)G]y) = 0, for t from 0 to 1.
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Numerical Experiment

adding again a leg to a moving Griffis-Duffy platform

extrinsic coordinates: 34.7 CPU seconds

intrinsic coordinates: 15.8 CPU seconds

Avoiding the doubling of variables saves here about 50%

computational time.

Save more if intersecting higher dimensional sets.

Save less if intersecting lower dimensional sets.
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4. An Equation-by-Equation Solver

repeatedly apply diagonal homotopies to intersect with

hypersurfaces

f =







(y − x2)(x2 + y2 + z2 − 1)(x− 0.5)

(z − x3)(x2 + y2 + z2 − 1)(y − 0.5)

(y − x2)(z − x3)(x2 + y2 + z2 − 1)(z − 0.5)






= 0.

Previous approach: 197 paths to find all candidate witness points.

With the new approach we will just have to trace 13 paths.

page 30 of 35



�� �� �� � � ��	 
�� � � 
 �
 �

� 
	 � 
 � � � � � 
 � � � � � 



�� �� �� � � ��
 �	 �

� 
 �	

� 
 �		 � 
 �	� � � � � 
 �	� � 
 �	� �	 � � � � 
 �	
 � 
 �	
 �	

� � �� �� � � �� 	 
� � � 
 �
 �	 �

�

�

� 
 �	 � � ��� �� �� ��� �

�  "!!

�

�
#

�$ �# ��� �% � &' () �� �� �� �  !!
�

*� % +-, � % ./ ,0 , �, 1 &
� �� #

�322 4 � 
 �	� �	 � � � �� �

�

� �� ��
�2 4 5 � �� � � �

�

�6�� ��
�2 �� � +-7 .% 8� �� � � � 9

  !! �

�
2 4: � � 
 �	$ �<; , 8% � &' ( = � � �� ��

�  !! �
�

>> ? ?*� �@ % 8 ABCBC BC
page 31 of 35



13 paths to track��� � � �
�

�
�	� �� � � � �
 � � � �� � �

�

�

�



� 
 ��� � � ��

� � ��� � � ���
���

� �

�� 
 � �
�


�



     !

� � �� � � � �

� � ��� � � ��� �
��"� # $

���%
& � � �

     !

'( ) *,+- ).

/ +0 +1 + 2 3

45 6

�	� 
� � 7 �� 

 � 8 � 
� � �

���% 

� � �9



�
&

�
�

�
:

   !
&

�� � � ;

� � �� � � � �

� 
 �� � � � �

� � ��� � � ��� �
��� � ��� � � ��

� � ��� � � ���
� �

� � � � ��� � � ��

� � �� � � ���
� �

� � "� # �

���%

�
'( ) * +- ).

/ +0 + 1 + 2 3

<5 <

�	� �� � 7 �� �
 � � �	� �� � <   
  

==
==

> ? @A B
page 32 of 35



Adjacent Minors of a General 2-by-8 Matrix

from algebraic statistics (Diaconis, Eisenbud, Sturmfels, 1998):

�
�

x11 x12 x13 x14 x15 x16 x17 x18 x19

x21 x22 x23 x24 x25 x26 x27 x28 x29

�
�

8 quadrics in 18 unknowns: 10-dimensional surface of degree 256

stage #paths user cpu time

1 4 = 2 × 2 0.11s = 110ms

2 8 = 4 × 2 0.41s = 410ms

3 16 = 8 × 2 1.61s = 1s 610ms

4 32 = 16 × 2 3.75s = 3s 750ms

5 64 = 32 × 2 12.41s = 12s 410ms

6 128 = 64 × 2 34.89s = 34s 890ms

7 256 = 128 × 2 104.22s = 1m 44s 220ms

total user cpu time 157.56s = 2m 37s 560ms

8m 22s for direct (extrinsic) homotopy Apple PowerBook G4 1GHz
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A General 6-by-6 Eigenvalue Problem

f(x, λ) = λx−Ax = 0, A ∈ C6×6, A is random matrix

6 equations in 7 unknowns: curve of degree 7 < 64 = 26

stage in solver 1 2 3 4 5 total

#convergent paths 3 4 5 6 7 25

#divergent paths 1 2 3 4 5 15

#paths tracked 4 6 8 10 12 40

15 is much less than 64− 6 = 58 divergent paths with direct

homotopy, using the plain theorem of Bézout
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Conclusions

Accomplishments:

+ flexible solver

+ promising performance

Future Work:

– singularities become more common

– need to exploit structure
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