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polynomial systems

Consider f(x) = 0, a system of equations defined by

N polynomials f = (f0, f1, . . . , fN−1),

in n variables x = (x0, x1, . . . , xn−1).

A polynomial in n variables consists of a vector of nonzero complex

coefficients with corresponding exponents in A:

fk (x) =
∑

a∈Ak

caxa, ca ∈ C \ {0}, xa = x
a0

0 x
a1

1 · · · x
an−1

n−1 .

Input data:

1 A = (A0,A1, . . . ,AN−1) are sets of exponents, the supports.

For a ∈ Zn, we consider Laurent polynomials, fk ∈ C[x±1]
⇒ only solutions with coordinates in C∗ = C \ {0} matter.

2 cA = (cA0
,cA1

, . . . ,cAN−1
) are vectors of complex coefficients.

Although A is exact, the coefficients may be approximate.
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the cyclic 4-roots system

f(x) =















x0 + x1 + x2 + x3 = 0

x0x1 + x1x2 + x2x3 + x3x0 = 0

x0x1x2 + x1x2x3 + x2x3x0 + x3x0x1 = 0

x0x1x2x3 − 1 = 0

Cyclic 4-roots x = (x0, x1, x2, x3) correspond to complex circulant

Hadamard matrices:

H =









x0 x1 x2 x3

x3 x0 x1 x2

x2 x3 x0 x1

x1 x2 x3 x0









,
|xk | = 1, k = 1,2,3,4

H∗H = 4I4.

Haagerup: for prime p, there are

(

2p − 2

p − 1

)

isolated roots.

Backelin: for n = ℓm2, there are infinitely many cyclic n-roots.
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solving polynomial systems

Systems like cyclic n-roots are

Sparse: relative to the degrees of the polynomials,

few monomials appear with nonzero coefficients

⇒ fewer roots than the Bézout bounds.

Symmetric: solutions are invariant under permutations, n = 4:

(x0, x1, x2, x3) → (x1, x2, x3, x0) and (x0, x1, x2, x3) → (x3, x2, x1, x0)
generate the permutation group.

In addition: (x0, x1, x2, x3) → (x−1
0 , x−1

1 , x−1
2 , x−1

3 ).

Not pure dimensional, for prime n, all solutions are isolated,

but for n = ℓm2, we have positive dimensional solution sets.

Our solution is to apply a hybrid symbolic-numeric approach.
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Puiseux series

The Newton polygon of f (x0, x1) is the convex hull, spanned by the

exponents (a0,a1) of monomials x
a0

0 x
a1

1 that occur in f with c(a0,a1) 6= 0.

Theorem (the theorem of Puiseux)

Let f (x0, x1) ∈ C(x0)[x1]: f is a polynomial in the variable x1 and its

coefficients are fractional power series in x0.

The polynomial f has as many series solutions as the degree of f .

Every series solution has the following form:

{

x0 = tu

x1 = ctv (1 + O(t)), c ∈ C∗

where (u, v) is an inner normal to an edge of the lower hull of the

Newton polygon of f .

The series are computed with the polyhedral Newton-Puiseux method.
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limits of space curves

Assume f(x) = 0 has a solution curve C,

which intersects x0 = 0 at a regular point.

For v = (v0, v1, . . . , vn−1) ∈ Zn, consider x = ztv(1 + O(t)):

x0 = z0tv0 , for t close to zero, z0 6= 0 and

for k = 1,2, . . . ,n − 1: xk = zk tvk (1 + O(t)), zk 6= 0.

Substitute x0 = z0tv0 , xk = zk tvk (1 + O(t)) in fℓ(x) =
∑

a∈Aℓ

cℓx
a:

fℓ(x = ztv(1 + O(t)) =
∑

a∈Aℓ

caz
a0

0 ta0v0

n−1
∏

k=1

zk tak vk (1 + O(t))

=
∑

a∈Aℓ

cazata0v0+a1v1+···+an−1vn−1(1 + O(t)).

Because z ∈ (C∗)n, there must be at least two terms in fℓ left as t → 0.
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initial forms and tropisms

Denote the inner product of vectors u and v as 〈u,v〉.

Definition

Let v ∈ Zn \ {0} be a direction vector. Consider f (x) =
∑

a∈A

caxa.

The initial form of f in the direction v is

inv(f ) =
∑

a ∈ A

〈a,v〉 = m

caxa, where m = min{ 〈a,v〉 | a ∈ A }.

Definition

Let the system f(x) = 0 define a curve. A tropism consists of the

leading powers (v0, v1, . . . , vn−1) of a Puiseux series of the curve.

The leading coefficients of the Puiseux series satisfy inv(f)(x) = 0.
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curves of cyclic 4-roots

f(x) =















x0 + x1 + x2 + x3 = 0

x0x1 + x1x2 + x2x3 + x3x0 = 0

x0x1x2 + x1x2x3 + x2x3x0 + x3x0x1 = 0

x0x1x2x3 − 1 = 0

One tropism v = (+1,−1,+1,−1) with inv(f)(z) = 0:

inv(f)(x) =















x1 + x3 = 0

x0x1 + x1x2 + x2x3 + x3x0 = 0

x1x2x3 + x3x0x1 = 0

x0x1x2x3 − 1 = 0.

We look for solutions of the form

(x0 = t+1, x1 = z1t−1, x2 = z2t+1, x3 = z3t−1).
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solving the initial form system

Substitute (x0 = t+1, x1 = z1t−1, x2 = z2t+1, x3 = z3t−1):

inv(f)(x0 = t+1, x1 = z1t−1, x2 = z2t+1, x3 = z3t−1)

=















(1 + z2)t
+1 = 0

z1 + z1z2 + z2z3 + z3 = 0

(z1z2 + z3z1)t
+1 = 0

z1z2z3 − 1 = 0.

We find two solutions: (z1 = −1, z2 = −1, z3 = +1)
and (z1 = +1, z2 = −1, z3 = −1).

Two space curves
(

t ,−t−1,−t , t−1
)

and
(

t , t−1,−t ,−t−1
)

satisfy the entire cyclic 4-roots system.
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overview of our polyhedral method

finding pretropisms and solving initial forms

Initial forms with at least two monomials in every equation

define the intersection points of the solution set with the

coordinate hyperplanes.

unimodular coordinate transformations

Via the Smith normal form we obtain nice representations

for solutions at infinity.

Solutions of binomial systems are monomial maps.

computing terms of Puiseux series

Although solutions to any initial forms may be monomial maps,
in general we need a second term in the Puiseux series
expansion to distinguish between

◮ a positive dimensional solution set, and
◮ an isolated solution at infinity.
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binomial systems

Definition

A binomial system has exactly two monomials with nonzero

coefficient in every equation.

The binomial equation caxa − cbxb = 0, a,b ∈ Zn, ca, cb ∈ C \ {0},

has normal representation xa−b = cb/ca.

A binomial system of N equations in n variables is then defined by an

exponent matrix A ∈ ZN×n and a coefficient vector c ∈ (C∗)N : xA = c.

Motivations to study binomial systems:

1 A unimodular coordinate transformation provides a monomial

parametrization for the solution set.

2 The leading coefficients of a Puiseux series satisfy a system of

binomial equations.

3 Finding all solutions with zero coordinates can happen via a

generalized permanent calculation.
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an example

Consider as an example for xA = c the system

{

x2
0 x1x4

2 x3
3 − 1 = 0

x0x1x2x3 − 1 = 0
A =

[

2 1 4 3

1 1 1 1

]T

c =

[

1

1

]

.

As basis of the null space of A we can for example take

u = (−3,2,1,0) and v = (−2,1,0,1).

The vectors u and v are tropisms for a two dimensional algebraic set.

Placing u and v in the first two rows of a matrix M, extended so

det(M) = 1, we obtain a coordinate transformation, x = yM :

M =









−3 2 1 0

−2 1 0 1

1 0 0 0

0 1 0 0



























x0 = y−3
0 y−2

1 y2

x1 = y2
0 y1y3

x2 = y0

x3 = y1.
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monomial transformations

By construction, as Au = 0 and Av = 0:

MA =









−3 2 1 0

−2 1 0 1

1 0 0 0

0 1 0 0

















2 1

1 1

4 1

3 1









=









0 0

0 0

2 1

1 1









= B.

The corresponding monomial transformation x = yM performed on

xA = c yields yMA = yB = c, eliminating the first two variables:

{

y2
2 y3 − 1 = 0

y2y3 − 1 = 0.

Solving this reduced system gives values z2 and z3 for y2 and y3.

Leaving y0 and y1 as parameters t0 and t1 we find as solution

(x0 = z2t−3
0 t−2

1 , x1 = z3t2
0 t1, x2 = t0, x3 = t1).
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unimodular coordinate transformations

Definition

A unimodular coordinate transformation x = yM is determined by

an invertible matrix M ∈ Zn×n: det(M) = ±1.

For a d dimensional solution set of a binomial system:

1 The null space of A gives d tropisms,

stored in the rows of a d -by-n-matrix B.

2 Compute the Smith normal form S of B: UBV = S.
3 There are three cases:

1 U = I ⇒ M = V−1

2 If U 6= I and S has ones on its diagonal,
then extend U−1 with an identity matrix to form M.

3 Compute the Hermite normal form H of B

and let D be the diagonal elements of H, then M =

[

D−1B

0 I

]

.
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computation of the degree

To compute the degree of (x0 = z2t−3
0 t−2

1 , x1 = z3t2
0 t1, x2 = t0, x3 = t1)

we use two random linear equations:
{

c10x0 + c11x1 + c12x2 + c13x3 + c14 = 0
c20x0 + c21x1 + c22x2 + c23x3 + c24 = 0

after substitution:
{

c′

10t−3
0 t−2

1 + c′

11t2
0 t1 + c12t0 + c13t1 + c14 = 0

c′

20t−3
0 t−2

1 + c′

21t2
0 t1 + c22t0 + c23t1 + c24 = 0

�4 �3 �2 �1 0 1 2 3�3

�2

�1

0

1

2

Theorem (Koushnirenko’s Theorem)

If all n polynomials in f share the same Newton polytope P, then the

number of isolated solutions of f(x) = 0 in (C∗)n ≤ the volume of P.

As the area of the Newton polygon equals 8, the surface has degree 8.
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affine solution sets

An incidence matrix M of a bipartite graph:

f(x) =

{

x11x22 − x21x12 = 0

x12x23 − x22x13 = 0
M[xa, xk ] =

{

1 if ak > 0

0 if ak = 0.

Meaning of M[xa, xk ] = 1: xk = 0 ⇒ xa = 0.

The matrix linking monomials to variables is

M[xa, xk ] =













x11 x12 x13 x21 x22 x23

x11x22 1 0 0 0 1 0

x21x12 0 1 0 1 0 0

x12x23 0 1 0 0 0 1

x22x13 0 0 1 0 1 0













.

Observe: overlapping columns x12 with x22 gives all ones.
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enumerating all candidate affine solution sets
Apply row expansion on the matrix

M[xa, xk ] =













x11 x12 x13 x21 x22 x23

x11x22 1 0 0 0 1 0

x21x12 0 1 0 1 0 0

x12x23 0 1 0 0 0 1

x22x13 0 0 1 0 1 0













.

Selecting 1 means setting the corresponding variable to zero.

Monomials must be considered in pairs: if one monomial in an

equation vanishes, then so must the other one.

For all affine sets, we must skip pairs of rows, preventing from

certain variables to be set to zero.

To decide whether one candidate set C1 belongs to another

set C2, we construct the defining equations I(C1) and I(C2)
and apply C1 ⊆ C2 ⇔ I(C1) ⊇ I(C2).
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the Cayley embedding – an example
{

p = (x0 − x2
1 )(x0 + 1) = x2

0 + x0 − x2
1 x0 − x2

1 = 0

q = (x0 − x2
1 )(x1 + 1) = x0x1 + x0 − x3

1 − x2
1 = 0

The Cayley polytope

is the convex hull of

{(2,0,0), (1,0,0),

(1,2,0), (0,2,0)}

∪

{(1,1,1), (1,0,1),

(0,3,1), (0,2,1)}.
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facet normals and initial forms

The Cayley polytope

has facets spanned by

one edge of the

Newton polygon of p

and

one edge of the

Newton polygon of q.

Consider v = (2,1,0).

{

in(2,1)(p) = in(2,1)

(

x2
0 + x0 − x2

1 x0 − x2
1

)

= x0 − x2
1

in(2,1)(q) = in(2,1)

(

x0x1 + x0 − x3
1 − x2

1

)

= x0 − x2
1
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computing all pretropisms

Definition

A nonzero vector v is a pretropism for the system f(x) = 0

if #inv(fk ) ≥ 2 for all k = 0,1, . . . ,N − 1.

Application of the Cayley embedding to (A0,A1, . . . ,AN−1):

E = { (a,0) | a ∈ A0 } ∪

N−1
⋃

k=1

{ (a,ek ) | a ∈ Ak } ⊂ Zn+N−1,

where 0,e1 = (1,0, . . . ,0), e2 = (0,1, . . . ,0), . . ., eN−1 = (0,0, . . . ,1)
span the standard unit simplex in RN−1.

The set of all facet normals to the convex hull of E contains

all normals to facets spanned by at least two points of each support.

We used cddlib to compute all pretropisms of the cyclic n-roots

system, up to n = 12 (148.5 hours on a 3.07GHz CPU with 4GB RAM).
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cones of pretropisms

Definition

A cone of pretropism is a polyhedral cone spanned by pretropisms.

If we are looking for an algebraic set of dimension d and

if there are no cones of vectors perpendicular to edges of the

Newton polytopes of f (x) = 0 of dimension d ,

then the system f (x) = 0 has no solution set of dimension d

that intersects the first d coordinate planes properly; otherwise

if a d -dimensional cone of vectors perpendicular to edges of the

Newton polytopes exists, then that cone defines a part of the

tropical prevariety.

For the cyclic 9-roots system,

we found a two dimensional cone of pretropisms.
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the tropical prevariety of cyclic n-roots

All facets normals of the Cayley polytope computed with cddlib

on a 3.07GHz Linux computer with 4Gb RAM:

n #normals #pretropisms #generators user cpu time

8 831 94 11 < 1 sec

9 4,840 276 17 1 sec

12 907,923 38,229 290 148 hours 27 min

Tropical intersections with Gfan on a 2.26GHz MacBook:

n #rays f-vector user cpu time

8 94 1 94 108 48 15 sec

9 276 1 276 222 54 1 min 11 sec

12 5,582 1 5582 37786 66382 42540 8712 21 hours 1 min

Note that Gfan can exploit permutation symmetry.
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Puiseux series for algebraic sets

Proposition

If f (x) = 0 is in Noether position and defines a d-dimensional solution

set in Cn, intersecting the first d coordinate planes in regular isolated

points, then there are d linearly independent tropisms

v0,v1, . . . vd−1 ∈ Qn so that the initial form system

inv0
(inv1

(· · · invd−1
(f ) · · · ))(x = yM) = 0 has a solution c ∈ (C \ {0})n−d .

This solution and the tropisms are the leading coefficients and powers
of a generalized Puiseux series expansion for the algebraic set:

x0 = t
v0,0

0

x1 = t
v0,1

0 t
v1,1

1
...

xd−1 = t
v0,d−1

0 t
v1,d−1

1 · · · t
vd−1,d−1

d−1

xd = c0t
v0,d

0 t
v1,d

1 · · · t
vd−1,d

d−1 + · · ·

xd+1 = c1t
v0,d+1

0 t
v1,d+1

1 · · · t
vd−1,d+1

d−1 + · · ·
...

xn = cn−d−1t
v0,n−1

0 t
v1,n−1

1 · · · t
vd−1,n−1

d−1 + · · ·
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our polyhedral approach

For every d -dimensional cone C of pretropisms:

1 We select d linearly independent generators to form the d -by-n

matrix A and the unimodular transformation x = yM .

2 If inv0
(inv1

(· · · invd−1
(f ) · · · ))(x = yM) = 0 has no solution in

(C∗)n−d , then return to step 1 with the next cone C, else continue.

3 If the leading term of the Puiseux series satisfies the entire

system, then we report an explicit solution of the system and

return to step 1 to process the next cone C.

Otherwise, we take the current leading term to the next step.

4 If there is a second term in the Puiseux series,

then we have computed an initial development for an algebraic set

and report this development in the output.

Note: to ensure the solution of the initial form system is not isolated,

it suffices to compute a series development for a curve.
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our approach depicted in stages

inner normals

1. compute pretropisms

❄
❣

❅❅❘ no tropism

⇒ no root at ∞

2. solve initial forms

❄
❣

❅❅❘ no root at ∞

⇒ no series

✲ singular roots

⇒ deflate factor

3. evaluate initial terms

❄
❣

❅❅❘ initial term satisfies

⇒ a binomial factor

4. compute 2nd term

❄
❣

❅❅❘ no series

⇒ no factor❄

series
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relevant software

cddlib by Komei Fukuda and Alain Prodon implements the

double description method to efficiently enumerate all extreme

rays of a general polyhedral cone.

Gfan by Anders Jensen to compute Gröbner fans and tropical

varieties uses cddlib.

The Singular library tropical.lib by Anders Jensen,

Hannah Markwig and Thomas Markwig for computations in

tropical geometry.

Macaulay2 interfaces to Gfan.

Sage interfaces to Gfan.

PHCpack (published as Algorithm 795 ACM TOMS) provides our

numerical blackbox solver.
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positive dimensional sets of cyclic n-roots

n = 8: Tropisms, their cyclic permutations, and degrees:

(1,−1, 1,−1, 1,−1, 1,−1) 8 × 2 = 16
(1,−1, 0, 1, 0, 0,−1, 0) → (1, 0, 0,−1, 0, 1,−1, 0) 8 × 2 + 8 × 2 = 32

(1, 0,−1, 0, 0, 1, 0,−1) → (1, 0,−1, 1, 0,−1, 0, 0) 8 × 2 + 8 × 2 = 32
(1, 0,−1, 1, 0,−1, 0, 0) → (1, 0,−1, 0, 0, 1, 0,−1) 8 × 2 + 8 × 2 = 32

(1, 0, 0,−1, 0, 1,−1, 0) → (1,−1, 0, 1, 0, 0,−1, 0) 8 × 2 + 8 × 2 = 32

TOTAL = 144

n = 9: A 2-dimensional cone of tropisms spanned by

v0 = (1, 1,−2, 1, 1,−2, 1, 1,−2) and v1 = (0, 1,−1, 0, 1,−1, 0, 1,−1).

Denoting by u = ei2π/3 the primitive third root of unity, u3 − 1 = 0:

x0 = t0
x1 = t0t1
x2 = u2t−2

0 t−1
1

x3 = ut0
x4 = ut0t1
x5 = t−2

0 t−1
1

x6 = u2t0
x7 = u2t0t1
x8 = ut−2

0 t−1
1 .

n = 12: Computed 77 quadratic space curves.
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results in the literature

Our results for n = 9 and n = 12 are in agreement with

J.C. Faugère. Finding all the solutions of Cyclic 9 using Gröbner
basis techniques. In Computer Mathematics - Proceedings of the Fifth

Asian Symposium (ASCM 2001), pages 1–12. World Scientific, 2001.

R. Sabeti. Numerical-symbolic exact irreducible decomposition of

cyclic-12. London Mathematical Society Journal of Computation and
Mathematics, 14:155–172, 2011.
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a tropical version of Backelin’s Lemma

Lemma (Tropical Version of Backelin’s Lemma)

For n = m2ℓ, where ℓ ∈ N \ {0} and ℓ is no multiple of k2, for k ≥ 2,

there is an (m − 1)-dimensional set of cyclic n-roots, represented

exactly as

xkm+0 = uk t0
xkm+1 = uk t0t1
xkm+2 = uk t0t1t2

...

xkm+m−2 = uk t0t1t2 · · · tm−2

xkm+m−1 = γuk t−m+1
0 t−m+2

1 · · · t−2
m−3t−1

m−2

for k = 0,1,2, . . . ,m − 1, free parameters t0, t1, . . . , tm−2, constants

u = e
i2π
mℓ , γ = e

iπβ

mℓ , with β = (α mod 2), and α = m(mℓ− 1).
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summary

Promising results on the cyclic n-roots problem give a proof of concept

for a new polyhedral method to compute algebraic sets.

For the computation of pretropisms, we rely on

cddlib on the Cayley embedding of the Newton polytopes, or

Gfan for the tropical intersection.

To process the pretropisms, we

use Sage to extract initial form systems

and look for the second term in the Puiseux series;

solve initial form systems with the blackbox solver of PHCpack.
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