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polynomial systems

Consider f(x) = 0, a system of equations defined by
@ N polynomials f = (fy, fi,..., fn_1),
@ in nvariables x = (xg, X1, ..., Xp_1)-

A polynomial in n variables consists of a vector of nonzero complex
coefficients with corresponding exponents in A:

f(X) = cax®, e C\{0}, x*=x3x---x"".
acAx

Input data:
@ A= (Ay, A, ..., An_1) are sets of exponents, the supports.

For a € Z", we consider Laurent polynomials, f, € (C[xﬂ]
= only solutions with coordinates in C* = C \ {0} matter.

@ ca=(ca,Ca,,--.,Ca,_,) are vectors of complex coefficients.
Although A is exact, the coefficients may be approximate.
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the cyclic 4-roots system

Xo+ Xy +Xo+x3=0
f(X) . XoX1 + X1Xo + XoX3 + X3Xg = 0
XoXiXo + X1 XoX3 + XoX3Xg + X3XoX1 = 0
XoX1XoX3 — 1=0

Cyclic 4-roots x = (xp, X1, X2, X3) correspond to complex circulant
Hadamard matrices:

Xo X4 Xo X3
X3 Xo X1 Xo
X2 X3 Xo X1 |’
X1 X2 X3 Xo

Xk =1,k=1,2,3,4
H*H = 4l,.

@ Haagerup: for prime p, there are < 2p—2 ) isolated roots.

p—1
@ Backelin: for n = ¢m?, there are infinitely many cyclic n-roots.
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solving polynomial systems

Systems like cyclic n-roots are
@ Sparse: relative to the degrees of the polynomials,

few monomials appear with nonzero coefficients
= fewer roots than the Bézout bounds.

@ Symmetric: solutions are invariant under permutations, n = 4:
(X0, X1, X2, X3) — (X1, X2, X3, X0) @nd (Xo, X1, X2, X3) — (X3, X2, X1, Xo)
generate the permutation group.

ition: 1 1 -1 1
In addition: (xo, X1, X2, X3) — (X5, Xy . X5 , X3 ).

@ Not pure dimensional, for prime n, all solutions are isolated,
but for n = ¢m?, we have positive dimensional solution sets.

Our solution is to apply a hybrid symbolic-numeric approach.
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Puiseux series

The Newton polygon of f(xg, x1) is the convex hull, spanned by the
exponents (ao, ar) of monomials x;°x{" that occur in f with ¢z a,) # 0.

Theorem (the theorem of Puiseux)

Let f(xo, x1) € C(Xo)[x1]: f is a polynomial in the variable x; and its
coefficients are fractional power series in xg.

The polynomial f has as many series solutions as the degree of f.
Every series solution has the following form:

Xo = tv
x; = ct'(1+ O(t)), ceC*

where (u, v) is an inner normal to an edge of the lower hull of the
Newton polygon of f.

v

The series are computed with the polyhedral Newton-Puiseux method.
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limits of space curves

Assume f(x) = 0 has a solution curve C,
which intersects xo = 0 at a regular point.
Forv = (vo,Vq,...,Vn_1) € Z", consider x = zt¥(1 + O(t)):
@ Xxg = zyt", for t close to zero, z; # 0 and
@ fork=1,2,....,n—1: x, =zt (1 + O(1)), zx # 0.
Substitute xp = zpt"0, Xk = zx (1 + O(t)) in f(x) = Z cx?:
acA,

n—1
fx=2t'(1+0(1)) = > cazg’t®" [T 2t (1 + O(1))
acA, k=1

= Y GaAtRttavit A vei(1 4 O(t)).

acA,
Because z € (C*)", there must be at least two terms in f; left as t — O.
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initial forms and tropisms

Denote the inner product of vectors u and v as (u, v).
Definition

Letv € Z"\ {0} be a direction vector. Consider f(x) = )  cax®.

acA
The initial form of f in the direction v is
iny(f) Z CaX?, where m=min{ (a,v) [ac A}.
acA
(@a,v)=m

Definition

Let the system f(x) = 0 define a curve. A tropism consists of the
leading powers (v, v1, ..., Vh_1) of a Puiseux series of the curve.

The leading coefficients of the Puiseux series satisfy iny(f)(x) =0
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curves of cyclic 4-roots

Xo+ X1 +X+Xx3=0
XoX1 + X1Xo + XoX3 + X3Xg = 0
XoX1Xo + X{XoX3 + XoX3Xg + X3XpXy = 0
XoX1XoX3 — 1=0

f(x) =

One tropism v = (+1, —1,+1, —1) with iny(f)(z) = O:

X1 +x3=0
XoX1 + Xy Xo + XoX3 + X3Xp = 0
X1XoX3 + X3XoXq = 0
XoXiXoxz3 —1 =0.

iny(f)(x) =

We look for solutions of the form

(Xo = t+1,X1 = Zi t_1,X2 = th+1,X3 = Z3t_1).
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solving the initial form system

Substitute (xo = t71,x; = z1t7, X = 2t x3 = z3t™1):
inv(f)(Xo = t+1,X1 = Z3 t_1,X2 = th+1,X3 = Z3t_1)
1+ Zg)t+1 =0
21+ 2120+ 2023+ 23 =0

(Z1 Zo + Z3Z1)1'+1 =0
212023 — 1=0.

We find two solutions: (z; = -1,z = —1,2z3 = +1)
and (z1 =+1,z2=—1,z3 = —1).

Two space curves (t,—t~1,—t, t=") and (t,t1,—t,—t7")
satisfy the entire cyclic 4-roots system.
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overview of our polyhedral method
@ finding pretropisms and solving initial forms

Initial forms with at least two monomials in every equation
define the intersection points of the solution set with the
coordinate hyperplanes.

@ unimodular coordinate transformations

Via the Smith normal form we obtain nice representations
for solutions at infinity.
Solutions of binomial systems are monomial maps.

@ computing terms of Puiseux series

Although solutions to any initial forms may be monomial maps,
in general we need a second term in the Puiseux series
expansion to distinguish between

» a positive dimensional solution set, and

» an isolated solution at infinity.
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binomial systems
Definition

A binomial system has exactly two monomials with nonzero
coefficient in every equation.

The binomial equation c,x? — cpX® =0, a,b € Z”, ¢, o € C\ {0},
has normal representation x2—° = ¢, /c,.

A binomial system of N equations in n variables is then defined by an
exponent matrix A € ZN*" and a coefficient vector ¢ € (C*)V: x4 = c.

Motivations to study binomial systems:
@ A unimodular coordinate transformation provides a monomial
parametrization for the solution set.

@ The leading coefficients of a Puiseux series satisfy a system of
binomial equations.

© Finding all solutions with zero coordinates can happen via a
generalized permanent calculation.
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an example
Consider as an example for xA = ¢ the system

xxpd-1=0 , [21 437 [1
XOX1X2X3—1:0 o 11 1 1 o 1 ’

As basis of the null space of A we can for example take
u=(-3,2,1,0)andv=(-2,1,0,1).
The vectors u and v are tropisms for a two dimensional algebraic set.

Placing u and v in the first two rows of a matrix M, extended so
det(M) = 1, we obtain a coordinate transformation, x = yM:

3210 X0 = Yy 2y 2y
M—| 2 101 X1 = Yy ys

1000 % = Yo

0100 o = 1.
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monomial transformations

By construction, as Au =0 and Av = 0:

-3 210 2 1 00
-2 1 0 1 11 00

MA = 1.0 00 4 1| |2 1| B
01 00O 3 1 11

The corresponding monomial transformation x = y" performed on
x4 = ¢ yields yM* = yB = ¢, eliminating the first two variables:

{y;"ys—1=0
yoys —1=0.

Solving this reduced system gives values z, and z3 for y» and ys.
Leaving yp and y; as parameters f, and t; we find as solution

—3;-2 2
(Xo = tho t1 , X1 = Z3t0 by, Xo =y, X3 = t1).
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unimodular coordinate transformations

Definition
A unimodular coordinate transformation x = yM is determined by
an invertible matrix M € Z"™": det(M) = +1.

For a d dimensional solution set of a binomial system:
@ The null space of A gives d tropisms,
stored in the rows of a d-by-n-matrix B.
@ Compute the Smith normal form S of B: UBV = S.
© There are three cases:
QO U=/I=M=V"1
@ If U # I and S has ones on its diagonal,

then extend U~ with an identity matrix to form M.
© Compute the Hermite normal form H of B

—1
and let D be the diagonal elements of H, then M = [ 5 IB ] .
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computation of the degree

To compute the degree of (xo = 2oty 21,2, X1 = Z3t2ty, X2 = tg, X3 = 1)
we use two random linear equations:

C10X0 + C11X1 + Ci2Xo + C13X3 + C14 =0
C20Xo + Co1 X1 + CopXo + Co3Xz + Coga = 0
after substitution:

Cgoto_3t1_2 + 041 tgh + Cyolg + Ci13ti + C14 =0
Céoto_3t1_2+Cé1tgt1 + Coolg + Cogti + Cos =0

Theorem (Koushnirenko’s Theorem)

If all n polynomials in f share the same Newton polytope P, then the
number of isolated solutions of f(x) = 0 in (C*)" < the volume of P.

v

As the area of the Newton polygon equals 8, the surface has degree 8.
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affine solution sets
An incidence matrix M of a bipartite graph:

B X11Xoo — Xo1X12 = 0 a i 1 if a>0
f(X) o { X12Xo3 — XooX13 = 0 M[X ’Xk] - { 0 if a,=0.

Meaning of M[x® x,] =1: x, =0=x2=0.

The matrix linking monomials to variables is

‘Xn X12  X13  Xo1  Xo2  Xog

X11X22 1 0 0 0 1 0
M[Xa,Xk] = X21X12 0 1 0 1 0 0
X12X23 0 1 0 0 0 1
X220X13 0 0 1 0 1 0

Observe: overlapping columns xq» with xo» gives all ones.
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enumerating all candidate affine solution sets
Apply row expansion on the matrix

‘Xﬁ X2 X13 Xo1 Xop X3

X11 Xo2 1 0 0 0 1 0
M[Xa,Xk] = Xo1X12 | O 1 0 1 0 0
X12X23 0 1 0 0 0 1
Xo2X13 0 0 1 0 1 0

@ Selecting 1 means setting the corresponding variable to zero.

@ Monomials must be considered in pairs: if one monomial in an
equation vanishes, then so must the other one.

@ For all affine sets, we must skip pairs of rows, preventing from
certain variables to be set to zero.

@ To decide whether one candidate set C; belongs to another
set Cy, we construct the defining equations /(Cy) and /(C>)
and apply Cy C Co < I(Cy) 2 I(Cy).
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the Cayley embedding — an example

{ p=(X—x2)(X+1)=Xx5+x —X2x—x2=0

The Cayley polytope
is the convex hull of
{(2,0,0),(1,0,0),
(1,2,0),(0,2,0)}
U
{(1,1,1),(1,0,1),
(0,3,1),(0,2,1)}.
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facet normals and initial forms

The Cayley polytope =
has facets spanned by ]
one edge of the
Newton polygon of p
and
one edge of the .
Newton polygon of g. v

Considerv = (2,1,0). :

0.8

0.6

04—

inz,1)(p) = ingz,1) (Xg + X0 — X2xp — x12) =X — X?
in2,1y(q) = in1) (Xox1 + X0 — X3 — X2) = xo — X%
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computing all pretropisms

Definition
A nonzero vector v is a pretropism for the system f(x) =0
if #iny(fx) >2forallk =0,1,...,N—1.

Application of the Cayley embedding to (Ag, A1, ..., An_1):

N—1
E:{(a70)|aEA0}U U{(a?ek)|a6Ak}CZn+N_17
k=1

where 0,e; = (1,0,...,0),e>=(0,1,...,0),...,en_1 =(0,0,...,1)
span the standard unit simplex in RN-1.

The set of all facet normals to the convex hull of E contains
all normals to facets spanned by at least two points of each support.

We used cdd1ib to compute all pretropisms of the cyclic n-roots
system, up to n = 12 (148.5 hours on a 3.07GHz CPU with 4GB RAM).

Jan Verschelde (UIC) solving with Puiseux series MCAG 2013, 3-4 May 23/33



cones of pretropisms

Definition
A cone of pretropism is a polyhedral cone spanned by pretropisms. J

If we are looking for an algebraic set of dimension d and

@ if there are no cones of vectors perpendicular to edges of the
Newton polytopes of f(x) = 0 of dimension d,
then the system f(x) = 0 has no solution set of dimension d
that intersects the first d coordinate planes properly; otherwise

@ if a d-dimensional cone of vectors perpendicular to edges of the
Newton polytopes exists, then that cone defines a part of the
tropical prevariety.

For the cyclic 9-roots system,
we found a two dimensional cone of pretropisms.
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the tropical prevariety of cyclic n-roots

All facets normals of the Cayley polytope computed with cdd1lib
on a 3.07GHz Linux computer with 4Gb RAM:

n | #normals | #pretropisms | #generators | user cpu time
8 831 94 11 <1sec
9 4,840 276 17 1 sec
12 | 907,923 38,229 290 148 hours 27 min

Tropical intersections with Gfan on a 2.26GHz MacBook:

n | #rays | f-vector | user cpu time
8 94 | 194108 48 15 sec
9 276 | 1276 222 54 1 min 11 sec

12 | 5,582 | 15582 37786 66382 42540 8712 | 21 hours 1 min
Note that Gfan can exploit permutation symmetry.

Jan Verschelde (UIC) solving with Puiseux series MCAG 2013, 3-4 May

25/33



Puiseux series for algebraic sets

Proposition

If f(x) = 0 is in Noether position and defines a d-dimensional solution
set in C", intersecting the first d coordinate planes in regular isolated
points, then there are d linearly independent tropisms

Vo,V1,...Vg_1 € Q" so that the initial form system

iny, (iny, (- - -iny, ,(f)---))(x = yM) = 0 has a solution ¢ € (C\ {0})"¢.
This solution and the tropisms are the leading coefficients and powers
of a generalized Puiseux series expansion for the algebraic set:

% Vo.d 4 V1 7
Xo = t0°*° Xqg = coto"*dt11’d...tdd_11’d_|_...
_ V0,1 411 _ V0,d+1 $V1,d+1 Vd—1,d+1
X1 = tO t1 Xd+1 = Cq tO t1 coe td—1 SF oo
Vo,d—1 4Y1,d—1 Vad—1,d—1 ] Vo,n—1 4V1,n—1 Vad—1,n—1
Xgo1 = L2 Xn = Cpog—tly TP
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our polyhedral approach

For every d-dimensional cone C of pretropisms:

@ We select d linearly independent generators to form the d-by-n

matrix A and the unimodular transformation x = yM.

Q Ifiny, (iny, (- -iny, ,(f)---))(x = yM) = 0 has no solution in
(C*)™=9, then return to step 1 with the next cone C, else continue.

© If the leading term of the Puiseux series satisfies the entire
system, then we report an explicit solution of the system and
return to step 1 to process the next cone C.
Otherwise, we take the current leading term to the next step.

© If there is a second term in the Puiseux series,
then we have computed an initial development for an algebraic set
and report this development in the output.

Note: to ensure the solution of the initial form system is not isolated,
it suffices to compute a series development for a curve.
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our approach depicted in stages

inner normals

|

1. compute pretropisms O

no tropism
= no root at oo

2. solve initial forms O singular roots
= deflate factor

N no root at co
= Nno series
3. evaluate initial terms O

N initial term satisfies
= a binomial factor

\ no series

= no factor

4. compute 2nd term O

series
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relevant software

@ cddlib by Komei Fukuda and Alain Prodon implements the
double description method to efficiently enumerate all extreme
rays of a general polyhedral cone.

@ Gfan by Anders Jensen to compute Grébner fans and tropical
varieties uses cddlib.

® The Singular library tropical.lib by Anders Jensen,
Hannah Markwig and Thomas Markwig for computations in
tropical geometry.

@ Macaulay? interfaces to Gfan.
@ Sage interfaces to Gfan.

@ PHCpack (published as Algorithm 795 ACM TOMS) provides our
numerical blackbox solver.
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positive dimensional sets of cyclic n-roots

@ n = 8: Tropisms, their cyclic permutations, and degrees:

(1,-1,1,-1,1,-1,1,-1) 8x2=16
(1,-1,0,1,0,0,—1,0) — (1,0,0,-1,0,1,-1,0) 8x2+8x2=32
(1,0,-1,0,0,1,0,-1) — (1,0,—1,1,0,—1,0,0) 8x2+8x2=32
(1,0,-1,1,0,—1,0,0) — (1,0,-1,0,0,1,0,—1) 8x2+8 x 2 =32
(1,0,0,—1,0,1,—1,0) = (1,—1,0,1,0,0,—1,0) 8x2+8 x 2 =32

TOTAL = 144

@ n=9: A 2-dimensional cone of tropisms spanned by
Vo = (1,1,—2,1,1,—_2,1,1,—2) andvy =(0,1,-1,0,1,—1,0,1,-1).
Denoting by u = €”7/3 the primitive third root of unity, u> — 1 = 0:

Xo =1y X3 = Ul X = Uzto

X1 = bl X4 = Ulpty X7 = U2t0t1

=R X = xg = uty it
@ n = 12: Computed 77 quadratic space curves.
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results in the literature

Our results for n =9 and n = 12 are in agreement with

@ J.C. Faugere. Finding all the solutions of Cyclic 9 using Grébner
basis techniques. In Computer Mathematics - Proceedings of the Fifth
Asian Symposium (ASCM 2001), pages 1-12. World Scientific, 2001.

@ R. Sabeti. Numerical-symbolic exact irreducible decomposition of

cyclic-12. London Mathematical Society Journal of Computation and
Mathematics, 14:155-172, 2011.
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a tropical version of Backelin’s Lemma

Lemma (Tropical Version of Backelin’s Lemma)

Forn = m?¢, where ¢ € N\ {0} and ¢ is no multiple of k?, for k > 2,

there is an (m — 1)-dimensional set of cyclic n-roots, represented
exactly as

Xkm+0 = U:TO
Xkmi1 = Uktof1
Xkmy2 = U'ltl
Xkmim—2 = UKtotits- - tm—22 o
Xkmpm—t = UG 2
for k =0,1,2,...,m-1, free parameters ty, ty, . . . , tn_o, constants

u= 9’5,—2,7: ei;—f, with 5 = (o« mod 2), and o = m(m¢ —1).
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summary

Promising results on the cyclic n-roots problem give a proof of concept
for a new polyhedral method to compute algebraic sets.
For the computation of pretropisms, we rely on

@ cddlib on the Cayley embedding of the Newton polytopes, or

@ Gfan for the tropical intersection.

To process the pretropisms, we

@ use Sage to extract initial form systems
and look for the second term in the Puiseux series;

@ solve initial form systems with the blackbox solver of PHCpack.
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