

solving polynomial systems with Puiseux series

Jan Verschelde
(joint work with Danko Adrovic)

University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science
<http://www.math.uic.edu/~jan>
jan@math.uic.edu

the 2013 Michigan Computational Algebraic Geometry meeting
3-4 May 2013, Western Michigan University, Kalamazoo

Outline

1 Introduction

- solving sparse polynomial systems
- space curves and initial forms

2 Solving Binomial Systems

- unimodular coordinate transformations
- computation of the degree and affine sets

3 Polyhedral Methods for Algebraic Sets

- computing pretropisms with the Cayley embedding
- Puiseux series for algebraic sets
- application to the cyclic n -roots problem

polynomial systems

Consider $\mathbf{f}(\mathbf{x}) = \mathbf{0}$, a system of equations defined by

- N polynomials $\mathbf{f} = (f_0, f_1, \dots, f_{N-1})$,
- in n variables $\mathbf{x} = (x_0, x_1, \dots, x_{n-1})$.

A polynomial in n variables consists of a vector of nonzero complex coefficients with corresponding exponents in A :

$$f_k(\mathbf{x}) = \sum_{\mathbf{a} \in A_k} c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}}, \quad c_{\mathbf{a}} \in \mathbb{C} \setminus \{0\}, \quad \mathbf{x}^{\mathbf{a}} = x_0^{a_0} x_1^{a_1} \cdots x_{n-1}^{a_{n-1}}.$$

Input data:

- 1 $A = (A_0, A_1, \dots, A_{N-1})$ are sets of exponents, the *supports*.
For $\mathbf{a} \in \mathbb{Z}^n$, we consider *Laurent polynomials*, $f_k \in \mathbb{C}[\mathbf{x}^{\pm 1}]$
 \Rightarrow only solutions with coordinates in $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ matter.
- 2 $\mathbf{c}_A = (\mathbf{c}_{A_0}, \mathbf{c}_{A_1}, \dots, \mathbf{c}_{A_{N-1}})$ are vectors of complex coefficients.
Although A is exact, the coefficients may be approximate.

the cyclic 4-roots system

$$\mathbf{f}(\mathbf{x}) = \begin{cases} x_0 + x_1 + x_2 + x_3 = 0 \\ x_0x_1 + x_1x_2 + x_2x_3 + x_3x_0 = 0 \\ x_0x_1x_2 + x_1x_2x_3 + x_2x_3x_0 + x_3x_0x_1 = 0 \\ x_0x_1x_2x_3 - 1 = 0 \end{cases}$$

Cyclic 4-roots $\mathbf{x} = (x_0, x_1, x_2, x_3)$ correspond to complex circulant Hadamard matrices:

$$H = \begin{bmatrix} x_0 & x_1 & x_2 & x_3 \\ x_3 & x_0 & x_1 & x_2 \\ x_2 & x_3 & x_0 & x_1 \\ x_1 & x_2 & x_3 & x_0 \end{bmatrix}, \quad |x_k| = 1, k = 1, 2, 3, 4$$
$$H^*H = 4I_4.$$

- Haagerup: for prime p , there are $\binom{2p-2}{p-1}$ isolated roots.
- Backelin: for $n = \ell m^2$, there are infinitely many cyclic n -roots.

solving polynomial systems

Systems like cyclic n -roots are

- Sparse: relative to the degrees of the polynomials,
few monomials appear with nonzero coefficients
⇒ fewer roots than the Bézout bounds.
- Symmetric: solutions are invariant under permutations, $n = 4$:
 $(x_0, x_1, x_2, x_3) \rightarrow (x_1, x_2, x_3, x_0)$ and $(x_0, x_1, x_2, x_3) \rightarrow (x_3, x_2, x_1, x_0)$
generate the permutation group.
In addition: $(x_0, x_1, x_2, x_3) \rightarrow (x_0^{-1}, x_1^{-1}, x_2^{-1}, x_3^{-1})$.
- Not pure dimensional, for prime n , all solutions are isolated,
but for $n = \ell m^2$, we have positive dimensional solution sets.

Our solution is to apply a hybrid symbolic-numeric approach.

Puiseux series

The Newton polygon of $f(x_0, x_1)$ is the convex hull, spanned by the exponents (a_0, a_1) of monomials $x_0^{a_0} x_1^{a_1}$ that occur in f with $c_{(a_0, a_1)} \neq 0$.

Theorem (the theorem of Puiseux)

Let $f(x_0, x_1) \in \mathbb{C}(x_0)[x_1]$: f is a polynomial in the variable x_1 and its coefficients are fractional power series in x_0 .

The polynomial f has as many series solutions as the degree of f .

Every series solution has the following form:

$$\begin{cases} x_0 = t^u \\ x_1 = ct^\nu(1 + O(t)), \quad c \in \mathbb{C}^* \end{cases}$$

where (u, ν) is an inner normal to an edge of the lower hull of the Newton polygon of f .

The series are computed with the polyhedral Newton-Puiseux method.

limits of space curves

Assume $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ has a solution curve C , which intersects $x_0 = 0$ at a regular point.

For $\mathbf{v} = (v_0, v_1, \dots, v_{n-1}) \in \mathbb{Z}^n$, consider $\mathbf{x} = \mathbf{z}t^{\mathbf{v}}(1 + O(t))$:

- $x_0 = z_0 t^{v_0}$, for t close to zero, $z_0 \neq 0$ and
- for $k = 1, 2, \dots, n-1$: $x_k = z_k t^{v_k}(1 + O(t))$, $z_k \neq 0$.

Substitute $x_0 = z_0 t^{v_0}$, $x_k = z_k t^{v_k}(1 + O(t))$ in $f_\ell(\mathbf{x}) = \sum_{\mathbf{a} \in A_\ell} c_\ell \mathbf{x}^\mathbf{a}$:

$$\begin{aligned} f_\ell(\mathbf{x} = \mathbf{z}t^{\mathbf{v}}(1 + O(t))) &= \sum_{\mathbf{a} \in A_\ell} c_{\mathbf{a}} z_0^{a_0} t^{a_0 v_0} \prod_{k=1}^{n-1} z_k t^{a_k v_k} (1 + O(t)) \\ &= \sum_{\mathbf{a} \in A_\ell} c_{\mathbf{a}} z^{\mathbf{a}} t^{a_0 v_0 + a_1 v_1 + \dots + a_{n-1} v_{n-1}} (1 + O(t)). \end{aligned}$$

Because $\mathbf{z} \in (\mathbb{C}^*)^n$, there must be at least two terms in f_ℓ left as $t \rightarrow 0$.

initial forms and tropisms

Denote the inner product of vectors \mathbf{u} and \mathbf{v} as $\langle \mathbf{u}, \mathbf{v} \rangle$.

Definition

Let $\mathbf{v} \in \mathbb{Z}^n \setminus \{\mathbf{0}\}$ be a direction vector. Consider $f(\mathbf{x}) = \sum_{\mathbf{a} \in A} c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}}$.

The **initial form of f in the direction \mathbf{v}** is

$$\text{in}_{\mathbf{v}}(f) = \sum_{\substack{\mathbf{a} \in A \\ \langle \mathbf{a}, \mathbf{v} \rangle = m}} c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}}, \quad \text{where } m = \min\{ \langle \mathbf{a}, \mathbf{v} \rangle \mid \mathbf{a} \in A \}.$$

Definition

Let the system $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ define a curve. A **tropism** consists of the leading powers $(v_0, v_1, \dots, v_{n-1})$ of a Puiseux series of the curve.

The leading coefficients of the Puiseux series satisfy $\text{in}_{\mathbf{v}}(\mathbf{f})(\mathbf{x}) = \mathbf{0}$.

curves of cyclic 4-roots

$$\mathbf{f}(\mathbf{x}) = \begin{cases} x_0 + x_1 + x_2 + x_3 = 0 \\ x_0x_1 + x_1x_2 + x_2x_3 + x_3x_0 = 0 \\ x_0x_1x_2 + x_1x_2x_3 + x_2x_3x_0 + x_3x_0x_1 = 0 \\ x_0x_1x_2x_3 - 1 = 0 \end{cases}$$

One tropism $\mathbf{v} = (+1, -1, +1, -1)$ with $\text{in}_{\mathbf{v}}(\mathbf{f})(\mathbf{z}) = \mathbf{0}$:

$$\text{in}_{\mathbf{v}}(\mathbf{f})(\mathbf{x}) = \begin{cases} x_1 + x_3 = 0 \\ x_0x_1 + x_1x_2 + x_2x_3 + x_3x_0 = 0 \\ x_1x_2x_3 + x_3x_0x_1 = 0 \\ x_0x_1x_2x_3 - 1 = 0. \end{cases}$$

We look for solutions of the form

$$(x_0 = t^{+1}, x_1 = z_1 t^{-1}, x_2 = z_2 t^{+1}, x_3 = z_3 t^{-1}).$$

solving the initial form system

Substitute $(x_0 = t^{+1}, x_1 = z_1 t^{-1}, x_2 = z_2 t^{+1}, x_3 = z_3 t^{-1})$:

$\text{in}_v(\mathbf{f})(x_0 = t^{+1}, x_1 = z_1 t^{-1}, x_2 = z_2 t^{+1}, x_3 = z_3 t^{-1})$

$$= \begin{cases} (1 + z_2)t^{+1} = 0 \\ z_1 + z_1 z_2 + z_2 z_3 + z_3 = 0 \\ (z_1 z_2 + z_3 z_1)t^{+1} = 0 \\ z_1 z_2 z_3 - 1 = 0. \end{cases}$$

We find two solutions: $(z_1 = -1, z_2 = -1, z_3 = +1)$
and $(z_1 = +1, z_2 = -1, z_3 = -1)$.

Two space curves $(t, -t^{-1}, -t, t^{-1})$ and $(t, t^{-1}, -t, -t^{-1})$
satisfy the entire cyclic 4-roots system.

overview of our polyhedral method

- finding pretropisms and solving initial forms

Initial forms with at least two monomials in every equation define the intersection points of the solution set with the coordinate hyperplanes.

- unimodular coordinate transformations

Via the Smith normal form we obtain nice representations for solutions at infinity.

Solutions of binomial systems are monomial maps.

- computing terms of Puiseux series

Although solutions to any initial forms may be monomial maps, in general we need a second term in the Puiseux series expansion to distinguish between

- ▶ a positive dimensional solution set, and
- ▶ an isolated solution at infinity.

some references

- D.N. Bernshtein. **The number of roots of a system of equations.** *Functional Anal. Appl.*, 9(3):183–185, 1975.
- B. Sturmfels. *Gröbner Bases and Convex Polytopes*, AMS, 1996.
- M. Hampton and R. Moeckel. **Finiteness of relative equilibria of the four-body problem.** *Invent. math.*, 163:289–312, 2006.
- T. Bogart, A.N. Jensen, D. Speyer, B. Sturmfels, and R.R. Thomas. **Computing tropical varieties.** *J. Symbolic Computation*, 42(1):54–73, 2007.
- A.N. Jensen, H. Markwig, and T. Markwig. **An algorithm for lifting points in a tropical variety.** *Collectanea Mathematica*, 59(2):129–165, 2008.
- S. Payne. **Fibers of tropicalization.** *Mathematische Zeitschrift*, 262(2):301–311, 2009.
- F. Aroca, G. Iñardi, and L. López de Medrano. **Puiseux power series solutions for systems of equations.** *International Journal of Mathematics*, 21(11):1439–1459, 2011.

binomial systems

Definition

A **binomial system** has exactly two monomials with nonzero coefficient in every equation.

The binomial equation $c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}} - c_{\mathbf{b}} \mathbf{x}^{\mathbf{b}} = 0$, $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^n$, $c_{\mathbf{a}}, c_{\mathbf{b}} \in \mathbb{C} \setminus \{0\}$, has normal representation $\mathbf{x}^{\mathbf{a}-\mathbf{b}} = c_{\mathbf{b}}/c_{\mathbf{a}}$.

A binomial system of N equations in n variables is then defined by an exponent matrix $A \in \mathbb{Z}^{N \times n}$ and a coefficient vector $\mathbf{c} \in (\mathbb{C}^*)^N$: $\mathbf{x}^A = \mathbf{c}$.

Motivations to study binomial systems:

- 1 A unimodular coordinate transformation provides a monomial parametrization for the solution set.
- 2 The leading coefficients of a Puiseux series satisfy a system of binomial equations.
- 3 Finding all solutions with zero coordinates can happen via a generalized permanent calculation.

some references

- D. Eisenbud and B. Sturmfels. **Binomial ideals.** *Duke Mathematical Journal*, 84(1):1–45, 1996.
- P. Diaconis, D. Eisenbud, and B. Sturmfels. **Lattice walks and primary decomposition.** In *Mathematical Essays in Honor of Gian-Carlo Rota*, pages 173–193. Birkhäuser, 1998.
- S. Hoşten and J. Shapiro. **Primary decomposition of lattice basis ideals.** *J. Symbolic Computation*, 29(4&5):625–639, 2000.
- E. Cattani and A. Dickenstein. **Counting solutions to binomial complete intersections.** *J. Complexity*, 23(1):82–107, 2007.
- T. Kahle. **Decomposition of binomial ideals.** *Annals of the institute of statistical mathematics*, 62(4):727–745, 2010.
- D. Grigoriev and A. Weber. **Complexity of solving systems with few independent monomials and applications to mass-action kinetics.** In *Proceedings of CASC 2012*, pages 143–154. Springer, 2012.
- E. Hubert and G. Labahn. **Rational invariants of scalings from Hermite normal forms.** In *Proceedings of ISSAC 2012*, pages 219–226. ACM, 2012.

an example

Consider as an example for $\mathbf{x}^A = \mathbf{c}$ the system

$$\begin{cases} x_0^2 x_1 x_2^4 x_3^3 - 1 = 0 \\ x_0 x_1 x_2 x_3 - 1 = 0 \end{cases} \quad A = \begin{bmatrix} 2 & 1 & 4 & 3 \\ 1 & 1 & 1 & 1 \end{bmatrix}^T \quad \mathbf{c} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

As basis of the null space of A we can for example take

$\mathbf{u} = (-3, 2, 1, 0)$ and $\mathbf{v} = (-2, 1, 0, 1)$.

The vectors \mathbf{u} and \mathbf{v} are tropisms for a two dimensional algebraic set.

Placing \mathbf{u} and \mathbf{v} in the first two rows of a matrix M , extended so $\det(M) = 1$, we obtain a coordinate transformation, $\mathbf{x} = \mathbf{y}^M$:

$$M = \begin{bmatrix} -3 & 2 & 1 & 0 \\ -2 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad \begin{cases} x_0 = y_0^{-3} y_1^{-2} y_2 \\ x_1 = y_0^2 y_1 y_3 \\ x_2 = y_0 \\ x_3 = y_1. \end{cases}$$

monomial transformations

By construction, as $A\mathbf{u} = \mathbf{0}$ and $A\mathbf{v} = \mathbf{0}$:

$$MA = \begin{bmatrix} -3 & 2 & 1 & 0 \\ -2 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \\ 4 & 1 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 2 & 1 \\ 1 & 1 \end{bmatrix} = B.$$

The corresponding monomial transformation $\mathbf{x} = \mathbf{y}^M$ performed on $\mathbf{x}^A = \mathbf{c}$ yields $\mathbf{y}^{MA} = \mathbf{y}^B = \mathbf{c}$, eliminating the first two variables:

$$\begin{cases} y_2^2 y_3 - 1 = 0 \\ y_2 y_3 - 1 = 0. \end{cases}$$

Solving this reduced system gives values z_2 and z_3 for y_2 and y_3 . Leaving y_0 and y_1 as parameters t_0 and t_1 we find as solution

$$(x_0 = z_2 t_0^{-3} t_1^{-2}, x_1 = z_3 t_0^2 t_1, x_2 = t_0, x_3 = t_1).$$

unimodular coordinate transformations

Definition

A **unimodular coordinate transformation** $\mathbf{x} = \mathbf{y}^M$ is determined by an invertible matrix $M \in \mathbb{Z}^{n \times n}$: $\det(M) = \pm 1$.

For a d dimensional solution set of a binomial system:

- ① The null space of A gives d tropisms, stored in the rows of a d -by- n -matrix B .
- ② Compute the Smith normal form S of B : $UBV = S$.
- ③ There are three cases:
 - ① $U = I \Rightarrow M = V^{-1}$
 - ② If $U \neq I$ and S has ones on its diagonal, then extend U^{-1} with an identity matrix to form M .
 - ③ Compute the Hermite normal form H of B

and let D be the diagonal elements of H , then $M = \begin{bmatrix} D^{-1}B \\ \mathbf{0} & I \end{bmatrix}$.

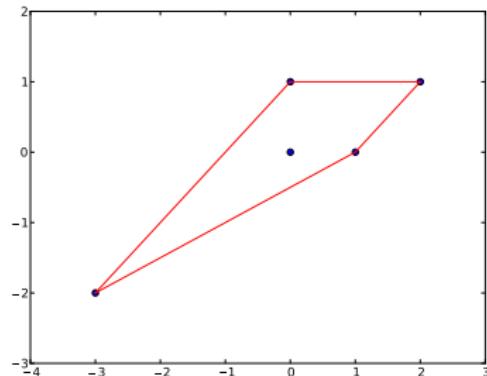
computation of the degree

To compute the degree of $(x_0 = z_2 t_0^{-3} t_1^{-2}, x_1 = z_3 t_0^2 t_1, x_2 = t_0, x_3 = t_1)$ we use two random linear equations:

$$\begin{cases} c_{10}x_0 + c_{11}x_1 + c_{12}x_2 + c_{13}x_3 + c_{14} = 0 \\ c_{20}x_0 + c_{21}x_1 + c_{22}x_2 + c_{23}x_3 + c_{24} = 0 \end{cases}$$

after substitution:

$$\begin{cases} c'_{10}t_0^{-3}t_1^{-2} + c'_{11}t_0^2t_1 + c_{12}t_0 + c_{13}t_1 + c_{14} = 0 \\ c'_{20}t_0^{-3}t_1^{-2} + c'_{21}t_0^2t_1 + c_{22}t_0 + c_{23}t_1 + c_{24} = 0 \end{cases}$$



Theorem (Kouchnirenko's Theorem)

If all n polynomials in \mathbf{f} share the same Newton polytope P , then the number of isolated solutions of $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ in $(\mathbb{C}^*)^n \leq$ the volume of P .

As the area of the Newton polygon equals 8, the surface has degree 8.

affine solution sets

An incidence matrix M of a bipartite graph:

$$\mathbf{f}(\mathbf{x}) = \begin{cases} x_{11}x_{22} - x_{21}x_{12} = 0 \\ x_{12}x_{23} - x_{22}x_{13} = 0 \end{cases} \quad M[\mathbf{x}^a, x_k] = \begin{cases} 1 & \text{if } a_k > 0 \\ 0 & \text{if } a_k = 0. \end{cases}$$

Meaning of $M[\mathbf{x}^a, x_k] = 1$: $x_k = 0 \Rightarrow \mathbf{x}^a = 0$.

The matrix linking monomials to variables is

$$M[\mathbf{x}^a, x_k] = \left[\begin{array}{c|cccccc} & x_{11} & x_{12} & x_{13} & x_{21} & x_{22} & x_{23} \\ \hline x_{11}x_{22} & 1 & 0 & 0 & 0 & 1 & 0 \\ x_{21}x_{12} & 0 & 1 & 0 & 1 & 0 & 0 \\ x_{12}x_{23} & 0 & 1 & 0 & 0 & 0 & 1 \\ x_{22}x_{13} & 0 & 0 & 1 & 0 & 1 & 0 \end{array} \right].$$

Observe: overlapping columns x_{12} with x_{22} gives all ones.

enumerating all candidate affine solution sets

Apply row expansion on the matrix

$$M[\mathbf{x}^a, x_k] = \left[\begin{array}{c|cccccc} & x_{11} & x_{12} & x_{13} & x_{21} & x_{22} & x_{23} \\ \hline x_{11}x_{22} & 1 & 0 & 0 & 0 & 1 & 0 \\ x_{21}x_{12} & 0 & 1 & 0 & 1 & 0 & 0 \\ x_{12}x_{23} & 0 & 1 & 0 & 0 & 0 & 1 \\ x_{22}x_{13} & 0 & 0 & 1 & 0 & 1 & 0 \end{array} \right].$$

- Selecting 1 means setting the corresponding variable to zero.
- Monomials must be considered in pairs: if one monomial in an equation vanishes, then so must the other one.
- For all affine sets, we must skip pairs of rows, preventing from certain variables to be set to zero.
- To decide whether one candidate set C_1 belongs to another set C_2 , we construct the defining equations $I(C_1)$ and $I(C_2)$ and apply $C_1 \subseteq C_2 \Leftrightarrow I(C_1) \supseteq I(C_2)$.

the Cayley embedding – an example

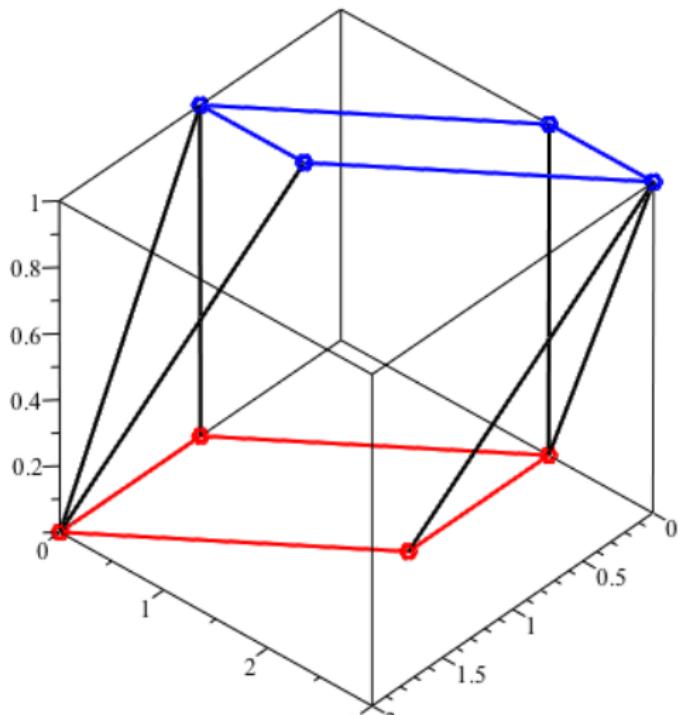
$$\begin{cases} p = (x_0 - x_1^2)(x_0 + 1) = x_0^2 + x_0 - x_1^2 x_0 - x_1^2 = 0 \\ q = (x_0 - x_1^2)(x_1 + 1) = x_0 x_1 + x_0 - x_1^3 - x_1^2 = 0 \end{cases}$$

The Cayley polytope
is the convex hull of

$$\{(2, 0, 0), (1, 0, 0),
(1, 2, 0), (0, 2, 0)\}$$

\cup

$$\{(1, 1, 1), (1, 0, 1),
(0, 3, 1), (0, 2, 1)\}.$$



facet normals and initial forms

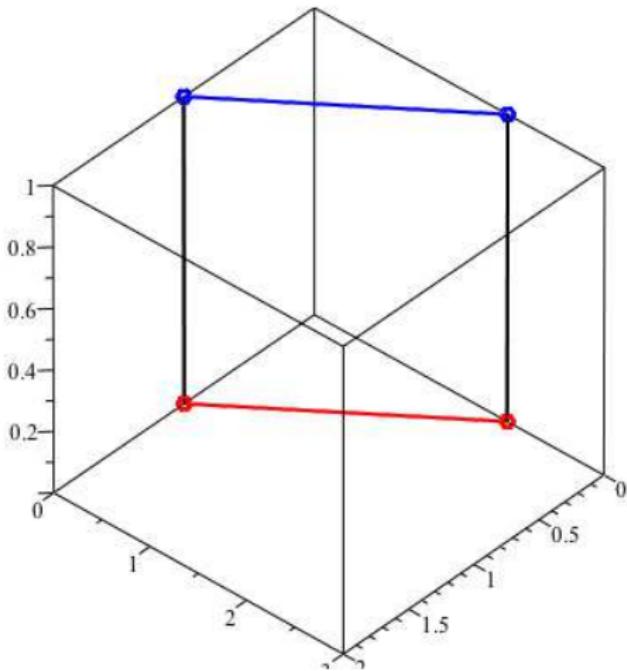
The Cayley polytope
has facets spanned by

one edge of the
Newton polygon of p

and

one edge of the
Newton polygon of q .

Consider $\mathbf{v} = (2, 1, 0)$.



$$\begin{cases} \text{in}_{(2,1)}(p) = \text{in}_{(2,1)}(x_0^2 + x_0 - x_1^2 x_0 - x_1^2) = x_0 - x_1^2 \\ \text{in}_{(2,1)}(q) = \text{in}_{(2,1)}(x_0 x_1 + x_0 - x_1^3 - x_1^2) = x_0 - x_1^2 \end{cases}$$

computing all pretropisms

Definition

A nonzero vector \mathbf{v} is a **pretropism** for the system $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ if $\#\text{in}_{\mathbf{v}}(f_k) \geq 2$ for all $k = 0, 1, \dots, N-1$.

Application of the Cayley embedding to $(A_0, A_1, \dots, A_{N-1})$:

$$E = \{ (\mathbf{a}, \mathbf{0}) \mid \mathbf{a} \in A_0 \} \cup \bigcup_{k=1}^{N-1} \{ (\mathbf{a}, \mathbf{e}_k) \mid \mathbf{a} \in A_k \} \subset \mathbb{Z}^{n+N-1},$$

where $\mathbf{0}, \mathbf{e}_1 = (1, 0, \dots, 0), \mathbf{e}_2 = (0, 1, \dots, 0), \dots, \mathbf{e}_{N-1} = (0, 0, \dots, 1)$ span the standard unit simplex in \mathbb{R}^{N-1} .

The set of all facet normals to the convex hull of E contains all normals to facets spanned by at least two points of each support.

We used `cddlib` to compute all pretropisms of the cyclic n -roots system, up to $n = 12$ (148.5 hours on a 3.07GHz CPU with 4GB RAM).

cones of pretropisms

Definition

A **cone of pretropism** is a polyhedral cone spanned by pretropisms.

If we are looking for an algebraic set of dimension d and

- if there are no cones of vectors perpendicular to edges of the Newton polytopes of $f(\mathbf{x}) = \mathbf{0}$ of dimension d , then the system $f(\mathbf{x}) = \mathbf{0}$ has no solution set of dimension d that intersects the first d coordinate planes properly; otherwise
- if a d -dimensional cone of vectors perpendicular to edges of the Newton polytopes exists, then that cone defines a part of the tropical prevariety.

For the cyclic 9-roots system,
we found a two dimensional cone of pretropisms.

the tropical prevariety of cyclic n -roots

All facets normals of the Cayley polytope computed with `cddlib` on a 3.07GHz Linux computer with 4Gb RAM:

n	#normals	#pretropisms	#generators	user cpu time
8	831	94	11	< 1 sec
9	4,840	276	17	1 sec
12	907,923	38,229	290	148 hours 27 min

Tropical intersections with `Gfan` on a 2.26GHz MacBook:

n	#rays	f-vector	user cpu time
8	94	1 94 108 48	15 sec
9	276	1 276 222 54	1 min 11 sec
12	5,582	1 5582 37786 66382 42540 8712	21 hours 1 min

Note that `Gfan` can exploit permutation symmetry.

Puiseux series for algebraic sets

Proposition

If $f(\mathbf{x}) = \mathbf{0}$ is in Noether position and defines a d -dimensional solution set in \mathbb{C}^n , intersecting the first d coordinate planes in regular isolated points, then there are d linearly independent tropisms

$\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_{d-1} \in \mathbb{Q}^n$ so that the initial form system

$\text{in}_{\mathbf{v}_0}(\text{in}_{\mathbf{v}_1}(\dots \text{in}_{\mathbf{v}_{d-1}}(f) \dots))(\mathbf{x} = \mathbf{y}^M) = \mathbf{0}$ has a solution $\mathbf{c} \in (\mathbb{C} \setminus \{0\})^{n-d}$.

This solution and the tropisms are the leading coefficients and powers of a generalized Puiseux series expansion for the algebraic set:

$$x_0 = t_0^{v_{0,0}}$$

$$x_d = c_0 t_0^{v_{0,d}} t_1^{v_{1,d}} \dots t_{d-1}^{v_{d-1,d}} + \dots$$

$$x_1 = t_0^{v_{0,1}} t_1^{v_{1,1}}$$

$$x_{d+1} = c_1 t_0^{v_{0,d+1}} t_1^{v_{1,d+1}} \dots t_{d-1}^{v_{d-1,d+1}} + \dots$$

$$\vdots$$
$$\vdots$$

$$x_{d-1} = t_0^{v_{0,d-1}} t_1^{v_{1,d-1}} \dots t_{d-1}^{v_{d-1,d-1}}$$

$$x_n = c_{n-d-1} t_0^{v_{0,n-1}} t_1^{v_{1,n-1}} \dots t_{d-1}^{v_{d-1,n-1}} + \dots$$

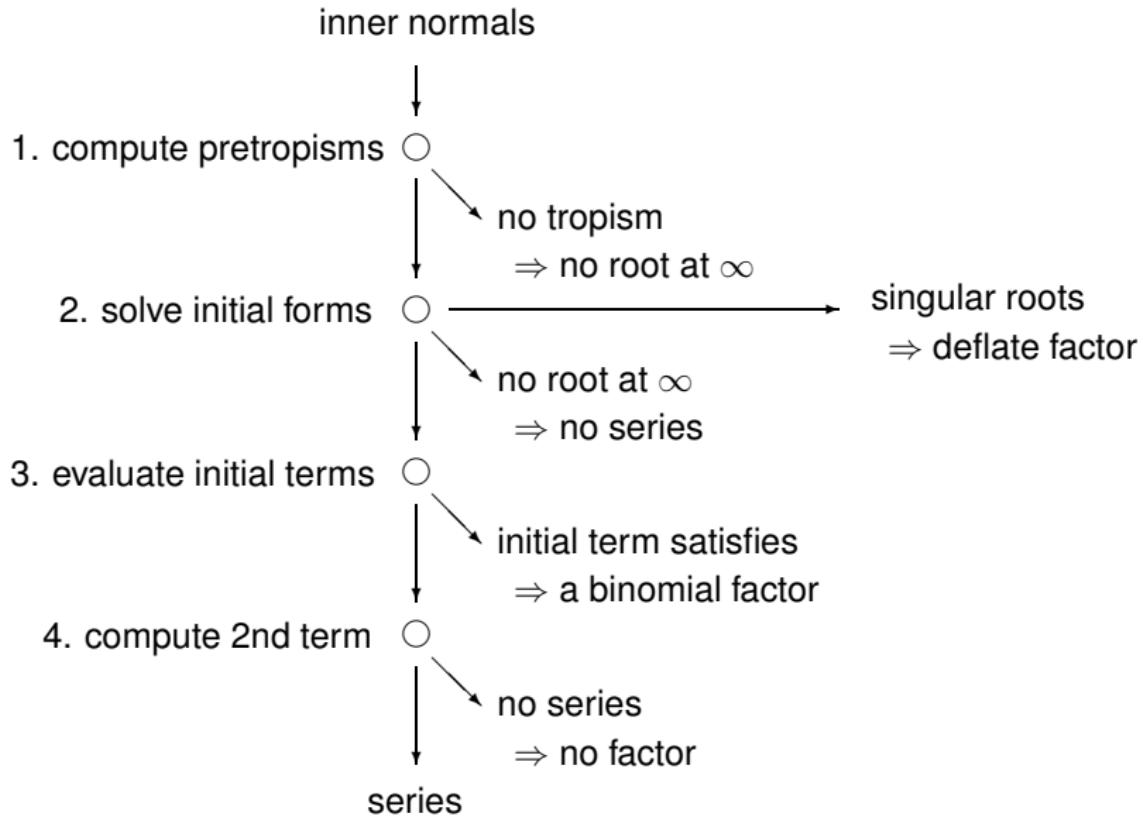
our polyhedral approach

For every d -dimensional cone C of pretropisms:

- 1 We select d linearly independent generators to form the d -by- n matrix A and the unimodular transformation $\mathbf{x} = \mathbf{y}^M$.
- 2 If $\text{inv}_0(\text{inv}_1(\cdots \text{inv}_{d-1}(f) \cdots))(\mathbf{x} = \mathbf{y}^M) = \mathbf{0}$ has no solution in $(\mathbb{C}^*)^{n-d}$, then return to step 1 with the next cone C , else continue.
- 3 If the leading term of the Puiseux series satisfies the entire system, then we report an explicit solution of the system and return to step 1 to process the next cone C .
Otherwise, we take the current leading term to the next step.
- 4 If there is a second term in the Puiseux series,
then we have computed an initial development for an algebraic set
and report this development in the output.

Note: to ensure the solution of the initial form system is not isolated,
it suffices to compute a series development *for a curve*.

our approach depicted in stages



relevant software

- `cddlib` by Komei Fukuda and Alain Prodon implements the double description method to efficiently enumerate all extreme rays of a general polyhedral cone.
- `Gfan` by Anders Jensen to compute Gröbner fans and tropical varieties uses `cddlib`.
- The Singular library `tropical.lib` by Anders Jensen, Hannah Markwig and Thomas Markwig for computations in tropical geometry.
- `Macaulay2` interfaces to `Gfan`.
- `Sage` interfaces to `Gfan`.
- `PHCpack` (published as Algorithm 795 ACM TOMS) provides our numerical blackbox solver.

positive dimensional sets of cyclic n -roots

- $n = 8$: Tropisms, their cyclic permutations, and degrees:

$(1, -1, 1, -1, 1, -1, 1, -1)$	$8 \times 2 = 16$
$(1, -1, 0, 1, 0, 0, -1, 0) \rightarrow (1, 0, 0, -1, 0, 1, -1, 0)$	$8 \times 2 + 8 \times 2 = 32$
$(1, 0, -1, 0, 0, 1, 0, -1) \rightarrow (1, 0, -1, 1, 0, -1, 0, 0)$	$8 \times 2 + 8 \times 2 = 32$
$(1, 0, -1, 1, 0, -1, 0, 0) \rightarrow (1, 0, -1, 0, 0, 1, 0, -1)$	$8 \times 2 + 8 \times 2 = 32$
$(1, 0, 0, -1, 0, 1, -1, 0) \rightarrow (1, -1, 0, 1, 0, 0, -1, 0)$	$8 \times 2 + 8 \times 2 = 32$
	TOTAL = 144

- $n = 9$: A 2-dimensional cone of tropisms spanned by $\mathbf{v}_0 = (1, 1, -2, 1, 1, -2, 1, 1, -2)$ and $\mathbf{v}_1 = (0, 1, -1, 0, 1, -1, 0, 1, -1)$. Denoting by $u = e^{i2\pi/3}$ the primitive third root of unity, $u^3 - 1 = 0$:

$$\begin{array}{lll} x_0 = t_0 & x_3 = ut_0 & x_6 = u^2t_0 \\ x_1 = t_0t_1 & x_4 = ut_0t_1 & x_7 = u^2t_0t_1 \\ x_2 = u^2t_0^{-2}t_1^{-1} & x_5 = t_0^{-2}t_1^{-1} & x_8 = ut_0^{-2}t_1^{-1}. \end{array}$$

- $n = 12$: Computed 77 quadratic space curves.

results in the literature

Our results for $n = 9$ and $n = 12$ are in agreement with

- J.C. Faugère. **Finding all the solutions of Cyclic 9 using Gröbner basis techniques.** In *Computer Mathematics - Proceedings of the Fifth Asian Symposium (ASCM 2001)*, pages 1–12. World Scientific, 2001.
- R. Sabeti. **Numerical-symbolic exact irreducible decomposition of cyclic-12.** *London Mathematical Society Journal of Computation and Mathematics*, 14:155–172, 2011.

a tropical version of Backelin's Lemma

Lemma (Tropical Version of Backelin's Lemma)

For $n = m^2\ell$, where $\ell \in \mathbb{N} \setminus \{0\}$ and ℓ is no multiple of k^2 , for $k \geq 2$, there is an $(m - 1)$ -dimensional set of cyclic n -roots, represented exactly as

$$\begin{aligned}x_{km+0} &= u^k t_0 \\x_{km+1} &= u^k t_0 t_1 \\x_{km+2} &= u^k t_0 t_1 t_2 \\&\vdots \\x_{km+m-2} &= u^k t_0 t_1 t_2 \cdots t_{m-2} \\x_{km+m-1} &= \gamma u^k t_0^{-m+1} t_1^{-m+2} \cdots t_{m-3}^{-2} t_{m-2}^{-1}\end{aligned}$$

for $k = 0, 1, 2, \dots, m - 1$, free parameters t_0, t_1, \dots, t_{m-2} , constants $u = e^{\frac{i2\pi}{m\ell}}$, $\gamma = e^{\frac{i\pi\beta}{m\ell}}$, with $\beta = (\alpha \bmod 2)$, and $\alpha = m(m\ell - 1)$.

summary

Promising results on the cyclic n -roots problem give a proof of concept for a new polyhedral method to compute algebraic sets.

For the computation of pretropisms, we rely on

- `cddlib` on the Cayley embedding of the Newton polytopes, or
- `Gfan` for the tropical intersection.

To process the pretropisms, we

- use `Sage` to extract initial form systems
and look for the second term in the Puiseux series;
- solve initial form systems with the blackbox solver of `PHCpack`.