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an illustrative example

f (x0, x1, x2) =


(x1 − x2

0 )(x2
0 + x2

1 + x2
2 − 1)(x0 − 0.5) = 0

(x2 − x3
0 )(x2

0 + x2
1 + x2

2 − 1)(x1 − 0.5) = 0

(x1 − x2
0 )(x2 − x3

0 )(x2
0 + x2

1 + x2
2 − 1)(x2 − 0.5) = 0

f−1(0) = Z = Z2 ∪ Z1 ∪ Z0 = {Z21} ∪ {Z11 ∪ Z12 ∪ Z13 ∪ Z14} ∪ {Z01}

1 Z21 is the sphere x2
0 + x2

1 + x2
2 − 1 = 0,

2 Z11 is the line (x0 = 0.5, x2 = 0.53),
3 Z12 is the line (x0 =

√
0.5, x1 = 0.5),

4 Z13 is the line (x0 = −
√

0.5, x1 = 0.5),
5 Z14 is the twisted cubic (x1 − x2

0 = 0, x2 − x3
0 = 0),

6 Z01 is the point (x0 = 0.5, x1 = 0.5, x2 = 0.5).
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The Illustrative Example
numerically computing positive dimensional solution sets

Used in two papers on numerical algebraic geometry:
first cascade of homotopies: 197 paths
A.J. Sommese, J. Verschelde, and C.W. Wampler: Numerical
decomposition of the solution sets of polynomial systems into irreducible
components. SIAM J. Numer. Anal. 38(6):2022–2046, 2001.

equation-by-equation solver: 13 paths
A.J. Sommese, J. Verschelde, and C.W. Wampler: Solving polynomial
systems equation by equation. In Algorithms in Algebraic Geometry,
Volume 146 of The IMA Volumes in Mathematics and Its Applications,
pages 133–152, Springer-Verlag, 2008.

The mixed volume of the Newton polytopes of this system is 124.
By theorem A of Bernshteı̌n, the mixed volume is an upper bound on
the number of isolated solutions.
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three Newton polytopes

f (x0, x1, x2) =


(x1 − x2

0 )(x2
0 + x2

1 + x2
2 − 1)(x0 − 0.5) = 0

(x2 − x3
0 )(x2

0 + x2
1 + x2

2 − 1)(x1 − 0.5) = 0

(x1 − x2
0 )(x2 − x3

0 )(x2
0 + x2

1 + x2
2 − 1)(x2 − 0.5) = 0

Jan Verschelde (UIC) Solving by Polyhedral Methods II IML, 23 January 2018 6 / 39



Solving Polynomial Systems by Polyhedral Methods II

1 Introduction
an illustrative example
looking for solution sets
asymptotics of solution sets

2 Gauss-Newton for Power Series
linearization in the regular case
three scenarios in the singular case
the circles of Apollonius

3 Polyhedral Cascades to Process the Prevariety
reformulating polyhedral homotopies

Jan Verschelde (UIC) Solving by Polyhedral Methods II IML, 23 January 2018 7 / 39



looking for solution curves
The twisted cubic is (x0 = t , x1 = t2, x2 = t3).

We look for solutions of the form
x0 = tv0 , v0 > 0,

x1 = c1tv1 , c1 ∈ C \ {0},
x2 = c2tv2 , c2 ∈ C \ {0}.

Substitute x0 = t , x1 = c1t2, x2 = c2t3 into f

f (x0 = t , x1 = c1t2, x2 = c2t3) =


(0.5c1 − 0.5)t2 + O(t3) = 0

(0.5c2 − 0.5)t3 + O(t5) = 0

0.5(c1 − 1.0)(c2 − 1.0)t5 + O(t7)

→ conditions on c1 and c2.

How to find (v0, v1, v2) = (1,2,3)?
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faces of Newton polytopes
Looking at the Newton polytopes in the direction v = (1,2,3):

Selecting those monomials supported on the faces

invf (x0, x1, x2) =


0.5x1 − 0.5x2

0 = 0

0.5x2 − 0.5x3
0 = 0

−0.5x1x3
0 − 0.5x2x2

0 + 0.5x2x1 + 0.5x5
0 = 0
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degenerating the sphere

f (x0, x1, x2) =


(x1 − x2

0 )(x2
0 + x2
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0 )(x2
0 + x2
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As x0 = t → 0:

in(1,0,0)f (x0, x1, x2)


x1(x2

1 + x2
2 − 1)(−0.5) = 0

x2(x2
1 + x2

2 − 1)(x1 − 0.5) = 0

x1x2(x2
1 + x2

2 − 1)(x2 − 0.5) = 0

As x1 = s → 0:

in(0,1,0)f (x0, x1, x2)


−x2

0 (x2
0 + x2

2 − 1)(x0 − 0.5) = 0

(x2 − x3
0 )(x2
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more faces of Newton polytopes
Looking at the Newton polytopes along v = (1,0,0) and v = (0,1,0):

in(1,0,0)f (x0, x1, x2) =
x1(x2
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faces of faces

The sphere degenerates to circles at the coordinate planes.

in(1,0,0)f (x0, x1, x2) =
x1(x2

1 + x2
2 − 1)(−0.5)

x2(x2
1 + x2

2 − 1)(x1 − 0.5)

x1x2(x2
1 + x2

2 − 1)(x2 − 0.5)

in(0,1,0)f (x0, x1, x2) =
−x2

0 (x2
0 + x2

2 − 1)(x0 − 0.5)

(x2 − x3
0 )(x2

0 + x2
2 − 1)(−0.5)

−x2
0 (x2 − x3

0 )(x2
0 + x2

2 − 1)(x2 − 0.5)

Degenerating even more:

in(0,1,0)in(1,0,0)f (x0, x1, x2) =


x1(x2

2 − 1)(−0.5)

x2(x2
2 − 1)(−0.5)

x1x2(x2
2 − 1)(x2 − 0.5)

The factor x2
2 − 1 is shared with in(1,0,0)in(0,1,0)f (x0, x1, x2).
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representing a solution surface

The sphere is two dimensional, x1 and x2 are free:
x0 = t0
x1 = t1
x2 = 1 + c0t2

0 + c1t2
1 .

For t0 = 0 and t1 = 0, x2 = 1 is a solution of x3 − 1 = 0.

Substituting (x0 = t0, x1 = t1, x2 = 1 + c0t2
0 + c1t2

1 )
into the original system gives linear conditions on the coefficients
of the second term: c0 = −0.5 and c1 = −0.5.
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asymptotics of solution sets

Getting generic points on a two dimensional surface:
f (x) = 0

c10 + c11x0 + c12x1 + c13x2 = 0
c20 + c21x0 + c22x1 + c23x2 = 0

→


f (x) = 0

c10 + c11x0 = 0
c20 + c22x1 = 0

Specializing the two planes more:
f (x) = 0
x0 = t0
x1 = t1

As t0 → 0 and t1 → 0,
the leading powers of the power series solution define a tropism.
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Computing a Series Expansion
a staggered approach to find a certificate for a regular solution curve

"tropicalization"

compute pretropisms
?g
@
@R no pretropism
⇒ no root of initial form system

solve initial forms
?g
@@R no root of initial form system

⇒ no series
compute more terms

?g
@@R no power series

⇒ no solution curve?

series
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three separate stages

1 compute candidate tropisms:
→ a pretropism is perpendicular to a facet that is a sum of edges
of the Newton polytopes

2 find the leading coefficients of the power series:
1 change coordinates so one variable cancels
2 apply a solver to a much sparser system

3 compute more terms of the power series:
→ run Newton’s method applying linearization
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linearization

Working with truncated power series, computing modulo O(td ),
is doing arithmetic over the field of formal Laurent series C((t)).

Linearization: consider Cn((t)) instead of C((t))n. Instead of a vector of
power series, we consider a power series with vectors as coefficients.

Solve Ax = b, A ∈ Cn×n((t)), b,x ∈ Cn((t)).

A = A0ta + A1ta+1 + · · · ,
b = b0tb + b1tb+1 + · · ·
x = x0tb−a + x1tb−a+1 + · · ·

where Ai ∈ Cn×n and bi ,xi ∈ Cn.
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block linear algebra

Computing the first d terms of the solution of Ax = b:(
A0ta + A1ta+1 + A2ta+2 + · · ·+ Ad ta+d)
·
(
x0tb−a + x1tb−a+1 + x2tb−a+2 + · · ·+ xd tb−a+d)

= b0tb + b1tb+1 + b2tb+2 + · · ·+ bd tb+d .

Written in matrix format:
A0
A1 A0
A2 A1 A0
...

...
...

. . .
Ad Ad−1 Ad−2 · · · A0




x0
x1
x2
...

xd

 =


b0
b1
b2
...

bd

 .

If A0 is regular, then solving Ax = b is straightforward.
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biunimodular vectors and cyclic n-roots


x0 + x1 + · · ·+ xn−1 = 0

i = 2,3,4, . . . ,n − 1 :
n−1∑
j=0

j+i−1∏
k=j

xk mod n = 0

x0x1x2 · · · xn−1 − 1 = 0.

The system arises in the study of biunimodular vectors.
A vector u ∈ Cn of a unitary matrix A is biunimodular if for
k = 1,2, . . . ,n: |uk | = 1 and |vk | = 1 for v = Au.

J. Backelin: Square multiples n give infinitely many cyclic n-roots.
Technical Report, 1989.
H. Führ and Z. Rzeszotnik. On biunimodular vectors for unitary
matrices. Linear Algebra and its Applications 484:86–129, 2015.
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series developments for cyclic 8-roots

Cyclic 8-roots has solution curves not reported by Backelin.

With Danko Adrovic (ISSAC 2012, CASC 2013): a tropism is
v = (1,−1,0,1,0,0,−1,0), the leading exponents of the series.

The corresponding unimodular coordinate transformation x = zM is

M =



1 −1 0 1 0 0 −1 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



x0 = z0

x1 = z1z−1
0

x2 = z2
x3 = z3z0
x4 = z4
x5 = z5

x6 = z6z−1
0

x7 = z7.

Solving inv(f)(x = zM) = 0 gives the leading term of the series.
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version 2.4.21 of PHCpack and 0.5.0 of phcpy

The source code (GNU GPL License) is availale at github.

After 2 Newton steps with phc -u, the series for z1:

(-1.25000000000000E+00 + 1.25000000000000E+00*i)*z0^2
+( 5.00000000000000E-01 - 2.37676980513323E-17*i)*z0
+(-5.00000000000000E-01 - 5.00000000000000E-01*i);

After 3 Newton steps with phc -u, the series for z1:

( 7.12500000000000E+00 + 7.12500000000000E+00*i)*z0^4
+(-1.52745512076048E-16 - 4.25000000000000E+00*i)*z0^3
+(-1.25000000000000E+00 + 1.25000000000000E+00*i)*z0^2
+( 5.00000000000000E-01 - 1.45255178343636E-17*i)*z0
+(-5.00000000000000E-01 - 5.00000000000000E-01*i);
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Viviani’s curve – the regular case
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Viviani’s curve – two turning points
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Viviani’s curve – turning at a crossing point
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three possible scenarios

We develop a power series for x0 = t .

Geometric interpretation: we cut the curve with the plane
perpendicular to the first coordinate axis.

We assume: the curve does not lie in the coordinate plane x0 = 0.

There are three different cases at an intersection point:
1 The plane cuts the curve transversally (regular).
2 The plane touches the curve at the point.
3 The plane intersects at a crossing point.

As in the crossing point of the Viviani curve,
the crossing point may occur at a turning point.
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Viviani’s curve at a turning point

Viviani’s curve expanded around (0,0,2):
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Viviani’s curve at a turning point

Consider:

f = (x2
0 + x2

1 + x2
2 − 4, (x0 − 1)2 + x2

1 − 1), p = (0,0,2).

We apply the transformation x1 → 2t2 and start from z = (2t ,2).[
4t 4
4t 0

]
∆z = −

[
4t2 + 4t4

4t4

]
.

The matrix is invertible over C((t)).

Its inverse begins with negative exponents of t :[
0 1/4

1/4 t−1 −1/4 t−1

]
.
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linearization

The linearized block form is

0 4 0 0 0 0
0 0 0 0 0 0
4 0 0 4 0 0
4 0 0 0 0 0
0 0 4 0 0 4
0 0 4 0 0 0

x =



−4
0
0
0
−4
−4

 .

Solving gives the Newton update

∆z =

[
−t3

−t2

]
.

Substituting z + ∆z = (2t − t3,2− t2) into the Viviani equations gives
(x6

0 + x4
0 , x

6
0 ), the desired cancellation of terms.
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Lower Triangular Echelon Form

The banded block structure of a generic matrix for n = 5 at the left,
with its lower triangular echelon form at right:
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Viviani’s curve, continued

The block matrix reduction:

0 4 0 0 0 0
0 0 0 0 0 0
4 0 0 4 0 0
4 0 0 0 0 0
0 0 4 0 0 4
0 0 4 0 0 0

→


0 0 0 0 0 0
4 0 0 0 0 0
0 4 0 0 0 0
0 4 4 0 0 0
0 0 0 4 0 0
0 0 0 4 4 0

 .

Jan Verschelde (UIC) Solving by Polyhedral Methods II IML, 23 January 2018 33 / 39



Solving Polynomial Systems by Polyhedral Methods II

1 Introduction
an illustrative example
looking for solution sets
asymptotics of solution sets

2 Gauss-Newton for Power Series
linearization in the regular case
three scenarios in the singular case
the circles of Apollonius

3 Polyhedral Cascades to Process the Prevariety
reformulating polyhedral homotopies

Jan Verschelde (UIC) Solving by Polyhedral Methods II IML, 23 January 2018 34 / 39



the circles of Apollonius

Given three circles, find all circles which touch all three given circles.

If the three given circles touch each other, then the solutions are the
given circles (with multiplicity two) and other two regular circles.
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a singular configuration of Apollonius circles

The system is f(t , x0, x1, r) =
x2

0 + 3x2
1 − r2 − 2r − 1 = 0

x2
0 + 3x2

1 − r2 − 4x0 − 2r + 3 = 0
3t2 + x2

0 − 6tx1 + 3x2
1 − r2 + 6t − 2x0 − 6x1 + 2r + 3 = 0.

We examine at the point (t , x0, x1, r) = (0,1,1,1) = p.

We obtain
x0 = 1
x1 = 1 + 7.464t + 45.017t2 + 290.992t3 + · · ·
r = 1 + 11.196t + 77.971t2 + 504.013t3 + · · · .

The growth of the coefficients explains why one circle grows large.
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a reformulation of polyhedral homotopies
We need to reformulate polyhedral homotopies.

1 Why? We need to explore cones of the prevariety.
Polyhedral work only for square systems,
systems that have the same number of equations as variables.

2 How? We intersect power series with a hypersurface.
On a system with N equations in n variables:

1 Compute power series for the first N − 1 equations.
2 Intersect the power series with the Nth equation.

Will this work?
Assuming Noether position for the curves defined by the first
N − 1 equations, all isolated solutions can be computed.
Curves are computed as a byproduct of the intersection.
Intersecting the Nth equation also with the two dimensional
surfaces defined by the first N − 1 equations gives curves.
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Polyhedral Cascades

Cascading homotopies in a numerical irreducible decomposition
compute generic points at all dimensions, in a top-down fashion,
starting at the top dimension.

The computation of a tropical prevariety returns the maximal cones,
i.e.: those that are not contained in any other polyhedral cones.

The second theorem of Bernshtein: diverging paths in a
coefficient-parameter homotopy go to solutions of initial form systems.

Starting at the top dimensional cones, running polyhedral homotopies
with power series leads to two cases:

1 converging paths give initial coefficients of power series;
2 diverging paths lead to lower dimensional cones, recurse.
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