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Numerical Factorization of

Multivariate Complex Polynomials

Outline of Talk:

1. We factor in three stages:

(a) monodromy grouping of witness points;

(b) certification of grouping with linear traces;

(c) interpolation to get polynomials for the factors.

2. We remove multiplicies by differentation and use

a theorem of Marden and Walsh for bound on precision.

3. Application: study singularities of Stewart-Gough platforms.
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Problem Statement

• Input: f(x) ∈ C[x], x = (x1, x2, . . . , xn).

coefficients known approximately, work with limited precision

• Wanted: write f as product of irreducible factors, as

f(x) =
N
∏

i=1

qi(x)
µi ,

N
∑

i=1

µi deg(qi) = deg(f),

every irreducible factor qi occurs with multiplicity µi.

E. Kaltofen: Challenges of symbolic computation: my favorite

open problems. J. Symbolic Computation 29(6): 891–919, 2000.
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The Riemann Surface of z3 − w = 0:
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R.M. Corless and D.J. Jeffrey: Graphing elementary Riemann surfaces.

SIGSAM Bulletin 32(1):11–17, 1998.

5



'

&

$

%

Monodromy to Decompose Solution Components

Given: a system f(x) = 0; and W = (Z,L):

for all w ∈ Z : f(w) = 0 and L(w) = 0.

Wanted: partition of Z so that all points in a subset of Z

lie on the same irreducible factor.

Example: does f(x, y) = xy − 1 = 0 factor?

Consider H(x, y, θ) =







xy − 1 = 0

x+ y = 4eiθ
for θ ∈ [0, 2π].

For θ = 0, we start with two real solutions. When θ > 0, the

solutions turn complex, real again at θ = π, then complex until at

θ = 2π. Back at θ = 2π, we have again two real solutions, but their

order is permuted ⇒ irreducible.
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Connecting Witness Points

1. For two sets of hyperplanes K and L, and a random γ ∈ C

H(x, t,K, L, γ) =







f(x) = 0

γK(x)(1− t) + L(x)t = 0

We start paths at t = 0 and end at t = 1.

2. For α ∈ C, trace the paths defined by H(x, t,K, L, α) = 0.

For β ∈ C, trace the paths defined by H(x, t, L,K, β) = 0.

Compare start points of first path tracking with end points of

second path tracking. Points which are permuted belong to the

same irreducible factor.

3. Repeat the loop with other values of α and β.
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Finding Witness Points

Instead of n− 1 random hyperplanes L(x) = 0 to cut the surface

f(x) = 0, consider the random line x(t) = x0 + tv; in particular:

Input : f(x) polynomial in n variables with complex coefficients;

x0 and v represent a random line x(t) = x0 + tv.

Output : W = {W1,W2, . . . ,Wm}, m =
d
max
i=1

µi,

for all X ∈Wi: #X = µi.

To solve f(x(t)) = 0 we use the method of Weierstrass.

(also known as Durand-Kerner)
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Linear Traces

Consider f(x, y(x)) = (y − y1(x))(y − y2(x))(y − y3(x))

= y3 − t1(x)y
2 + t2(x)y − t3(x)

We are interested in the linear trace: t1(x) = c1x+ c0.

Sample the cubic at x = x0 and x = x1. The samples are

{(x0, y00), (x0, y01), (x0, y02)} and {(x1, y10), (x1, y11), (x1, y12)}.

Solve







y00 + y01 + y02 = c1x0 + c0

y10 + y11 + y12 = c1x1 + c0
to find c0, c1.

With t1 we can predict the sum of the y’s for a fixed choice of x.

For example, samples at x = x2 are {(x2, y20), (x2, y21), (x2, y22)}.

Then, t1(x2) = c1x2 + c0 = y20 + y21 + y22.
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Validation of Breakup with Linear Trace

Do we have enough witness points on a factor?

• We may not have enough monodromy loops to connect all

witness points on the same irreducible component.

• We have enough witness points on the curve if the value at the

linear trace can predict the sum of one coordinate of all points

in the set.

Notice: Instead of monodromy, we may enumerate all possible

factors and use linear traces to certify. While the complexity of this

enumeration is exponential, it works well for low degrees.
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Dealing with Multiplicities

On a factor of degree d and multiplicity µ,

we find d clusters, each of µ witness points.

Choose v = (v1, v2, . . . , vn) and compute

g(x) :=

(

v1
∂

∂x1
+ v2

∂

∂x2
+ · · ·+ vn

∂

∂xn

)µ−1

f(x).

Then apply the techniques to the multiplicity one roots of g(x)

corresponding to the clusters.
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Using a theorem of Marden and Walsh

Assume d is the degree of f(z), f ∈ C[z];
µ is the multiplicity of a root of f ;

z0 is the center of the cluster around the multiple root;

∆r(z0) = { z ∈ C | |z − z0| ≤ r } contains the cluster;

r is the radius of the disk ∆r(z0);

R is largest such that { z ∈ C | |z − z0| ≥ R }

contains all other d− µ roots of f .

If R
r
≥

2(dµ)
d−µ+1 , then f

(k) has exactly µ− k roots in ∆r(z0),

for k = 1, 2, . . . , µ− 1.
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Applying the bound for R/r

Given a cluster of µ roots (and d− µ other roots), compute

• z0 as the average of the roots in the cluster;

• r as the largest distance of the roots in the cluster to z0;

• R as the smallest distance of the other d− µ roots to z0.

R

r
≥

2
(

d
µ

)

d− µ+ 1
⇒ r ≤ R

(

d− µ+ 1

2
(

d
µ

)

)

We obtain a bound on r, the precision of the roots in the cluster,

in order for the successive derivatives of f to be safe.
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Numerical Limitations

• Evaluation of high degree polynomials is numerically unstable:

f(x) = (x0 + tv)d =

d
∑

k=0

(

d

k

)

xd−k0 vktk = 0,

for example, d = 30 and k = 15: nine decimal places in
(

d
k

)

.

• Working precision determines accuracy of factorization:

f(x, y) = xy + 10−16

– will factor when working with double precision floats;

– will not factor as soon as precision is high enough.
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three cases of Stewart-Gough platforms

General platform,

fixed position

Planar base,

planar platform

Parallel base

and platform

J.P. Merlet: Parallel Robots. Kluwer Academic Publishers, 2000.
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Singularities of Stewart-Gough Platforms

At singularity, rigidity of device is lost, allowing finite motion

which cannot be controlled by leg lengths (disaster!).

Denote p ∈ C3 position of platform;

q ∈ P3 quaternion defines a rotation;

ai,bi ∈ C3 ball joints at platform and base, i = 1, 2, . . . , 6;

J ∈ C6×6 Jacobian matrix of mapping

from platform motion to leg lengths.

Then the condition on a singular configuration is detJ = 0.

detJ is a polynomial of degree 1728 in 43 variables: p, q, ai, bi.

Merlet. Int. J. Robotics Research 8(5):45–56, 1989.

Bayer St-Onge and Gosselin. Int. J. Robotics Research 19(3):271–288, 2000.
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first general case of a Stewart-Gough platform

General platform,

fixed position

• case of almost all manipulators

p, ai, and bi are randomly chosen

• deg(detJ) = 12, homogeneous in q

the expanded detJ has 910 terms

• detJ = F1(q)(F2(q))
3

q = (q0, q1, q2, q3) quaternion

deg(F1) = 6

F2(q) = q2
0 + q2

1 + q2
2 + q2

3

F2 has no physical significance
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Computational results for first platform

cluster r R R/r

one 1.7E-05 3.4E-01 2.0E+04

two 4.9E-06 1.7E-01 3.6E+04

Lower bound on R/r evaluates to 44.

Elapsed user CPU times on 2.4Ghz WindowsXP

1. monodromy grouping : 0h 6m 40s 469ms

2. linear traces certification : 0h 0m 30s 672ms

3. interpolation at factors : 1h 41m 53s 78ms

4. multiplication validation : 0h 0m 8s 156ms

total time for all 4 stages : 1h 49m 12s 391ms
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second case: planar base and platform

Planar base

and platform

• ball joints ai lie in planar platform

ball joints bi lie in planar base

• deg(detJ) = 12, homogeneous in q

the expanded detJ has 910 terms

• detJ = F1(q)(F2(q))
3

q = (q0, q1, q2, q3) quaternion

deg(F1) = 6 deg(F2) = 2
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Computational results for second platform

cluster r R R/r

one 6.2E-05 2.4E-01 3.8E+04

two 4.8E-05 6.0E-01 1.2E+04

Lower bound on R/r evaluates to 44.

Elapsed user CPU times on 2.4Ghz WindowsXP

1. monodromy grouping : 0h 17m 34s 735ms

2. linear traces certification : 0h 0m 27s 359ms

3. interpolation at factors : 1h 24m 45s 766ms

4. multiplication validation : 0h 0m 8s 172ms

total time for all 4 stages : 1h 42m 56s 32ms
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third case: parallel base and platform

Parallel base

and platform

• ball joints ai,bi in parallel planes,

position p is variable, q1 = q2 = 0

• deg(detJ) = 15, in (p,q)

expanded detJ has 24 terms,

much sparser, as 24 << 910

• detJ = ap3
3(q0 + bq3)(q0 + cq3)

(q0 + iq3)
5(q0 − iq3)

5

where the constants a, b, c

depend on the choice of ai,bi
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Computational results for third platform

cluster r R R/r

one 5.1E-07 1.0E+00 2.0E+06

two 7.3E-04 3.4E-01 4.7E+02

three 4.0E-03 7.2E-01 1.8E+02

Lower bound on R/r evaluates to 546.

Elapsed user CPU times on 2.4Ghz WindowsXP

1. monodromy grouping : 1m 13s 656ms

2. linear traces certification : 0m 3s 891ms

3. interpolation at factors : 0m 4s 734ms

4. multiplication validation : 0m 1s 657ms

total time for all 4 stages : 1m 23s 938ms
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Monodromy Compared to the Enumeration Method

Enumeration of all possible factors certified by linear traces outperforms the

monodromy algorithm for our application:

User CPU times on 2.4Ghz Windows XP

case monodromy enumeration

1 6m 40s 460ms 40s 750ms

2 17m 34s 735ms 31s 657ms

3 1m 13s 656ms 3s 0ms

Random irreducible polynomials of five monomials:

User CPU times on 2.4Ghz Windows XP

degree monodromy enumeration

10 5s 484ms 312ms

15 8s 187ms 1s 453ms

16 16s 63ms 2s 875ms
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Conclusions

• general monodromy breakup with linear trace certification

specialized to factorization of multivariate polynomials

• replace singular roots with nonsingular ones by differentiation,

estimate precision needed using result of Marden and Walsh

• applied to study singularities of Stewart-Gough platforms

• enumeration method of Galligo and Rupprecht faster than

monodromy for modest degrees
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