
Parallel Homotopy Algorithms

to Solve Polynomial Systems

Jan Verschelde

Department of Math, Stat & CS
University of Illinois at Chicago
Chicago, IL 60607-7045, USA

email: jan@math.uic.edu

URL: http://www.math.uic.edu/~jan

Joint work with Anton Leykin and Yan Zhuang.

2nd International Congress on Mathematical Software

1-3 September 2006, Castro Urdiales, Spain.

Outline of the Talk

A. homotopy continuation methods are “pleasingly parallel”

jumpstarting homotopies for memory efficiency

B. parallel implementations of polyhedral homotopies

static and dynamic load balancing

C. a numerically stable simplicial solver

instabilities appeared only in large systems (n = 12)

D. applications from mechanical design

design of serial chains requires > 100,000 paths

page 0

A. parallel homotopies

parallel PHCpack

phc -b (blackbox solver) works well for systems of medium size,

about 1,000 solution paths.

implement “pleasingly parallel” homotopies:

with Yusong Wang (HPSEC’04): Pieri homotopies;

with Anton Leykin (HPSEC’05): monodromy breakup;

with Yan Zhuang (HPSEC’06): polyhedral homotopies.

software development on personal cluster computer

(1 manager + 13 workers at 2.4Ghz) built by Rocketcalc.

Runs done on UIC supercomputer argo, NCSA machines

Platinum IA32 Cluster and IBM pSeries 690 system copper.

Goal: solve systems which require > 100,000 paths well.

page 1 of A

A. parallel homotopies

Other Parallel Homotopy Solvers

T. Gunji, S. Kim, K. Fujisawa, and M. Kojima:

PHoMpara – parallel implementation of the Polyhedral

Homotopy continuation Method for polynomial systems.

Computing 77(4):387–411, 2006.

H.-J. Su, J.M. McCarthy, M. Sosonkina, and L.T. Watson:

Algorithm 8xx: POLSYS GLP: A parallel general linear

product homotopy code for solving polynomial systems of

equations. To appear in ACM Trans. Math. Softw.

Numerical Algebraic Geometry

A.J. Sommese and C.W. Wampler: The Numerical Solution

of Systems of Polynomials Arising in Engineering and Science.

World Scientific Press, Singapore, 2005.

page 2 of A

A. parallel homotopies

Jumpstarting Homotopies

Problem: huge #paths (e.g.: > 100,000),

undesirable to store all start solutions in main memory.

Solution: (assume manager/worker protocol)

1. The manager reads start solution from file “just in time”

whenever a worker needs another path tracking job.

2. For total degree and linear-product start systems,

it is simple to compute the solutions whenever needed.

3. As soon as worker reports the end of a solution path

back to the manager, the solution is written to file.

page 3 of A

A. parallel homotopies

Indexing Start Solutions

The start system















x4
1 − 1 = 0

x5
2 − 1 = 0

x3
3 − 1 = 0

has 4× 5× 3 = 60 solutions.

Get 25th solution via decomposition: 24 = 1(5× 3) + 3(3) + 0.

Verify via lexicographic enumeration:

000→001→002→010→011→012→020→021→022→030→031→032→040→041→042

100→101→102→110→111→112→120→121→122→ 130 →131→132→140→141→142

200→201→202→210→211→212→220→221→222→230→231→232→240→241→242

300→301→302→310→311→312→320→321→322→330→331→332→340→341→342

page 4 of A

A. parallel homotopies

Using Linear-Product Start Systems Efficiently

• Store start systems in their linear-product product form, e.g.:

g(x) =















(· · ·) · (· · ·) · (· · ·) · (· · ·) = 0

(· · ·) · (· · ·) · (· · ·) · (· · ·) · (· · ·) = 0

(· · ·) · (· · ·) · (· · ·) = 0

• Lexicographic enumeration of start solutions,

→ as many candidates as the total degree.

• Eventually store results of incremental LU factorization.

→ prune in the tree of combinations.

page 5 of A

A. parallel homotopies

a problem from electromagnetics

posed by Shigetoshi Katsura to PoSSo in 1994:

a family of n− 1 quadrics and one linear equation;

#solutions is 2n−1 (= Bézout bound).

n = 21: 32 hours and 44 minutes to track 220 paths by 13

workers at 2.4Ghz, producing output file of 1.3Gb.

tracking about 546 paths/minute.

verification of output:

1. parsing 1.3Gb file into memory takes 400Mb and 4 minutes;

2. data compression to quadtree of 58Mb takes 7 seconds.

page 6 of A

B. polyhedral homotopies

Polyhedral Homotopies

D.N. Bernshtěın. Functional Anal. Appl. 1975.

B. Huber and B. Sturmfels. Math. Comp. 1995.

T.Y. Li. Handbook of Numerical Analysis. Volume XI. 2003.

T. Gao, T.Y. Li, and M. Wu. Algorithm 846: MixedVol:

A software package for mixed volume computation.

ACM Trans. Math. Softw. 31(4):555–560, 2005.

T. Gunji, S. Kim, M. Kojima, A. Takeda, K. Fujisawa,

and T. Mizutani. PHoM – a polyhedral homotopy

continuation method for polynomial systems.

Computing 73(4):55–77, 2004.

G. Jeronimo, G. Matera, P. Solernó, and A. Waissbein.

Deformation techniques for sparse systems.

arXiv:math.CA/0608714 v1 29 Aug 2006.

page 1 of B

B. polyhedral homotopies

3 stages to solve a polynomial system f(x) = 0

1. Compute the mixed volume (aka the BKK bound)

of the Newton polytopes spanned by the supports A of f

via a regular mixed-cell configuration ∆ω.

2. Given ∆ω, solve a generic system g(x) = 0, using polyhedral

homotopies. Every cell C ∈ ∆ω defines one homotopy

hC(x, s) =
∑

a∈C

cax
a +

∑

a∈A\C

cax
asνa , νa > 0,

tracking as many paths as the mixed volume of the cell C,

as s goes from 0 to 1.

3. Use (1− t)g(x) + tf(x) = 0 to solve f(x) = 0.

Stages 2 and 3 are computationally most intensive (1¿ 2 < 3).

page 2 of B

B. polyhedral homotopies

A Static Distribution of the Workload

manager worker 1 worker 2 worker 3

Vol(cell 1) = 5

Vol(cell 2) = 4

Vol(cell 3) = 4

Vol(cell 4) = 6

Vol(cell 5) = 7

Vol(cell 6) = 3

Vol(cell 7) = 4

Vol(cell 8) = 8

total #paths : 41

#paths(cell 1) : 5

#paths(cell 2) : 4

#paths(cell 3) : 4

#paths(cell 4) : 1

#paths : 14

#paths(cell 4) : 5

#paths(cell 5) : 7

#paths(cell 6) : 2

#paths : 14

#paths(cell 6) : 1

#paths(cell 7) : 4

#paths(cell 8) : 8

#paths : 13

Since polyhedral homotopies solve a generic system g(x) = 0,

we expect every path to take the same amount of work...

page 3 of B

B. polyhedral homotopies

Results on the cyclic n-roots problem

Problem #Paths CPU Time

cyclic 5-roots 70 0.13m

cyclic 6-roots 156 0.19m

cyclic 7-roots 924 0.30m

cyclic 8-roots 2,560 0.78m

cyclic 9-roots 11,016 3.64m

cyclic 10-roots 35,940 21.33m

cyclic 11-roots 184,756 2h 39m

cyclic 12-roots 500,352 24h 36m

Wall time for start systems to solve the cyclic n-roots problems,

using 13 workers, with static load distribution.

page 4 of B

B. polyhedral homotopies

Dynamic versus Static Workload Distribution

Static versus Dynamic on our cluster Dynamic on argo

#workers Static Speedup Dynamic Speedup Dynamic Speedup

1 50.7021 – 53.0707 – 29.2389 –

2 24.5172 2.1 25.3852 2.1 15.5455 1.9

3 18.3850 2.8 17.6367 3.0 10.8063 2.7

4 14.6994 3.4 12.4157 4.2 7.9660 3.7

5 11.6913 4.3 10.3054 5.1 6.2054 4.7

6 10.3779 4.9 9.3411 5.7 5.0996 5.7

7 9.6877 5.2 8.4180 6.3 4.2603 6.9

8 7.8157 6.5 7.4337 7.1 3.8528 7.6

9 7.5133 6.8 6.8029 7.8 3.6010 8.1

10 6.9154 7.3 5.7883 9.2 3.2075 9.1

11 6.5668 7.7 5.3014 10.0 2.8427 10.3

12 6.4407 7.9 4.8232 11.0 2.5873 11.3

13 5.1462 9.8 4.6894 11.3 2.3224 12.6

Wall time in seconds to solve a start system for the cyclic 7-roots problem.

page 5 of B

C. simplicial solver

A well conditioned polynomial system

just one of the 11,417 start systems generated by polyhedral homotopies

12 equations, 13 distinct monomials (after division):



















































b1x5x8 + b2x6x9 = 0

b3x
2
2 + b4 = 0

b5x1x4 + b6x2x5 = 0

c
(k)
1 x1x4x7x12 + c

(k)
2 x1x6x

2
10 + c

(k)
3 x2x4x8x10 + c

(k)
4 x2x4x

2
11

+ c
(k)
5 x2x6x8x11 + c

(k)
6 x3x4x9x10 + c

(k)
7 x2

4x
2
12 + c

(k)
8 x3x6

+ c
(k)
9 x2

4 + c
(k)
10 x9 = 0, k = 1, 2, . . . , 9

Random coefficients chosen on the complex unit circle.

Despite the high degrees, only 100 well conditioned solutions.

page 1 of C

C. simplicial solver

Solve a “binomial” system xA = b via Hermite

Hermite normal form of A: MA = U , det(M) = ±1,
U is upper triangular, | det(U)| = | det(A)| = #solutions.

Let x = zM , then xA = zMA = zU , so solve zU = b.

n = 2:

[z1 z2]

�
�

�
�

u11 u12

0 u22

�
�

�
� = [b1 b2].







zu11

1 = b1

zu12

1 zu22

2 = b2

|bk| = 1⇒ |zi| = 1

numerically well conditioned

page 2 of C

C. simplicial solver

Reduce a “simplicial” system CxA = b via LU

C = LU

assume det(C) 6= 0
⇒

(1) LUy = b linear system

(2) xA = y binomial system

This is a numerically unstable algorithm!

Randomly chosen coefficients for C and b on complex unit circle,

but still, varying magnitudes in y do occur.

High powers, e.g.: 50, magnify the imbalance

→ numerical underflow or overflow in binomial solver.

page 3 of C

C. simplicial solver

Separate Magnitudes from Angles

Solve xA = y via Hermite: MA = U ⇒ x = zM : zU = y.

z = |z|ez, ez = exp(iθz), y = |y|ey, ey = exp(iθy), i =
√
−1.

Solve zU = y: |z|UeUz = |y|ey ⇔







eUz = ey well conditioned

|z|U = |y| find magnitudes

To solve |z|U = |y|, consider: U log(|z|) = log(|y|).
Even as the magnitude of the values y may be extreme,

log(|y|) will be modest in size.

page 4 of C

C. simplicial solver

a numerically stable simplicial solver

We solve CxA = b by

1. LU factorization of C → xA = y, where Cy = b.

2. Use Hermite normal form of A: MA = U , det(M) = ±1,
to solve binomial system eUz = ey, z = |z|ez, y = |y|ey.

3. Solve upper triangular linear system U log(|z|) = log(|y|).

4. Compute magnitude of x = zM via log(|x|) = M log(|z|).

5. As |ez| = 1, let ex = eMz .

Even as z may be extreme, we deal with |z| at a logarithmic scale

and never raise small or large number to high powers.

Only at the very end do we calculate |x| = 10log(|x|) and x = |x|ex.

page 5 of C

D. applications

Design of Serial Chains I

H.J. Su. Computer-Aided Constrained Robot Design Using Mechanism

Synthesis Theory. PhD thesis, University of California, Irvine, 2004.

page 1 of D

D. applications

Design of Serial Chains II

H.J. Su. Computer-Aided Constrained Robot Design Using Mechanism

Synthesis Theory. PhD thesis, University of California, Irvine, 2004.

page 2 of D

D. applications

Design of Serial Chains III

H.J. Su. Computer-Aided Constrained Robot Design Using Mechanism

Synthesis Theory. PhD thesis, University of California, Irvine, 2004.

page 3 of D

D. applications

For more about these problems:

H.-J. Su and J. McCarthy. Kinematic synthesis of RPS serial

chains. In the Proceedings of the ASME Design Engineering

Technical Conferences (CDROM), Chicago, IL, Sep 2-6, 2003.

H.-J. Su, J. McCarthy, and L. Watson. Generalized linear

product homotopy algorithms and the computation of

reachable surfaces. ASME Journal of Information and

Computer Sciences in Engineering, 4(3):226–234, 2004.

H.-J. Su, C. Wampler, and J. McCarthy. Geometric design

of cylindric PRS serial chains. ASME Journal of Mechanical

Design, 126(2):269–277, 2004.

page 4 of D

D. applications

Results on Mechanical Design Problems

Bounds on #Solutions Wall Time

Surface Bézout linear-product Mixvol our cluster on argo

elliptic cylinder 2,097,152 247,968 125,888 11h 33m 6h 12m

circular torus 2,097,152 868,352 474,112 7h 17m 4h 3m

general torus 4,194,304 448,702 226,512 14h 15m 6h 36m

Wall time for mechanism design problems on our cluster and argo.

• Compared to the linear-product bound, polyhedral homotopies

cut the #paths about in half.

• The second example is easier (despite the larger #paths)

because of increased sparsity, and thus lower evaluation cost.

page 5 of D

Final Remarks

Three issues to improve performance of parallel homotopies

• Avoid storing all solutions in main memory.

• Numerical stability matters even more.

• Fast quality control of large solution lists.

An ambitious Swap of Letters:

PHC = Polynomial Homotopy Continuation

HPC = High Performance Computing

towards High Performance Continuation

the end

