
Polynomial Homotopies on Multicore Workstations

Jan Verschelde Genady Yoffe

University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science

http://www.math.uic.edu/˜jan
jan@math.uic.edu gyoffe2@uic.edu

Parallel Symbolic Computation 2010 (PASCO 2010)
Grenoble, France, 21-23 July 2010.

Jan Verschelde and Genady Yoffe (UIC) Multitasking Polynomial Continuation PASCO 2010, 21-23 July 1 / 25

Outline

1 Homotopy Continuation Methods
solving polynomial systems
pleasingly parallel computations

2 Multicore Workstations
applying tasking
MPI versus threads
results for polyhedral blackbox solver

3 Quality Up
compensating for the cost of higher precision arithmetic
tracking one path more accurately
multithreaded system evaluation and LU factorization

Jan Verschelde and Genady Yoffe (UIC) Multitasking Polynomial Continuation PASCO 2010, 21-23 July 2 / 25

Solving Polynomial Systems

On input is a polynomial system f (x) = 0.

A homotopy is a family of systems:

h(x, t) = (1 − t)g(x) + t f (x) = 0.

At t = 1, we have the system f (x) = 0 we want to solve.
At t = 0, we have a good system g(x) = 0:

solutions are known or easier to solve; and

all solutions of g(x) = 0 are regular.

Tracking all solution paths is pleasingly parallel,
although not every path requires the same amount of work.

Jan Verschelde and Genady Yoffe (UIC) Multitasking Polynomial Continuation PASCO 2010, 21-23 July 3 / 25

Homotopy Continuation Methods

Types of homotopies h:

h(x, t) = (1 − t)g(x) + t f (x) = 0, from start to target.

h(x, t) = f (c0(1 − t) + c1t ,x) = 0, cheater’s homotopy.

h(x, t) = f (c,x(t)) = 0, moving basis coordinates.

Homotopies are often used in combination, or in cascades.

1 Tien-Yien Li. Numerical solution of polynomial systems by homotopy
continuation methods. In Volume XI of Handbook of Numerical Analysis,
pages 209–304, 2003.

2 Andrew J. Sommese and Charles W. Wampler.
The Numerical Solution of Systems of Polynomials Arising in
Engineering and Science. World Scientific, 2005.

Jan Verschelde and Genady Yoffe (UIC) Multitasking Polynomial Continuation PASCO 2010, 21-23 July 4 / 25

Software Systems
Starring in alphabetical order:

Bertini, first released in Fall 2006, by D.J. Bates, J.D. Hauenstein,
A.J. Sommese, and C.W. Wampler. MPI executables available.

HOM4PS-2.0para by T.Y. Li and C.H. Tsai (2009) is a parallel
version of HOM4PS-2.0 by T.L. Lee, T.Y. Li, and C.H. Tsai (2007);
extends HOM4PS by T. Gao and T.Y. Li.

PHoMpara by T. Gunji, S. Kim, K. Fujisawa, and M. Kojima (2006)
is a parallel version of PHoM by T. Gunji, S. Kim, M. Kojima,
A. Takeda, K. Fujisawa and T. Mizutani (2004).

POLSYS_GLP is Algorithm 857 of ACM TOMS (2006)
by H.-J. Su, J.M. McCarthy, M. Sosonkina, and L.T. Watson
extends HOMPACK90 by L.T. Watson, M. Sosonkina,
R.C. Melville, A.P. Morgan, and H.F. Walker (1997) and
HOMPACK by L.T. Watson, S.C. Billups, and A.P. Morgan (1987).

Anton Leykin is developing homotopy continuation in Macaulay2.
http://www.math.uic.edu/∼leykin/NAG4M2/index.html.

Jan Verschelde and Genady Yoffe (UIC) Multitasking Polynomial Continuation PASCO 2010, 21-23 July 5 / 25

Parallel PHCpack
parallel implementation of polynomial homotopy continuation methods

PHC = Polynomial Homotopy Continuation

Version 1.0 archived as Algorithm 795 by ACM TOMS (1999)

Pleasingly parallel implementations
+ Yusong Wang of Pieri homotopies (HPSEC’04)
+ Anton Leykin of monodromy factorization (HPSEC’05)
+ Yan Zhuang of polyhedral homotopies (HPSEC’06)
+ Yun Guan of diagonal homotopies (HPCS’08)

Interactive Parallel Computing:
+ Yun Guan: PHClab, experiments with MPITB in Octave
+ Kathy Piret: bindings with Python, use of sockets

Release v2.3.42 extends phcpy and a preliminary PHCwulf.py.

Jan Verschelde and Genady Yoffe (UIC) Multitasking Polynomial Continuation PASCO 2010, 21-23 July 6 / 25

Hardware and Software

Running on a modern workstation (not a supercomputer):

Hardware: Mac Pro with 2 Quad-Core Intel Xeons at 3.2 Ghz
Total Number of Cores: 8 1.6 GHz Bus Speed
12 MB L2 Cache per processor, 8 GB Memory

PHCpack is written in Ada, compiled with gnu-ada compiler
gcc version 4.3.4 20090511 for GNAT GPL 2009 (20090511)
Target: x86_64-apple-darwin9.6.0
Thread model: posix

Also compiled for Linux and Windows (win32 thread model).

Jan Verschelde and Genady Yoffe (UIC) Multitasking Polynomial Continuation PASCO 2010, 21-23 July 7 / 25

Starting Worker Tasks
procedure Workers is instantiated with a Job procedure,
executing code based on the id number.

procedure Workers (n : in natural) is
task type Worker (id,n : natural);
task body Worker is
begin

Job(id,n);
end Worker;
procedure Launch_Workers (i,n : in natural) is

w : Worker(i,n);
begin

if i < n
then Launch_Workers(i+1,n);

end if;
end Launch_Workers;

begin
Launch_Workers(1,n);

end Workers;

Jan Verschelde and Genady Yoffe (UIC) Multitasking Polynomial Continuation PASCO 2010, 21-23 July 8 / 25

MPI versus Threads

MPI = Message Passing Interface

The manager/worker paradigm:
� worker nodes perform path tracking jobs,
� manager maintains job queue, serves workers.

Manager must be available to serve jobs.

Threads are lightweight processes

Collaborative workers launched by master thread:
� communication overhead replaced by memory sharing,
� job queue updated in critical section using locks.

With MPI, we worry about communication overhead.
With threads, memory (de)allocation must be in critical sections.

Jan Verschelde and Genady Yoffe (UIC) Multitasking Polynomial Continuation PASCO 2010, 21-23 July 9 / 25

Load Balancing and Granularity Issues

We assume: # solution paths � # cores.

Granularity Issues:

coarse: one job = track one solution path

fine: polynomial evaluation, linear algebra

Dynamic load balancing:

not all jobs take the same amount of work

Jan Verschelde and Genady Yoffe (UIC) Multitasking Polynomial Continuation PASCO 2010, 21-23 July 10 / 25

An academic Benchmark: cyclic n-roots

The system

f (x) =

fi =
n=1∑
j=0

i∏
k=1

x(k+j)mod n = 0, i = 1,2, . . . ,n − 1

fn = x0x1x2 · · · xn−1 − 1 = 0

appeared in

G. Björck: Functions of modulus one on Zp whose Fourier
transforms have constant modulus. In Proceedings of the Alfred Haar
Memorial Conference, Budapest, pages 193–197, 1985.

J. Backelin and R. Fröberg: How we proved that there are exactly 924
cyclic 7-roots. In ISSAC’91 proceedings, pages 101-111, ACM, 1991.

very sparse, well suited for polyhedral methods

Jan Verschelde and Genady Yoffe (UIC) Multitasking Polynomial Continuation PASCO 2010, 21-23 July 11 / 25

First Preliminary Results

Using version 2.3.45 of PHCpack:

$ time phc -p -t8 < /tmp/input8

#worker tasks = number following the -t

running a cheater’s homotopy on cyclic 7-roots (924 paths).

#workers real user sys speedup
1 15.478s 15.457s 0.010s 1
2 7.790s 15.483s 0.010s 1.987
4 3.926s 15.445s 0.011s 3.942
8 1.992s 15.424s 0.015s 7.770

Since version 2.3.46 of PHCpack:

$ phc -b -t8

blackbox solver (phc -b) uses multitasking

Jan Verschelde and Genady Yoffe (UIC) Multitasking Polynomial Continuation PASCO 2010, 21-23 July 12 / 25

3 stages to solve a polynomial system f (x) = 0

1 Compute the mixed volume MV (aka the BKK bound)
of the Newton polytopes spanned by the supports A of f
via a regular mixed-cell configuration ∆ω.

2 Given ∆ω, solve a generic system g(x) = 0, using polyhedral
homotopies. Every cell C ∈ ∆ω defines one homotopy

hC(x, s) =
∑
a∈C

caxa +
∑

a∈A\C

caxasνa, νa > 0,

tracking as many paths as the mixed volume of the cell C,
as s goes from 0 to 1.

3 Use (1 − t)g(x) + tf (x) = 0 to solve f (x) = 0.

Stages 2 and 3 are computationally most intensive (1 � 2 < 3),

e.g.: cyclic 10-roots (MV = 35940): stage 1: 21 secs, stage 2: 39 min.

Jan Verschelde and Genady Yoffe (UIC) Multitasking Polynomial Continuation PASCO 2010, 21-23 July 13 / 25

A Static Distribution of the Workload
used in mpi2cell_s with Yan Zhuang

manager worker 1 worker 2 worker 3
Vol(cell 1) = 5
Vol(cell 2) = 4
Vol(cell 3) = 4
Vol(cell 4) = 6
Vol(cell 5) = 7
Vol(cell 6) = 3
Vol(cell 7) = 4
Vol(cell 8) = 8
total #paths : 41

#paths(cell 1) : 5
#paths(cell 2) : 4
#paths(cell 3) : 4
#paths(cell 4) : 1

#paths : 14

#paths(cell 4) : 5
#paths(cell 5) : 7
#paths(cell 6) : 2

#paths : 14

#paths(cell 6) : 1
#paths(cell 7) : 4
#paths(cell 8) : 8

#paths : 13

Since polyhedral homotopies solve a generic system g(x) = 0,
we expect every path to take the same amount of work...

Jan Verschelde and Genady Yoffe (UIC) Multitasking Polynomial Continuation PASCO 2010, 21-23 July 14 / 25

Running Polyhedral Homotopies
Running polyhedral homotopies on a random coefficient system,
distributing mixed cells, for the cyclic n-roots problems.

Tracking MV (MV = mixed volume) many solution paths:

#tasks, times in seconds
n MV 1 2 4 8
7 924 12 6 3 2
8 2560 58 29 15 8
9 11016 417 209 104 52

10 35940 2156 1068 534 270

Comparison with MPI (mpi2cell_d) on cyclic 10-roots:

mpirun -n 9: total wall time = 270.5 seconds.

on same random coefficient system and same tolerances:
elapsed wall clock time is 233 seconds.

Jan Verschelde and Genady Yoffe (UIC) Multitasking Polynomial Continuation PASCO 2010, 21-23 July 15 / 25

Quality Up
defined by S.G. Akl, 2004

Given more cores, more accurate results in same time?

A quad double is an unevaluated sum of 4 doubles, improves working
precision from 2.2 × 10−16 to 2.4 × 10−63.

Y. Hida, X.S. Li, and D.H. Bailey: Algorithms for quad-double
precision floating point arithmetic. In 15th IEEE Symposium on
Computer Arithmetic pages 155–162. IEEE, 2001. Software at
http://crd.lbl.gov/∼dhbailey/mpdist/qd-2.3.9.tar.gz.

X. Li, J. Demmel, D. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan,
S. Kang, A. Kapur, M. Martin, B. Thompson, T. Tung, and D. Yoo:
Design, implementation and testing of extended and mixed
precision BLAS. ACM Trans. Math. Softw., 28(2):152–205, 2002.

Why QD-2.3.9? + simple memory management

Jan Verschelde and Genady Yoffe (UIC) Multitasking Polynomial Continuation PASCO 2010, 21-23 July 16 / 25

Cost Overhead of Arithmetic

Solve 100-by-100 system 1000 times with LU factorization:

type of arithmetic user CPU seconds

double real 2.026s
double complex 16.042s

double double real 20.192s
double double complex 140.352s

quad double real 173.769s
quad double complex 1281.934s

Fully optimized Ada code on one core of 3.2 Ghz Intel Xeon.

Overhead of complex arithmetic: 16.042/2.026 = 7.918,
140.352/20.192 = 6.951, 1281.934/173.769 = 7.377.

Overhead of double double complex: 140.352/16.042 = 8.749.

Overhead of quad double complex: 1281.934/140.352 = 9.134.

Jan Verschelde and Genady Yoffe (UIC) Multitasking Polynomial Continuation PASCO 2010, 21-23 July 17 / 25

Newton’s Method with QD
Refining the 1,747 generating cyclic 10-roots is pleasingly parallel.

double double complex
#workers real user sys speedup

1 4.818s 4.790s 0.015s 1
2 2.493s 4.781s 0.013s 1.933
4 1.338s 4.783s 0.015s 3.601
8 0.764s 4.785s 0.016s 6.306

quad double complex
#workers real user sys speedup

1 58.593s 58.542s 0.037s 1
2 29.709s 58.548s 0.054s 1.972
4 15.249s 58.508s 0.053s 3.842
8 8.076s 58.557s 0.058s 7.255

For quality up: compare 4.818s with 8.076s.
With 8 cores, doubling accuracy in less than double the time.

Jan Verschelde and Genady Yoffe (UIC) Multitasking Polynomial Continuation PASCO 2010, 21-23 July 18 / 25

Multitasking Newton’s method

Often one path requires extra precision.

Computations in Newton’s method consists of
1 evaluate the system and the Jacobian matrix;
2 solve a linear system to update the solution.

Questions:
1 how large systems must be to allow speedup?
2 synchronization issues with LU factorization?

Jan Verschelde and Genady Yoffe (UIC) Multitasking Polynomial Continuation PASCO 2010, 21-23 July 19 / 25

Polynomial System Evaluation
Need to evaluate system and its Jacobian matrix. Running example:
30 polynomials, each with 30 monomials of degree 30 in 30 variables
leads to 930 polynomials, with 11,540 distinct monomials.
We represent a sparse polynomial

f (x) =
∑
a∈A

caxa, ca ∈ C \ {0}, xa = xa1
1 xa2

2 · · · xan
n ,

collecting the exponents in the support A in a matrix E , as

F (x) =
m∑

i=1

cixE[ki ,:], ci = ca, a = E [ki , :]

where k is an m-vector linking exponents to rows in E : E [ki , :] denotes
all elements on the ki th row of E . Storing all values of the monomials
in a vector V , evaluating F (and f) is equivalent to an inner product:

F (x) =
m∑

i=1

ciVki
, V = xE .

Jan Verschelde and Genady Yoffe (UIC) Multitasking Polynomial Continuation PASCO 2010, 21-23 July 20 / 25

Polynomial System Evaluation with Threads

Two jobs:
1 evaluate V = xE , all monomials in the system;
2 use V in inner products with coefficients.

Our running example: evaluating 11,540 monomials of degree 30
requires about 346,200 multiplications.
Since evaluation of monomials dominates inner products,
we do not interlace monomial evaluation with inner products.

Static work assignment: if p threads are labeled as 0,1, . . . ,p − 1,
then i th entry of V is computed by thread t for which i mod p = i .

Synchronization of jobs is done by p boolean flags.
Flag i is true if thread i is busy.
First thread increases job counter only when no busy threads.
Threads go to next job only if job counter is increased.

Jan Verschelde and Genady Yoffe (UIC) Multitasking Polynomial Continuation PASCO 2010, 21-23 July 21 / 25

Speedup and Quality Up for Evaluation
930 polynomials of 30 monomials of degree 30 in 30 variables:

double double complex
#tasks real user sys speedup

1 1m 9.536s 1m 9.359s 0.252s 1
2 0m 37.691s 1m 10.126s 0.417s 1.845
4 0m 21.634s 1m 10.466s 0.753s 3.214
8 0m 14.930s 1m 12.120s 1.711s 4.657

quad double complex
#tasks real user sys speedup

1 9m 19.085s 9m 18.552s 0.563s 1
2 4m 43.005s 9m 19.402s 0.679s 1.976
4 2m 24.669s 9m 20.635s 1.023s 3.865
8 1m 21.220s 9m 26.120s 2.809s 6.884

Speedup improves with quad doubles. Quality up: with 8 cores
overhead reduced to 17%, as 81.220/69.536 = 1.168.

Jan Verschelde and Genady Yoffe (UIC) Multitasking Polynomial Continuation PASCO 2010, 21-23 July 22 / 25

Multithreaded LU factorization

Routines in PHCpack to solve linear systems are based
on ZGEFA and ZGESL of LINPACK.

The multithreaded version of LU factorization does pivoting,
synchronizing jobs with busy flags
and a column counter updated by first thread.

For good computational results for our first multithreaded
implementation, the dimension needs to be around 80.

Because LU is O(n3), backsubstitution is O(n2), and n � p,
multithreaded LU still dominates the total cost.

Jan Verschelde and Genady Yoffe (UIC) Multitasking Polynomial Continuation PASCO 2010, 21-23 July 23 / 25

Speedup and Quality up for Multithreaded LU
1000 times LU factorization of 80-by-80 matrix:

double double complex
#tasks real user sys speedup

1 1m 8.173s 1m 8.074s 0.131s 1
2 0m 36.712s 1m 13.061s 0.249s 1.857
4 0m 21.565s 1m 25.035s 0.455s 3.161
8 0m 20.986s 1m 42.156s 2.270s 3.248

quad double complex
#tasks real user sys speedup

1 10m 12.216s 10m 11.900s 0.311s 1
2 5m 12.753s 10m 24.774s 0.477s 1.958
4 2m 42.653s 10m 48.795s 0.699s 3.764
8 1m 33.234s 12m 17.653s 1.930s 6.566

Acceptable speedups with quad doubles. Quality up: with 8 cores,
less than twice the time to double accuracy.

Jan Verschelde and Genady Yoffe (UIC) Multitasking Polynomial Continuation PASCO 2010, 21-23 July 24 / 25

Conclusions

1 Threads offer more convenient programming model than MPI.
To use five threads in blackbox solver, type at command prompt
phc -b -t5 input output

is also more user friendly than requiring availability of MPI.

2 Speedups of pleasingly parallel homotopies with threads
very well suited for multicore workstations.

3 Quality up: cores compensate for multiprecision arithmetic.
� multiprecision for homotopies as common as complex arithmetic
� cost overhead of arithmetic keeps dimensions for speedup modest
� good results with preliminary parallel algorithms

Jan Verschelde and Genady Yoffe (UIC) Multitasking Polynomial Continuation PASCO 2010, 21-23 July 25 / 25

