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Overview
beyond hardware arithmetic

1 Hardware arithmetic is often insufficient to get correct results.
2 The cost overhead of software defined arithmetic

can be compensated by parallel computations.
This tutorial is about

1 the big numbers introduced in Ada 2022, and
2 multiple double arithmetic.

The material is introduced via examples and code in Ada, available at
https://github.com/janverschelde/Ada-Europe-2025-Tutorial.
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Plan of the Tutorial

1 The big numbers introduced in Ada 2022.

2 Multiple doubles extend the precision with floating-point arithmetic.

3 Parallelism offsets the cost overhead of software arithmetic.

4 Vectorization defines the layout of data for pipelining.
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Verifying Floating-Point Arithmetic

Automatically verifying the correctness of results obtained by
floating-point arithmetic remains a research problem.

A recent preprint posted on the arxiv preprint server:
David K. Zhang and Alex Aiken:
Automatic Verification of Floating-Point Accumulation Networks.
arXiv:2505.18791v1 [math.NA] 24 May 2025
https://arxiv.org/pdf/2505.18791

Ada programmers have their language to verify the correctness.
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Big Integers
a first example from https://learn.adacore.com

Introduced in Ada 2022 as type Big_Integer.
Start an Ada program as
with Ada.Text_IO;
with Ada.Numerics.Big_Numbers.Big_Integers;
use Ada.Numerics.Big_Numbers.Big_Integers;

Write 2256 as follows:
Ada.Text_IO.Put_Line(Big_Integer’Image(2 ** 256));

The output is

115792089237316195423570985008687907853269984665640564039
457584007913129639936
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Binary and Hexidecimal Formats

2256 in binary is one 1 followed by 256 zeros.
2256 in hexadecimal is one 1 followed by 64 zeros.

Writing the big integer in hexadecimal and binary format:
Ada.Text_IO.Put_Line(To_String(2**256, base=>16));
Ada.Text_IO.Put_Line(To_String(2**256, base=>2));

The output is

16#1 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000#
2#1 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000#
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Fibonacci Numbers

As an example where hardware integers are no long sufficient,
consider the Fibonacci numbers:

f0 = 0, f1 = 1, and for n > 1 : fn = fn−1 + fn−2.

Code snippet to compute the n-th Fibonacci number:

previous : Big_Integer := To_Big_Integer(0);
current : Big_Integer := To_Big_Integer(1);
next : Big_Integer;

begin
for i in 1..n loop

next := previous + current;
previous := current;
current := next;

end loop;
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the 1000-th Fibonacci Number

The 1000-th Fibonacci number f1000 takes 998 additions:

43466557686937456435688527675040625802564660517371780402
481729089536555417949051890403879840079255169295922593080
322634775209689623239873322471161642996440906533187938298
969649928516003704476137795166849228875

The output has 210 decimal places.

With very little computations, numbers can grow quickly.

Exact results are not always possible and not always needed.
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Floating-Point Numbers

A floating-point number consists of
1 one sign bit,
2 a normalized fraction: the leading bit is nonzero, and
3 an exponent.

Definition (floating-point representation)
The floating-point representation f ℓ(x) of a real number x ∈ R is

f ℓ(x) = ±.bb . . . b × 2e,

stored compactly as the tuple (±,e,bb . . . b).
The representation error is |f ℓ(x)− x |.
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Floating-Point Formats

Hardware supports single precision (32-bit), double precision (64-bit),
and long double precision (80-bit), summarized below:

number of bits
precision sign exponent fraction total
single 1 8 23 32
double 1 11 52 64
long double 1 15 64 80

A 64-bit floating-point number has
1 sign bit s, 0 for positive, 1 for negative,
11 bits e1, e2, . . ., e11 in the exponent, and
52 bits f1, f2, . . ., f52 in the fraction, f1 ̸= 0.

s e1 e2 · · · e11 f1 f2 · · · f52
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Number Line Example
distribution of the floating-point numbers

Consider a floating-point number system with basis 2
1 with two bits in the (normalized) fraction, and
2 with exponents −1, 0, +1, +2.

We display all positive floating-point numbers in this system:

.10 2−1 = 0.01 = 1/4 .11 2−1 = 0.011 = 3/8

.10 20 = 0.1 = 1/2 .11 20 = 0.11 = 3/4

.10 2+1 = 1 .11 2+1 = 1.1 = 3/2

.10 2+2 = 10 = 2 .11 2+2 = 11 = 3

0 1
4

3
8

1
2

3
4

1 3
2

2 3

error |f ℓ(x)− x | ≤ 1/8 error |f ℓ(x)− x | ≤ 1/2
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Machine Precision

Definition (machine precision)
The number machine precision ϵmach is the distance between 1 and
the smallest floating-point number greater than one.
For basis B and size p of the fraction: ϵmach = B−p.

For 0 < ϵ < ϵmach: (1 + ϵ)− 1 ̸= ϵ+ (1 − 1).

The machine precision as supported by hardware single floats (32-bit),
double floats (64-bit), and long double floats (80-bit) is below:

number of bits machine
precision sign exponent fraction total precision
single 1 8 23 32 2−23 ≈ 1.192e-07
double 1 11 52 64 2−52 ≈ 2.220e-16
long double 1 15 64 80 2−64 ≈ 5.421e-20
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the Smallest and Largest Exponent

An exponent e ∈ [emin,emax] where
emin is the smallest exponent and emax is the largest exponent.

number of bits exponent range
precision sign exponent fraction total emin emax

single 1 8 23 32 −126 +127
double 1 11 52 64 −1022 +1023
long double 1 15 64 80 −16382 +16383

Special values for the exponent for double precision:
111 1111 1111, nonzero fraction : -NaN, not a number;
111 1111 1111, zero fraction : -Inf, represents −∞;
000 0000 0000 : numbers that are not normalized;
011 1111 1111, zero fraction : +Inf, represents +∞.
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Extracting Exponent and Fraction

long_long_integer is a 64-bit integer, renamed as integer64.

x : long_float := 0.1;
f : long_float := long_float’fraction(x);
e : integer64 := integer64(long_float’exponent(x));
c : long_float := long_float’compose(f, e);
s : long_float := long_float’compose(f, 52);
m : integer64 := integer64(long_float’truncation(s));

The number c equals the original x,
and s is used to turn the fraction into a 64-bit integer.
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the Fraction of 0.1

Writing the fraction in binary and hexadecimal, with the statements

integer64_io.put(m,1,base=>2);
integer64_io.put(m,1,base=>16);

gives as output

2#1100110011001100110011001100110011001100110011001101#
16#CCCCCCCCCCCCD#

Working with 0.1 as a long_float results in a representation error,
as 0.1 does not have a finite binary expansion.

0.1 ̸= 1
10
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Big Reals
comparing with long_float

Introduced in Ada 2022 as type Big_Real.
Start an Ada program as
with Ada.Numerics.Big_Numbers.Big_Reals;
use Ada.Numerics.Big_Numbers.Big_Reals;

Comparing 0.1 and 1/10:
x : constant long_float := 0.1;
y : constant Big_Real
:= To_Big_Real(1)/To_Big_Real(10);

Big_Real arithmetic is exact rational arithmetic.
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Comparing 0.1 with 1/10

The package conversions is an instantiation of
Ada.Numerics.Big_Numbers.Big_Reals.Float_Conversions
with the type long_float, needed to compute z:

z : constant Big_Real := conversions.To_Big_Real(x) - y;

begin
Put("y : ");
Put_Line(To_String(y,2,32,0));
Put(" numerator of y :");
Put_Line(Big_Integer’Image(Numerator(y)));
Put("denominator of y :");
Put_Line(Big_Integer’Image(Denominator(y)));
Put("x - y : ");
Put_Line(To_String(z,2,32,0));
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Comparing 0.1 with 1/10
avoiding representation errors

The output of the code on the previous slide:

y : 0.10000000000000000000000000000000
numerator of y : 1

denominator of y : 10
x - y : 0.00000000000000000555111512312578

The y defined as To_Big_Real(1)/To_Big_Real(10)
is indeed the rational number 1/10.

Computing with Big_Real numbers is the same as
computing with rational numbers.
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Applications of Big_Real Numbers

1 Rational approximations of π.

2 Solve 2-by-2 linear systems exactly.

3 Approximation of square roots.
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Rational Approximations of π

The package conversions is an instantiation of
Ada.Numerics.Big_Numbers.Big_Reals.Float_Conversions
with the type long_float, used to compute y:

x : long_float := Ada.Numerics.Pi;
y : Big_Real := conversions.To_Big_Real(x);

Put(Big_Integer’Image(Numerator(y)));
Put(" /");
Put_Line(Big_Integer’Image(Denominator(y)));

showing

884279719003555 / 281474976710656
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A Sequence of Approximations
2#1100100000000000000000000000000000000000000000000000#
3.12500000000000E+00 25 / 8
2#1100100100000000000000000000000000000000000000000000#
3.14062500000000E+00 201 / 64
2#1100100100001000000000000000000000000000000000000000#
3.14111328125000E+00 6433 / 2048
2#1100100100001100000000000000000000000000000000000000#
3.14135742187500E+00 12867 / 4096
2#1100100100001110000000000000000000000000000000000000#
3.14147949218750E+00 25735 / 8192
2#1100100100001111000000000000000000000000000000000000#
3.14154052734375E+00 51471 / 16384
2#1100100100001111100000000000000000000000000000000000#
3.14157104492188E+00 102943 / 32768
2#1100100100001111110000000000000000000000000000000000#
3.14158630371094E+00 205887 / 65536
2#1100100100001111110110000000000000000000000000000000#
3.14159202575684E+00 1647099 / 524288
...
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Steps in the Code

1 type integer64 is new long_long_integer;

2 Declare
type unsigned_integer64 is mod 2**integer64’size;

Take two numbers of type unsigned_integer64.
With nbr and mask where mask is a bit pattern,
we select the bits of the fraction nbr.

3 Adjust the mask to select more leading bits
of the fraction of π.

4 Write the numerator and denominator of the Big_Real
obtained after converting the composed long_float,
composed with the leading bits of the fraction of π.

Jan Verschelde (UIC) Multiple Double Arithmetic Ada Europe 2025, 10 June 31 / 41



Solving 2-by-2 Linear Systems
applying Cramer’s rule

Consider a 2-by-2 linear system Ax = b:[
a1,1 a1,2
a2,1 a2,2

] [
x1
x2

]
=

[
b1
b2

]
.

If the determinant det(A) = a1,1a2,2 − a2,1a1,2 ̸= 0,
then the solution is

x1 =

det

([
b1 a1,2
b2 a2,2

])
det(A)

and x2 =

det

([
a1,1 b1
a2,1 b2

])
det(A)

.
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A Random Instance

a coefficient matrix :
2 / 1 7 / 5
3 / 2 1 / 4

its determinant : -8 / 5
a right hand side vector :
9 / 8 1 / 1

the solution :
179 / 256 -25 / 128

the residual :
0 / 1 0 / 1
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Steps in the Code

1 Vector and matrix types of Big_Real:
subtype Matrix_Range is Integer range 1..2;
type Big_Real_Vector is

array(Matrix_Range) of Big_Real;
type Big_Real_Matrix is

array(Matrix_Range, Matrix_Range) of Big_Real;

2 Generate random integers in the range from 1 to 9 for the
numerator and denominators of the coefficients.

3 Define functions for the determinant, to solve,
and to compute the residual vector b − Ax .
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Approximating Square Roots

The square root of a number n is a solution of

x2 − n = 0.

Starting at x :=
√

n (double precision), apply Newton’s method:

x := x − x2 − n
2x

until |x2 − n| is smaller than the desired accuracy.

Newton’s method converges quadratically:
the number of correct decimal places doubles in each step.
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Running Newton’s Method with Big_Real

Given are two Big_Real numbers: x and tol.

two : constant Big_Real := To_Big_Real(2);
flx : constant Long_Float

:= conversions.From_Big_Real(x);
xbr : constant Big_Real

:= conversions.To_Big_Real(SQRT(flx));
y,z : Big_Real;

begin
z := xbr;
y := z*z - x;
for i in 1..100 loop
z := z - y/(two*z);
y := z*z - x;
exit when (abs(y) < tol);

end loop;

Jan Verschelde (UIC) Multiple Double Arithmetic Ada Europe 2025, 10 June 36 / 41



Approximating
√

5

Running with x := 5 and tol := 1.0E-255 gives

numerator : 19872231581449082094055032476812151050879147
4526664147032700535852840786587519349416977059375435597922
5749437769845429723293048671021001611336566850938648039607
1368885001714358482097272093314584052162820070128853465636
606660515950399520406721
denominator : 88871321361476592631251580156841012949115401
3007494916989181911352904768534144466717401786754267481046
0851998064225461709997178176912050977614188447809927517990
3852066582365111217851561947716243292037718152798799007191
18533076467259778531328

as the approximation for
√

5 accurate up to 255 decimal places.
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Expression Swell and Roundoff Errors

When the size of intermediate numbers and expressions grow too
large, we encounter expression swell, a well known problem in
computer algebra, and in all exact computations.

If the end result is also large,
then there is nothing one can do.

In many applications, accurate results can be obtained by working
in limited precision, if roundoff errors remain bounded during the
computations, which is in the domain of numerical analysis.

If roundoff errors cannot be bounded,
then there is nothing one can do.
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Verifying Floating-Point Arithmetic

Ada programmers have their language to automatically verify
the correctness of results obtained by floating-point arithmetic:

1 Compute once with Big_Number arithmetic,
2 execute then long_float arithmetic, and
3 report the difference of the two outcomes.

One could run a program in the Big_Number mode, or
in the hardware arithmetic mode.
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Exercises

1 The Lucas numbers Ln are defined as

L0 = 2, L1 = 1, for n > 1 : Ln−1 + Ln−2.

Compute the first 1000 Lucas numbers with big integers.
What is the largest Lucas number that you can compute?

2 Use the first bits of Ada.Numerics.e
and compute consecutive rational approximations with big reals.

3 Extended the application of Cramer’s rule
to solve 3-by-3 linear systems with rational coefficients.

4 Apply Newton’s method to compute cube roots with big reals.
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Definitions
extending the precision with multiple doubles

The precision is the smallest positive number
we can add to one and obtain a number larger than one.
A double is a 64-bit floating-point number,
the precision is 2−52 ≈ 2.220E−16.
A multiple double is a nonoverlapping sum of doubles,
the precision is 2m(−52), for m doubles.
The precision of a double double is 2−104 ≈ 4.930E−32.
A multiword is a sequence of nonoverlapping hardware numbers,
of integers or floating-point numbers, representing one big integer
or big real number.
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Objectives of the Tutorial

1 Explain the basics of the multiple double arithmetic.

2 Understand why the overhead is predictable.
Working with double double arithmetic ∼ complex arithmetic.

3 Know the distinction between
I when needed to use multiple doubles, and
I situations where there is nothing one can do.
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Context and References
Floating-point arithmetic with 64-bit doubles can be extended
to gain more accuracy than what only hardware arithmetic gives.

Volume 2 of The Art of Computer Programming by Knuth
details properties of floating-point arithmetic.

Algorithms to extend 32-bit floating-point arithmetic originated in
the late sixties [Dekker, Numerische Mathematik 1971].

The arithmetic is provided in software packages such as
I QDlib [Hida, Li, Bailey, 2001], and
I CAMPARY [Joldes, Muller, Popescu, Tucker, 2016].

A general reference: “Handbook of Floating-Point Arithmetic”
by J.-M. Muller et al., Springer-Verlag, 2nd edition, 2018.

The topic is both a classic and a new one: in the context of
multithreading and acceleration by Graphics Processing Units (GPUs).
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Multiple Double Arithmetic in PHCpack

PHCpack is software for Polynomial Homotopy Continuation,
to solve systems of polynomials.

GNU GPL license, available at
https://github.com/janverschelde/PHCpack.

I multiple double arithmetic is available in the folder
src/Ada/Math_Lib/QD.

I multiword arithmetic is available in the folder
src/Ada/Math_Lib/Words.

I tasking is available in the folder
src/Ada/Math_Lib/Tasking.

All examples in this tutorial are made with this code.
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Power Series Arithmetic
motivation for multiple double precision

exp(t) =
d−1∑
k=0

tk

k !
+ O(td).

Recommended precision to represent the series for exp(t) correctly:

k 1/k ! recommended precision eps

7 2.0e-004 double precision okay 2.2e-16
15 7.7e-013 use double doubles 4.9e-32
23 3.9e-023 use double doubles
31 1.2e-034 use quad doubles 6.1e-64
47 3.9e-060 use octo doubles 4.6e-128
63 5.0e-088 use octo doubles
95 9.7e-149 use hexa doubles 5.3e-256

127 3.3e-214 use hexa doubles

eps is the working precision
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Doubling the Precision

The double double representation of π is the record with values

3.141592653589793116e+00
1.224646799147353207e-16

where
the first double is the high part, and
the second double is the low part.

We can interpret the low part as the error on the first double.
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Error Free Transformations

We have the following property:

If the result can be represented exactly in double precision,
then the second double is the error on the result.

Example:

√√√√ 64∑
i=1

x2 = 8, if x ∈ C and |x | = 1.

The 2-norm of a vector of 64 complex doubles on the unit circle is 8,
computed with double doubles:

8.00000000000000E+00 - 4.46815747097839E-32

This property illustrates also that one does not need a long fraction
to represent numbers such as 8 - 4.4E-32 correctly.
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The Type double_double

At the end of the package Double_Double_Numbers:

private

type double_double is record
hi : double_float; -- most significant part
lo : double_float; -- least significant part

end record;

end Double_Double_Numbers;

where double_float renames long_float.

1 Basic operations work on a pair of doubles (hi, lo).
2 Functions that overload the operators call the basic operations.
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Faithful Rounding

Let R be a system of floating-point numbers.
f `(x) ∈ R is the floating-point representation of x ∈ R.
For any x , y ∈ R: x ∗ y represents x + y , x − y , x × y , or x/y .

Definition (faithful and optimal rounding)
The floating-point operation ∗ is faithful
if for all x , y ∈ R, f `(x ∗ y) equals

either the largest element of R smaller than or equal to x ∗ y ,
or the smallest element of R larger than or equal to x ∗ y .

The floating-point operation ∗ is optimal
if f `(x ∗ y) is nearest to x ∗ y for all x , y ∈ R.
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Exact Addition

Let f `(x) be the floating-point representation of x ∈ R.

Theorem (Dekker, 1971)
If floating-point addition is optimal and subtraction faithful,
then for x , y ∈ R, |x | ≥ |y |, and

z := f `(x + y), w := f `(z − x), e := f `(y − w),

then we have
e = y − (z − x),

or equivalently: e equals the correction term to the addition.

This implies that the error of a floating-point addition
can be computed with floating-point arithmetic.

Then, x + y is represented exactly by the tuple (z,e).
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Exact Error Computation

To show that x + y is represented exactly by the tuple (z,e),

for any x , y ∈ R, |x | ≥ |y |,

via the computations

z := f `(x + y), w := f `(z − x), e := f `(y − w),

the result is implied by

1 z − x ∈ R, and
2 y − w ∈ R,

because floating-point subtraction is faithful.
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z − x ∈ R

1 Denote x = fx 2ex , y = fy 2ey , z = fz 2ez ,

|x | ≥ |y | ⇒ ex ≥ ey and ez ≤ ex + 1 (no overflow).

2 Let d = ex − ey , then fz = round
(

fx
2
+

fy
2d+1

)
and z − x = µ2ex .

3 µ satisfies

µ ≤
∣∣∣∣2fz − fx −

fy
2d

∣∣∣∣+ ∣∣∣∣ fy
2d

∣∣∣∣ < 1 + M

where M = 2p, p is the number of bits in the fraction.

Because µ is an integer, it follows that z − x ∈ R.
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y − w ∈ R

We computed

z := f `(x + y), w := f `(z − x), e := f `(y − w).

Observe the following:

1 |x | ≥ |y | ⇒ ex ≥ ey and

therefore, y − w is an integer times 2ey .

2 |y − w | ≤ |y |

Otherwise, x would be closer to x + y than z,
contradicting the optimality of floating-point addition.

Thus, we have y − w ∈ R.
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Branchless Sum and Error Computation
The sum and error of a floating-point addition can be computed
without an if statement, as defined in the procedure below:

procedure two_sum ( a,b : in double_float;
s,err : out double_float ) is

bb : double_float;

begin
s := a + b;
bb := s - a;
err := (a - (s - bb)) + (b - bb);

end two_sum;

A proof that this works can be found in “On Properties of Floating Point
Arithmetics: Numerical Stability and the Cost of Accurate Computations”
by Douglas M. Priest, PhD thesis, UC Berkeley, 1992.
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Product and Error Computation
The procedure split computes high and low word of a double.

procedure two_prod ( a,b : in double_float;
p,err : out double_float ) is

a_hi,a_lo,b_hi,b_lo : double_float;

begin
p := a*b;
split(a,a_hi,a_lo);
split(b,b_hi,b_lo);
err := ((a_hi*b_hi - p)

+ a_hi*b_lo + a_lo*b_hi) + a_lo*b_lo;
end two_prod;

This two_prod is applied to the high and low parts of the double
doubles in the multiplication.
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Division of Double Doubles

On input are two double doubles: x = (xhi, x lo) and y = (yhi, y lo).

The instructions to compute q = x/y are as follows:

1 q1 := xhi/yhi; a := q1 ? y ; q := x − a;
2 q2 := qhi/yhi; a := q2 ? y ; q := q − a;
3 q3 := qhi/yhi;
4 qhi := q1 + q2;
5 qlo := q2 − (qhi − q1);
6 q := q + q3;

Observe that several of those instructions have double doubles as
operands and are thus not elementary hardware functions.
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Double Doubles and Multiple Doubles

1 Introduction
definitions
objectives

2 Double Doubles
doubling the precision
accurate floating-point summation

3 Multiple Doubles
multiplying the precision
benefits and drawbacks
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Accurate Floating-Point Summation

Adding long sequences of real numbers is a basic task.

As test sequences, consider geometric sums:

n∑
i=0

r i =
rn+1 − 1

r − 1
,

where r is a constant, independently of i , close to 1,
so the numbers are slowly decaying.

All numbers in the sequence are positive, r = 0.999....
The sequence is sorted in decreasing order.
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Double versus Double Double Arithmetic

For n = 1,000,000 and r = 0.99999:

The output with double precision floating-point arithmetic:

the sum : 9.99954602798677E+04
error : 4.07E-9

The output with double double arithmetic:

the sum : 9.99954602798717738606442583602281E+04
error : 4.93E-26

Adding one million numbers is almost instantaneous,
also in double double arithmetic.

The Big_Real arithmetic leads to expression swell,
as shown in the next two slides.
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Comparing with Big_Real Arithmetic
The numerator of the sum for n = 61 and = 0.99999 is

105253177973528097246901419584959227279753557608770385497
118154772537907624811474962879739406363468816203503982759
602621766527944303875837066944636598842231366571630624000
796174934454231796554225576254861573013694819600304945462
874407684659876817062438821374258901972712352567304186538
822775456253832654250001317849224757031568794664316220442
173240264209934237624208373353967826912692088896001430676
982437799010025930989656803007073982746200538922077977296
862048368700701027160551019681165246933136443334127518238
161707415562178062731701670086041161755119117498615558437
013913698096895054154049608235670768234290007970611774351
066156650786593294483860105661533239062284948594853036252
250692421021821006480111811215320423537641492709738771120
893820384383906871917074812218780588358002955834782795351
411026839763849724134812551344025943365994261214293836756
526320014456474230297077901985364554044367948680775300658
323333461949934561361535876267919953970408424157375439722
8132237
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Comparing with Big_Real Arithmetic
The denominator of the sum for n = 61 and = 0.99999 is

169814973489612474139441081825651281718030426146816280037
933005643365757266550038256812824668930364805317063633622
266136128185636774744566930065135761825492050291342758980
061441525226658958450534386596374857381215453584142341197
785345367348888372611546504121811720648862220122496580341
905095616252666232534255473748238197218227457813611196208
829554287323813413048108772281771364102510208942348372351
304271212719880268428734629523577315745168641057824870758
680652668283945036292229372120549145626523959179133873977
208591561079219879705964741781252750741680327546431608989
982147046960242178040358119573046185956958055033708256790
797188394447404812989355185027062728884838683665642462816
885894350930870778656374282896554681073275455210026485104
123460374235800730394334006289252525389544409904660501025
145570306719143855193754141909181801201826795185359155756
691839537111551261842083848171427733274853335095562923040
534914419168697344469066593882861526742571861516556248725
58592
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Double Doubles and Multiple Doubles

1 Introduction
definitions
objectives

2 Double Doubles
doubling the precision
accurate floating-point summation

3 Multiple Doubles
multiplying the precision
benefits and drawbacks
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Multiplying the Precision

The octo double representation of π is the record with values

3.14159265358979312E+00
1.22464679914735321E-16
-2.99476980971833967E-33
1.11245422086336528E-49
5.67223197964031574E-66
1.74498621613524860E-83
6.02937273224953984E-100
1.91012354687998999E-116

where the parts are ranked from high to low significance.

Observe that the first two doubles of the octo double
define the double double representation of π.
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The Type octo_double
At the end of the package Octo_Double_Numbers:

private

type octo_double is record
hihihi : double_float; -- most significant part
lohihi : double_float; -- second highest word
hilohi : double_float; -- third highest word
lolohi : double_float; -- fourth highest word
hihilo : double_float; -- fourth lowest word
lohilo : double_float; -- third lowest word
hilolo : double_float; -- second lowest word
lololo : double_float; -- least significant part

end record;

end Octo_Double_Numbers;
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Error Free Transformations

Example:

√√√√ 64∑
i=1

x2 = 8, if x ∈ C and |x | = 1.

The 2-norm of a vector of 64 complex doubles on the unit circle is 8,
computed with multiple doubles:

1d : 8.00000000000000E+00 - 4.46815747097839E-32
4d : 8.00000000000000E+00 + 8.23258305145073E-65
8d : 8.00000000000000E+00 - 5.56764060802733E-128

16d : 8.00000000000000E+00 - 1.54394135726410E-257

One does not need a long fraction to represent numbers
such as 8 - 1.54E-257 correctly.

Jan Verschelde (UIC) Multiple Double Arithmetic Ada Europe 2025, 10 June 30 / 34



Cost Overhead
a motivation for parallel computing

The number of floating-point operations, for a multiple double
addition add, multiplication mul, and division div,
for increasing number m of doubles:

m add mul div avg
2 20 23 70 37.7
4 89 336 893 439.3
8 269 1742 5126 2379.0

16 925 11499 33041 15155.0

Observe: while the data is doubled, the average avg number of
operations increased almost tenfold, which makes the computations
much more compute bound, rather than memory bound.
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2 Double Doubles
doubling the precision
accurate floating-point summation

3 Multiple Doubles
multiplying the precision
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Benefits and Drawbacks

Two apparent disadvantages of multiple double arithmetic:

− Fixed levels of precision, for example:
working with 73 bits of precision is not possible.

− The exponent size remains fixed,
working with extremely large or tiny numbers is not possible.

The advantages:

+ Upgrading or downgrading the precision of the numbers simply
happens by adding or removing doubles.

+ The cost overhead is predictable.
+ Computations become compute bound for increasing precisions.
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Exercises

1 Compute the geometric sum with ratio r = 1.00001
instead of 0.99999, so the numbers in the sequence are
increasing, for sufficiently large values of n.

2 Write code to apply Newton’s method to compute cube roots,
using staggered precisions, starting at the cube root of a number
in double precision, doubling the precision in each Newton step.

3 Time the code for computing geometric sums,
comparing double, double double, and quad double arithmetic.
Do the timings agree with the cost overhead factors?
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Multithreading for Quality Up

1 Shared Memory Parallel Programming
multithreading and thread safety
objectives
hello tasking

2 Static Job Scheduling
the work crew model
inner products of geometric sequences
scheduling jobs before the runs

3 Quality Up
parallel runs with double doubles and quad doubles
scalability
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Multithreading, Thread Safety, and Ada Tasking
definition of speedup

On a shared memory parallel computer,
all threads have access to the entire main memory.

A program is thread safe if its parallel execution produces the
same results as a sequential run.

I Errors occur when two threads alter the same memory locations.
I The order of computations may change the roundoff.

Ada tasks are mapped onto kernel threads, enabling speedup:

speedup =
sequential execution time

parallel execution time
.
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Quality Up

In analogy with speedup, we can define quality up:

quality up Q(p) =
quality on p processors
quality on 1 processor

Q(p) measures improvement in quality using p processors,
keeping the computational time fixed.

If we can afford to wait the same amount of time on 1 processor,
by how much can we improve the quality with p processors?

Confusing precision with accuracy, if the cost overhead of a higher
precision is p, then running on p processors offsets the overhead.
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Objectives of the Tutorial

1 Apply Ada tasking to achieve quality up.

2 Understand why the multiple double arithmetic is thread safe.

3 How many processors are needed to afford multiple precision?
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Hello Tasking!
procedure Hello_Tasks ( p : in integer := 4 ) is

task type worker ( idnbr : integer );

task body worker is
begin
Ada.Text_IO.Put_Line ("Task" & idnbr’Image & " says hello.");

end worker;

procedure launch ( i : in integer ) is

w : worker(i);

begin
if i < p
then launch(i + 1);
end if;

end launch;

begin
launch(1);

end Hello_Tasks;
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Why Does hello_tasking Work?

We consider three stages:

1 Creation: task type worker ( idnbr : integer );

where the identification number idnbr is the task discriminant.

The i-th task is created when the variable w in
w : worker(i);

is elaborated.

2 Tasks activate after the elaboration of the declarative part.

3 Tasks execute immediate after a successful activation,
where execute means entering the ready state.

The parallelism happens because only the declarative part
needs to be elaborated for a task to execute.
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The Work Crew Model
Instead of the manager/worker model,
with threads we can apply a more collaborative model.

A computation performed by three threads in a work crew model:

- time

set up
thread 0
thread 1
thread 2

clean up

If the computation is divided into many jobs stored in a queue,
then the threads grab the next job, compute the job,
and push the result onto another queue or data structure.

Important for memory management:
set up: all memory allocations, before the run,
clean up: all memory deallocations, after the run.
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An Array of Workers

Making an array of workers:

Task 1 says hello with id workers(4)_0000000030D99360.
Task 2 says hello with id workers(1)_0000000030D8F130.
Task 3 says hello with id workers(2)_0000000030D92740.
Task 4 says hello with id workers(3)_0000000030D95D50.

Observe the difference between task number and
its entry in the array workers.
The last output is obtained via

taskid : constant Ada.Task_Identification.Task_Id
:= Ada.Task_Identification.Current_Task;

which returns the identity of the task.

Jan Verschelde (UIC) Multiple Double Arithmetic Ada Europe 2025, 10 June 13 / 28



The Code in hello_task_array

procedure hello_tasks ( p : in integer := 4 ) is

task type worker;

task body worker is

idnbr : constant integer := Identification.Number;
taskid : constant Ada.Task_Identification.Task_Id

:= Ada.Task_Identification.Current_Task;

begin
Ada.Text_IO.Put_Line ("Task" & idnbr’Image

& " says hello with id "
& Ada.Task_Identification.Image(taskid) & ".");

end worker;

workers : array(1..p) of worker;

begin
null;

end hello_tasks;
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The id_generator Assigns Unique Numbers
protected id_generator is

procedure get ( id : out integer );
-- returns a unique identification number

private
next_id : integer := 1;

end id_generator;

protected body id_generator is
procedure get ( id : out integer ) is
begin

id := next_id;
next_id := next_id + 1;

end get;
end id_generator;

Operations on data encapsulated by a protected object
are executed with mutually exclusive access.
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Geometric Inner Products

Consider inner products of geometric sequences:

n∑
i=1

r isi , 0 < r < s, r ≈ 1.

+ Scalable experiment on vectors, without data arrays.
+ Ratios allow to control the growth of the numbers.

For n = 109, with ratios r = 1 + 10−10 and s = 1 − 10−10, we obtain

Computing an inner product of size 1000000000
The inner product : 1.00000000000000E+09

− The result is wrong: rs = 1 + 10−20 = 1.0 in double precision.
+ On a Windows 11 Intel i9-13900HZ 2.2Gz: 826 milliseconds.

We compare wall clock times, using Measure-Command or time.
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Performance
FLOPS = number of floating-point operations per second

result : long_float := 0.0;
x : long_float := 1.0;
y : long_float := 1.0;

begin
for i in 0..(dim-1) loop

result := result + x*y;
x := x*r;
y := y*s;

end loop;

In 826 milliseconds, in the body of the the loop we count one addition
and three multiplications, which runs one billion times:

4,000,000,000
0.826

= 4,842,615,012.1 FLOPS = 4.8 GIGAFLOPS.
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Running with Double Double Arithmetic

On the Window Subsystem for Linux on the same computer:

$ time ts_mtgeoprod 1 2
Running in double double precision ...
Running with 1 threads ...
Computing an inner product of size 1000000000
Task 1 is computing ...
The inner product :
9.99999999995000000005016666610116E+08

real 0m17.113s
user 0m17.096s
sys 0m0.004s

From 826 milliseconds to 17 seconds: 23.954/0.826 = 20.7.
Compiled with -O3 -gnatp -gnatf flags.
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Static Job Scheduling

Distributing the work among three tasks:

1 + rs + r2s2︸ ︷︷ ︸
thread 1

+ r3s3 + r4s4 + r5s5︸ ︷︷ ︸
thread 2

+ r6s6 + r7s7 + r8s8︸ ︷︷ ︸
thread 3

Let n be the dimension, and p the number of threads:

m = n/p

are the number of terms summed up by each thread.

1 Thread i computes start and end index as (i − 1)m and i m − 1.

2 The i-th thread writes the result at a(i) of array a.

3 After all threads are done, the main thread adds up p numbers.
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Parallel Runs

1 The run in double precision took 826 milliseconds.

2 Running with double double arithmetic:
I With 1 thread: 17 seconds and 113 milliseconds.
I With 16 threads: 2 seconds and 187 milliseconds.

Speedup: 17.113/2.187 ≈ 7.8.

3 Running with quad double arithmetic:
I With 1 thread: 4 minutes, 38 seconds and 65 milliseconds.
I With 16 threads: 30 seconds and 860 milliseconds.

Speedup: 278.065/30.860 ≈ 9.0.

To obtain good speedups, increase the size of the problem
when increasing the number of threads.
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Comparing Running Times
between double and double double arithmetic

A computation in double double arithmetic takes about 20 times
longer than the same computation with double arithmetic.

A sequential run in double precision takes 826 milliseconds.
The running time in double double arithmetic with 16 threads
is 2 seconds and 187 milliseconds.

Compare 2.187/0.826 ≈ 2.6.

We doubled the precision in a little over twice the time.
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Quality Up
keeping the execution time fixed

quality up Q(p) =
quality on p processors
quality on 1 processor

= 2, what is p?

17.113

2.187

0.826

time

threads
1 16 p
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Linear Extrapolation
The line through (1,17.113) and (16,2.187) has equation

y − 17.113 =
17.113 − 2.187

1 − 16
(x − 1).

This line represents the execution time of parallel runs with x
processors in double double arithmetic.

We compute the number p for the execution time to be 0.826.

0.826 − 17.113 =

(
17.113 − 2.187

1 − 16

)
(p − 1).

or, solving for p, gives

p = 1 +

(
1 − 16

17.113 − 2.187

)
(0.826 − 17.113) = 17.368.
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scalability

How many processors do we need to afford multiple double precision?

The overhead of double double arithmetic can be offset
on shared memory parallel computers, using multithreading.

For quad double arithmetic, teraflop performance is required,
as available in graphics processing units.
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Car Manufacturing
Consider a simplified car manufacturing process in three stages:
(1) assemble exterior, (2) fix interior, and (3) paint and finish:

input sequence
c5 c4 c3 c2 c1 - P1

- P2
- P3

-

The corresponding space-time diagram is below:

- time

6
space

P1

P2

P3

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c5

c5

c5

After 3 time units, one car per time unit is completed.
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Speedup for n Inputs in a p-Stage Pipeline

Consider n inputs for a p-stage pipeline:

S(p) =
n × p

p + n − 1
.

For fixed number p of processors:

lim
n→∞

p × n
n + p − 1

= p.

Pipelining speeds up multiple sequences of heterogeneous jobs.

Pipelining is a functional decomposition method
to develop parallel programs.

Jan Verschelde (UIC) Multiple Double Arithmetic Ada Europe 2025, 10 June 5 / 22



Floating-Point Addition

A floating-point number consists of a sign bit,
an exponent and a fraction (or mantissa): ± e (11 bits) f (52 bits)

Floating-point addition could be done in 6 cycles:
1 unpack fractions and exponents
2 compare exponents
3 align fractions
4 add fractions
5 normalize result
6 pack fraction and exponent of result

Adding two vectors of n floats with 6-stage pipeline
takes n + 6− 1 pipeline cycles, instead of 6n cycles.
⇒ Capable of performing one flop per clock cycle.
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Objectives of the Tutorial

1 Realize that the pipelining is implicit in floating-point computations.

2 Understand to define the data to be simple enough for pipelining,
the multiple double arithmetic will remain memory bound.

3 Optimize code by avoiding branching.
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Vectors of Double Doubles

A double double x is stored as a record of two doubles: the high part
xhi and the low part x lo, represented by the tuple x =

(
xhi, x lo

)
.

An array of three double doubles is then:(
xhi

1 , x lo
1

) (
xhi

2 , x lo
2

) (
xhi

3 , x lo
3

)
An alternative representation is a tuple of two arrays:(

xhi
1 xhi

2 xhi
3 , x lo

1 x lo
2 x lo

3

)
The tuple of arrays representation has two benefits:

+ convenient to upgrade or downgrade the precision; and
+ enables efficient retrieval of the data arrays,

as the unpacking of records is avoided.
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Turning Inside Arithmetic to the Outside

To make multiple double arithmetic compute bound, and
in this way reduce the cost overhead, when working with arrays,
the arithmetic has to applied to the outer levels.

Consider complex multiplication ?, for i2 = −1:

(a + b i) ? (c + d i) = (ac − bd) + (ad + bc)i .

For two complex vectors x = a + b i and y = c + d i , computing
four componentwise products of real vectors ac, ad, ad, and bc
allows for efficient pipelining when computing inner products.
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Linearization

Working with truncated power series, computing modulo O(td ),
is doing arithmetic over the field of formal series C[[t ]].

Linearization: consider Cn[[t ]] instead of C[[t ]]n. Instead of a vector of
power series, we consider a power series with vectors as coefficients.

Solve Ax = b, A ∈ Cn×n[[t ]], b,x ∈ Cn[[t ]].

A = A0ta + A1ta+1 + · · · ,
b = b0tb + b1tb+1 + · · ·
x = x0tb−a + x1tb−a+1 + · · ·

where Ai ∈ Cn×n and bi ,xi ∈ Cn.
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Block Linear Algebra

Computing the first d terms of the solution of Ax = b:(
A0ta + A1ta+1 + A2ta+2 + · · ·+ Ad ta+d)
·
(
x0tb−a + x1tb−a+1 + x2tb−a+2 + · · ·+ xd tb−a+d)

= b0tb + b1tb+1 + b2tb+2 + · · ·+ bd tb+d .

Written in matrix format:
A0
A1 A0
A2 A1 A0
...

...
...

. . .
Ad Ad−1 Ad−2 · · · A0




x0
x1
x2
...

xd

 =


b0
b1
b2
...

bd

 .
If A0 is regular, then solving Ax = b is straightforward.
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Error Analysis
Solving (A0 + A1t + A2t2 + · · ·+ Ad td )(x0 + x1t + x2t2 + · · ·+ xd td )

= (b0 + b1t + b2t2 + · · ·+ bd td )
leads to a lower triangular block system:

A0
A1 A0
A2 A1 A0
...

...
...

. . .
Ad Ad−1 Ad−2 · · · A0




x0
x1
x2
...

xd

 =


b0
b1
b2
...

bd

 .

Cost to solve: O(n3) + O(dn2).

Let κ be the condition number of A0. Let ‖A0‖ = ‖x0‖ = 1, ‖xd‖ ≈ ρd .

In our context, ρ ≈ 1/R, where R is the convergence radius.

If ‖Ad‖ ≈ ρd , then
‖∆xd‖
‖xd‖

≈ κd+1εmach, and accuracy is lost.
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An Error Free Summation

Assuming all 64-bit doubles have the same exponent,
we work with 52-bit integers (fractions of the doubles).

Split a vector of doubles, add the parts, and then fuse the result:

=

+

+

+

= =�� b· · ·b b· · ·b

- - 0· · ·0 0· · ·0

- - + +0· · ·0 0· · ·0

...
...

...
...

- - + +0· · ·0 0· · ·0

If the number of additions does not exceed some threshold,
then we have sufficiently many zero bits left at the end of the numbers
to represent the result exactly, without any error.
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Vectored Inner Product with Double Double Arithmetic

Given are vectors x and y both of length n, of double double numbers,

we compute
n∑

k=1

xk ? yk , where ? is the double double multiplication.

The double double xk is represented by (xhi
k , x lo

k ), where the high
double xhi

k and the low double x lo
k of xk are splitted in quarters:

(

xhi
k

xk ,0, xk ,1, xk ,2, xk ,3,

x lo
k

xk ,4, xk ,5, xk ,6, xk ,7).

After splitting also yk , we compute in double arithmetic:

s0 =
n∑

k=1

xk ,0yk ,0, s1 =
n∑

k=1

xk ,1yk ,0 + xk ,0yk ,1, si =
n∑

k=1

i∑
j=0

xk ,jyk ,i−j ,

for i = 2, . . . ,7, add s0 + s1 + · · ·+ s7 in double double arithmetic.
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Balanced Quarters of Doubles

To examine the computational efficiency, random 64-bit doubles
are generated with a fraction of 52 bits in following pattern:

1 bb · · · b︸ ︷︷ ︸
12 bits

1 bb · · · b︸ ︷︷ ︸
12 bits

1 bb · · · b︸ ︷︷ ︸
12 bits

1 bb · · · b︸ ︷︷ ︸
12 bits

, b ∈ {0,1}.

Splitting such double into four leads to doubles with fractions

1b · · · b 00 · · · 0 00 · · · 0 00 · · · 0,
00 · · · 0 1b · · · b 00 · · · 0 00 · · · 0,
00 · · · 0 00 · · · 0 1b · · · b 00 · · · 0,
00 · · · 0 00 · · · 0 00 · · · 0 1b · · · b.

By virtue of the placement of the ones in the random fractions,
all quarters have fixed exponents, e.g.: 0, −13, −26, −39.

All doubles in a multiple double are generated according this pattern.
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Computational Results

Computing 1,024 times
6144∑
k=1

ak ? bk in increasing precision:

ordinary speedup vectorized

cpu time overhead
ordinary

vectorized
cpu time overhead

16d 40s 780ms 6.3x 4.3x 9s 491ms 6.2x
8d 6s 428ms 3.3x 4.2x 1s 520ms 4.8x
4d 1s 977ms 12.x 6.2x 318ms 4.6x
2d 158ms 13.x 2.3x 69ms 2.3x
1d 12ms 0.4x 30ms

Ran on an Intel Xeon 5318Y Ice Lake-SP, up to 3.40GHz,
256GB of internal memory at 3200MHz, GNU/Linux, Microway 2024,
compiled with GNAT 12.2.0, flags -O3 -gnatp -gnatf.
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Multithreading to Reduce Overhead

It takes 9 seconds for 1,024 inner products in hexa double precision.

Wall clock time: 9s 308ms, with 85ms for generating the vectors.

In a multithread computation, every thread does one inner product.

On two 24-core Intel Xeon 5318Y Ice Lake-SP, up to 3.40GHz,
256GB of internal memory at 3200MHz, GNU/Linux, Microway 2024,
compiled with GNAT 12.2.0, flags -O3 -gnatp -gnatf,
the wall clock time is 293 milliseconds, using 96 threads.

Comparing the 293 milliseconds to the 318 milliseconds with one
thread in quad double precision, we can quadruple the precision and
compute as fast as in quad double precision, using 96 threads,
achieving quality up.
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Staging Data for Matrix Multiplications

Postponing renormalizations of multiple doubles benefits the efficiency.

The code is at https://github.com/janverschelde/PHCpack.

The convolutions
n∑

k=1

i∑
j=0

xk ,jyk ,i−j allow to rewrite the inner products

in multiple double arithmetic as matrix multiplications in double
precision floating-point arithmetic, to prepare for better acceleration
with graphics processing units, in particular tensor cores.
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