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outline

Computing Singular Isolated Roots

(Outline of the Talk)

1. Problem: Newton fails for singular roots.

Our goal is to restore quadratic convergence.

2. Deflation Algorithm: add linear combinations of derivatives.

We rely on only one tolerance to determine the rank.

3. Why it works: #deflations < multiplicity.

The deflation reduces #monomials under the staircase.

4. Implementation and Examples: Reconditioning.

We use a directed acyclic graph of derivative operators.
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motivation

Singularities are keeping us in business

numerical analysis: bifurcation points and endgames

Rall (1966); Reddien (1978); Decker-Keller-Kelley (1983);

Griewank-Osborne (1981); Hoy (1989);

Deuflard-Friedler-Kunkel (1987); Kunkel (1989, 1996);

Morgan-Sommese-Wampler (1991); Li-Wang (1993, 1994);

Govaerts (2000).

computer algebra: standard bases (SINGULAR)

Mora (1982); Greuel-Pfister (1996)

numerical polynomial algebra: multiplicity structure

Möller-Stetter (1995); Mourrain (1997);

Stetter-Thallinger (1998); Dayton-Zeng (2005)

deflation: Ojika-Watanabe-Mitsui (1983); Lecerf (2003)
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motivation

A Motivating Example: cyclic 9-roots

The system

f(x) =







fi =
8∑

j=0

i∏

k=1

x(k+j)mod 9 = 0, i = 1, 2, . . . , 8

f9 = x0x1x2x3x4x5x6x7x8 − 1 = 0

has 333× 18 isolated regular zeros, 164 isolated 4-fold zeros,

and 6 cubic 2-dimensional irreducible solution components.

Newton’s method with 64 decimal places, tolerance is 10−60:

regular : 4 iterations (quadratic convergence)

4-fold : 79 iterations (> 1 step for one correct decimal place)

about 20 times slower to reach same magnitude of residual . . .
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motivation

Multiplicity of an Isolated Zero

An isolated zero of multiplicity m occurs in numerical

analysis as a cluster of m (ill-conditioned) regular zeros.

Problem: geometrical significance for overdetermined systems?

→ perturbed overdetermined system has no zeros!

Analogy with Univariate Case: z0 is m-fold zero of f(x) = 0:

f(z0) = 0,
∂f

∂x
(z0) = 0,

∂2f

∂x2
(z0) = 0, . . . ,

∂m−1f

∂xm−1
(z0) = 0

︸ ︷︷ ︸

m = number of linearly independent polynomials annihilating z0

.

The dual space D0 at z0 is spanned by m linear independent

differentiation functionals annihilating z0.

D0 is the multiplicity structure of the m-fold zero z0.
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motivation

A Simple Example

Consider

f(x, y) =







x2 = 0

xy = 0

y2 = 0

z0 = (0, 0).

The multiplicity of z0 is 3 because

D0 = span{∂00[z0], ∂10[z0], ∂01[z0]}

with

∂ij [z0] =
1

i!j!

∂i+j

∂xi∂yj
f(z0).

Solving means to compute z0 and D0.
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deflation algorithm

Newton’s Method for Overdetermined Systems

Singular Value Decomposition of N -by-n Jacobian matrix Jf :

Jf = UΣV T , U and V are orthogonal: UTU = IN , V
TV = In,

and singular values σ1 ≥ σ2 ≥ · · · ≥ σn as the only nonzero

elements on the diagonal of the N -by-n matrix Σ (N > n).

The condition number cond(Jf (z)) =
σ1

σn
.

Rank(Jf (z)) = R⇐⇒ Σ = diag(σ1, σ2, . . . , σR, 0, . . . , 0).

At a multiple root z0: Rank(Jf (z0)) = R < n.

Close to z0, z ≈ z0 : σR+1 ≈ 0, or |σR+1| < ε, ε is tolerance.

Moore-Penrose inverse: J+
f = V Σ+UT , with R = Rank(Jf ),

and Σ+ = diag( 1
σ1
, 1
σ2
, . . . , 1

σR
, 0, . . . , 0).

Then ∆z = −Jf (z)
+f(z) is the least squares solution.

Dedieu-Shub (1999); Li-Zeng (2005)
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deflation algorithm

Newton with Deflation – Simple Example revisited

f(x, y) =







x2 = 0

xy = 0

y2 = 0

Jf (x, y) =







2x 0

y x

0 2y







z0 = (0, 0),m = 3

Rank(Jf (z0)) = 0

A nontrivial linear combination of the columns of Jf (z0) is zero.

G(x, y, λ1, λ2) =







f(x, y) = 0






2x 0

y x

0 2y










λ1

λ2



 =







0

0

0







c1λ1 + c2λ2 = 1, random c1, c2 ∈ C

The system G(x, y, λ1, λ2) = 0 has (0, 0, λ∗1, λ
∗
2) as regular zero!
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deflation algorithm

Deflation Operator Dfl reduces to Corank One

Suppose Rank(Jf (z0)) = R for z0 an isolated zero of f(x) = 0.

Choose h ∈ CR+1 and B ∈ Cn×(R+1) at random.

Introduce R+ 1 new multiplier variables λ = (λ1, λ2, . . . , λR+1).

Dfl(f)(x,λ) :=







f(x) = 0

Jf (x)Bλ = 0

hλ = 1

Rank(Jf (x)) = R

⇓

corank(Jf (x)B) = 1

Theorem (Anton Leykin, JV, Ailing Zhao):

The number of deflations needed to restore the

quadratic convergence of Newton’s method converging

to an isolated solution is strictly less than the

multiplicity.
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deflation algorithm

Newton’s Method with Deflation#
"

Ã
!

Input: f(x) = 0 polynomial system;

x0 initial approximation for x∗;

ε tolerance for numerical rank.

?
[J+

f
, R] := SVD(Jf (xk), ε);

xk+1 := xk − J+

f
f(xk);

?PPPPPPP

³³³³³³³

PP
PP

PPP

³³
³³

³³³
R = #columns(Jf )?

Yes-
º
¹
·
¸Output: f ;xk+1.

?No

f := Dfl(f)(x, � ) =

�
�

�

f(x) = 0

G(x, � ) = 0
;

�
� := LeastSquares(G(xk+1, � ));

k := k + 1; xk := (xk,

�
� );

-
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deflation algorithm

cyclic 9-roots revisited

Recall:

f(x) =







fi =
8∑

j=0

i∏

k=1

x(k+j)mod 9 = 0, i = 1, 2, . . . , 8

f9 = x0x1x2x3x4x5x6x7x8 − 1 = 0

has 164 solutions of multiplicity 4.

One deflation suffices to restore quadratic convergence.

The condition number drops from 1.8E+9 to 5.6E+2.

→ deflation reconditions the system
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why it works

Two Staircases with Different Local Ordering

Example: I = 〈x3
1 + x1x

2
2, x1x

2
2 + x3

2, x
2
1x2 + x1x

2
2〉 in the

ring Q[x1, x2], x
∗ = 0, ω defines the monomial order.

via SINGULAR
6

-h
h
h

h
h
h

h
x
x

x
x

x1x
2
2 + x3

2

x2
1x2 + x1x

2
2

x3
1 + x1x

2
2

x4
2

ω = (−1,−2)
®

6

-h
h
h

h
h
h h
x
x
x
x

x1x
2
2 − x3

1

x2
1x2 + x1x

2
2

x3
2 + x1x

2
2

x4
1

ω = (−2,−1)¼

x: monomials generating inω(I) h: standard monomials

#standard monomials = multiplicity of x∗ = 7
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why it works

Standard Bases and Dual Space

Consider







x2
1 + 2x2

2 − 2x2 = 0

x1x
2
2 − x1x2 = 0

x3
2 − 2x2

2 + x2 = 0

from Möller-Stetter (1995).

z0 = (0, 0)

m0 = 2

D0 = span{∂00, ∂10}

6

-h h x
x

x2
1

x2

z1 = (0, 1) (shift to (0,0))

m1 = 3

D1 = span{∂00, ∂10, 2∂20 − ∂01}

6

-h h h x
x

x3
1

2x2 + x2
1

D[I] = D0 ∪D1
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why it works

Effect of Deflation on the Staircase

I = 〈f1 = x3
1 + x1x

2
2, f2 = x1x

2
2 + x3

2, f3 = x2
1x2 + x1x

2
2〉, λ = (1, 1).

J = 〈f1, f2, f3,
∂f1
∂x1

+ ∂f1
∂x2

, ∂f2
∂x1

+ ∂f2
∂x2

, ∂f3
∂x1

+ ∂f3
∂x2
〉 is a deflation of I.

6

-h
h
h

h
h
h

h
x

x
x

xx1x
2
2 + x3

2

x2
1x2 + x1x

2
2

x3
1 + x1x

2
2

x4
2

ω = (−1,−2)
®

⇒

6

-h
h
h
x
x
x

x2
1 + 4x1x2 + x2

2

x1x2 + 2x2
2

x2
2

ω = (−1,−2)
®

x: monomials generating inω(I) h: standard monomials

m = 7 -
deflation

m = 3
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why it works

One Deflation Step with fixed λ

• Assume corank(A(x∗)) = 1.

(reduce to this case with random combinations of columns)

• Let λ ∈ ker(A(x∗)), λ 6= 0,

then for gi(x) = λ · ∇fi =
n∑

j=1

λj
∂fi

∂xj
(x), we have: gi(x

∗) = 0.

Theorem:

The augmented system







f1 = f2 = · · · = fN = 0

g1 = g2 = · · · = gN = 0

has x∗ as isolated root of lower multiplicity.
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why it works

Proposition: Suppose m > 1 and let g ∈ B, a reduced standard

basis of I with respect to a local monomial ordering ≤, such

that g = xdi + lower order terms, for i ∈ {1, 2, . . . , n} and d > 1.

Then I ′ = I + 〈 ∂g
∂xi
〉 is a deflation of I.

Lemma: Take a nonzero vector λ ∈ kerA(0) ⊂ Cn and let

x = T (y) be a linear coordinate transformation such that

yi = λix1 +
n∑

j=2

µijxj , for i = 1, 2, . . . , n,

where y = (y1, . . . , yn) are the new variables and

[λ,µ2, . . . ,µn] is a nonsingular matrix.

Let T (I) = {f(T (y)) | f ∈ I} = 〈f1(T (y)), . . . , fN (T (y))〉 be

the ideal after the change of coordinates.

Then ∂1T (I) =
{

∂f
∂y1

| f ∈ T (I)
}

leads to a deflation of T (I).
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why it works

One Deflation Step with indeterminate λ

• Still assuming corank(A(x∗)) = 1.

• Denote G(x,λ) =







gi(x,λ) = λ · ∇fi(x) = 0

〈h,λ〉 = h1λ1 + h2λ2 + · · ·+ hnλn = 1.

Theorem:

Let x∗ ∈ Cn be an isolated singular root of f(x) = 0

with multiplicity m. There exists a unique λ∗ such

that







f(x) = 0

G(x, λ) = 0
has (x∗, λ∗) as isolated root of

multiplicity strictly less than m.
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why it works

Proof: Consider G(x,λ) = 0 in the local ring R∗ = C[x,λ]
(x∗,λ∗

)
.

Because G(x,λ) is linear in λ, specializing x = x∗ turns

G(x,λ) = 0 into a linear system with unique solution λ∗.

Using row operations in R∗,

reduce G(x,λ) to the form :







λ1 = a1(x)
...

λn = an(x)

where ai(x) are rational expressions (ai(x
∗) = λ∗i ).

multiplicity

of x∗ in







f(x) = 0

G(x,λ) = 0
⇔

multiplicity

of x∗ in







f(x) = 0

G(x,λ∗) = 0

local ring C[x,λ](x∗,λ∗

) local ring C[x](x∗)
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why it works

Computing the Multiplicity Structure

following B.H. Dayton and Z. Zeng

Looking for differentiation functionals d[z0] =
∑

a

ca∂a[z0],

with ∂a[z0](p) =
1

a1!a2! · · ·an!

(
∂a1+a2+···+an

∂xa1
1 ∂xa2

2 · · · ∂x
an
n
p

)

(z0).

Membership criterium for d[z0]:

d[z0] ∈ D0 ⇔ d[z0](pfi) = 0, ∀p ∈ C[x], i = 1, 2, . . . , N.

To turning this criterium into an algorithm, observe:

1. since d[z0] is linear, restrict p to xk = xk1
1 xk2

2 · · ·x
kn
n ; and

2. limit degrees k1 + k2 + · · ·+ kn ≤ a1 + a2 + · · ·+ an,

as z0 = 0 vanishes trivially if not annihilated by ∂a.
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why it works

Computing the Multiplicity Structure – An Example

f1 = x1 − x2 + x2
1, f2 = x1 − x2 + x2

2 following B.H. Dayton and Z. Zeng

|a|=0
��� � �

∂00

|a|=1

� � � �

∂10 ∂01

|a|=2

� � � �

∂20 ∂11 ∂02

|a|=3

� � � �

∂30 ∂21 ∂12 ∂03

f1

f2S1

x1f1

x1f2

x2f1

x2f2S2

x2
1f1

x2
1f2

x1x2f1

x1x2f2

x2
2f1

x2
2f2S3

0 1 –1 1 0 0 0 0 0 0
0 1 –1 0 0 1 0 0 0 0

0 0 0 1 –1 0 1 0 0 0
0 0 0 1 –1 0 0 0 1 0
0 0 0 0 1 –1 0 1 0 0
0 0 0 0 1 –1 0 0 0 1

0 0 0 0 0 0 1 –1 0 0

0 0 0 0 0 0 1 –1 0 0

0 0 0 0 0 0 0 1 –1 0

0 0 0 0 0 0 0 1 –1 0

0 0 0 0 0 0 0 0 1 –1

0 0 0 0 0 0 0 0 1 –1

Nullity(S2) = Nullity(S3) ⇒ stop algorithm
D0 = span{ ∂00, ∂10 + ∂01,−∂10 + ∂20 + ∂11 + ∂02 } ⇒ multiplicity = 3
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why it works

cyclic 9-roots once more

Recall:

f(x) =







fi =

8∑

j=0

i∏

k=1

x(k+j)mod 9 = 0, i = 1, 2, . . . , 8

f9 = x0x1x2x3x4x5x6x7x8 − 1 = 0

has 164 solutions of multiplicity 4.

Running the algorithm of Dayton and Zeng:

H[1] = 1,H[2] = 2,H[3] = 1,H[4] = 0,

with H[i] = Nullity(Si)−Nullity(Si−1), i > 0,

so we compute the multiplicity as 4.
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software & results

Avoiding Expression Swell

Evaluation of A(x)B: for efficiency we must first replace x by

values before the matrix multiplication.

Triangular block structure of Jacobian matrix: for example:













A 0 0
(
∂A
∂x

)
B(1)λ1 AB(1) 0

0 h(1) 0
(
∂A(1)

∂x

)

B(2)λ2

(
∂A(1)

∂λ1

)

B(2)λ2 A(1)B(2)λ2

0 0 h(2)













.

Multipliers occur linearly: compute derivatives only with

respect to x, not with respect to λ.
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software & results

A Directed Acyclic Graph of Derivative Operators

A3(x, � 1, � 2, � 3)

©©©©©©¼

¡
¡
¡ª ?

@
@
@R

A2(x, � 1, � 2)
∂A2
∂x

∂A2

∂ � 1

∂A2

∂ � 2

?

@
@
@R

HHHHHHj

Q
Q
Q
QQs

PPPPPPPPPq?

HHHHHHj

¡
¡

¡¡ª

©©©©©©©¼
A1(x, � 1)

∂A1
∂x

∂A1

∂ � 1

∂2A1
∂x

2
∂2A1

∂x∂ � 1

¢
¢
¢®

@
@
@R ?

@
@
@R

¡
¡
¡ª

¡
¡
¡ª

A
A
AU

©©©©©©¼
A(x) ∂A

∂x

∂2A
∂x

2
∂3A
∂x

3
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software & results

Numerical Results (double float)

System n m D corank(A(x)) Inverse Condition# #Digits

baker1 2 2 1 1 → 0 1.7e-08 → 3.8e-01 9 → 24

cbms1 3 11 1 3 → 0 4.2e-05 → 5.0e-01 5 → 20

cbms2 3 8 1 3 → 0 1.2e-08 → 5.0e-01 8 → 18

mth191 3 4 1 2 → 0 1.3e-08 → 3.5e-02 7 → 13

decker1 2 3 2 1 → 1 → 0 3.4e-10 → 2.6e-02 6 → 11

decker2 2 4 3 1 → 1 → 1 → 0 4.5e-13 → 6.9e-03 5 → 16

decker3 2 2 1 1 → 0 4.6e-08 → 2.5e-02 8 → 17

ojika1 2 3 2 1 → 1 → 0 9.3e-12 → 4.3e-02 5 → 12

ojika2 3 2 1 1 → 0 3.3e-08 → 7.4e-02 6 → 14

ojika3 3 2 1 1 → 0 1.7e-08 → 9.2e-03 7 → 15

4 1 2 → 0 6.5e-08 → 8.0e-02 6 → 13

ojika4 3 3 2 1 → 1 → 0 1.9e-13 → 2.4e-04 6 → 11

cyclic9 9 4 1 2 → 0 5.6e-10 → 1.8e-03 5 → 15
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conclusion

What is Symbolic-Numeric Computing?

A puristic point of view:

Computer algebra rewrites the problem, producing “easier”

equations of the ideal, but “easier” 6= numerically better.

Numerical analysis produces approximate numbers for a fixed

system of equations, but many problems are “ill-posed”.

The synergistic approach:

Symbolic-Numeric Computing rewrites an ill-conditioned

numerical problem into a well-conditioned formulation.

works very well in Newton’s method with deflation
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