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Numerically Solving Polynomial Systems
problems and methods in numerical algebraic geometry

Numerical algebraic geometry applies numerical analysis
to problems in algebraic geometry.

Algebraic geometry studies solutions of polynomial systems,
therefore the main problem is to solve polynomial systems.

Numerical analysis is concerned with the efficiency and accuracy
of mathematical algorithms using floating-point arithmetic.

Three levels of solving a polynomial system:
1 focus on the isolated complex solutions
2 output contains also positive dimensional solution sets
3 a numerical primary decomposition
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Why use numerical analysis?
costs and benefits of the numerical approach

Computational algebraic geometry mainly uses symbolic computing:

resultants and Gröbner bases are well developed,

already excellent software tools in computer algebra,

exact computations are more trustworthy.

Two benefits of numerical analysis:

accepts approximate input, offers sensitivity analysis

many “real-world” applications have approximate input data
approximating algebraic numbers leads to speedups as well

pleasingly parallel algorithms for high performance computing

with Python possible to do interactive parallel computing
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Three References
most relevant for this talk

1 Tien-Yien Li: Numerical solution of polynomial systems by
homotopy continuation methods. In Volume XI of Handbook of
Numerical Analysis, pp. 209–304, 2003.

2 Andrew J. Sommese and Charles W. Wampler:
The Numerical Solution of Systems of Polynomials Arising in
Engineering and Science. World Scientific, 2005.

3 Anton Leykin: Numerical Primary Decomposition.
arXiv:0801.3105v2 [math.AG] 29 May 2008.
To appear in the proceedings of ISSAC 2008.
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Zero Dimensional Solving
specification of input and output

Input: f (x) = 0, x = (x1, x2, . . . , xn), f = (f1, f2, . . . , fn) ∈ (C[x])n.

The polynomial system f (x) = 0 has as many equations as unknowns.

In the output of a numerical zero dimensional solver
we expect to find two types of solutions in C

n:
1 regular: Jacobian matrix is of full rank,
2 multiple: some isolated solutions coincide.

But we may find also two other types of solutions:
1 at infinity: if we have fewer solutions than expected,
2 on component: if we have more solutions than expected.
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Solving Simpler Systems
to get to the expected number of isolated complex solutions

How many isolated complex solutions do we expect?

Apply the method of degeneration:
1 Bézout:

→ deform equations into products of linear equations
2 Bernshteı̌n, Kushnirenko, Khovanskiı̌:

→ deform system into initial binomial systems

Embed the target problem into a family of similar problems.

Solve the simpler systems and follow paths of solutions starting at the
solutions of the simpler systems to the solutions of the target problem.
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Tracking Solution Paths
using predictor-correct methods

Given is a family of systems: h(x, t) = 0, a homotopy.

A typical form of a homotopy to solve f (x) = 0 is

h(x, t) = (1 − t)g(x) + t f (x) = 0,

where g(x) = 0 is a simpler good system.
The parameter t is an artificial continuation parameter.

Three key algorithmic ingredients:
1 Newton’s method
2 predictor-corrector methods
3 endgames to deal with singularities
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Puiseux Series in Endgames
Solving f (x) = 0 using start system g(x) = 0:

h(x, t) = (1 − t)g(x) + t f (x) = 0, t → 1.

Puiseux series of x(t): h(x(t), t) ≡ 0:{
xi(s) = bisvi (1 + O(s)) bi ∈ C

∗ = C \ {0}, vi ∈ Z

t(s) = 1 − sω s → 0, t → 1

Fractional powers if the winding number ω > 1.

Observe how the leading exponents vi determine xi(s):

vi < 0 : xi(s) → ∞, vi = 0 : xi(s) → bi , vi > 0 : xi(s) → 0.

Compute vi : log(|xi(s1)|) = log(|bi |) + vi log(s1),
log(|xi(s2)|) = log(|bi |) + vi log(s2), extrapolate.
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Solutions of Initial Forms
Substitute xi(s) = bisvi (1 + O(s)) into f (x) = 0.

fk (x) =
∑
a∈Ak

caxa, Ak is support of fk .

Substitute xi(s) into xa = xa1
1 xa2

2 · · · xan
n :

n∏
i=1

(xi(s))ai =
n∏

i=1

(bi)
ai sa1v1+a2v2+···+anvn(1 + O(s)).

As s → 0, those monomials that matter are those for
which a1v1 + a2v2 + · · · + anvn = 〈a, v〉 is minimal.

inv(fk ) =
∑

a ∈ Ak

〈a, v〉 is minimal

caxa vanishes at (b1, b2, . . . , bn).

Jan Verschelde (UIC) Numerical Algebraic Geometry AMS MRC June 21-27 2008 10 / 30



A Simple Example
but a difficult one for basic numerical methods

f (x , y) =


x2 = 0
xy = 0
y2 = 0

(0, 0) is an isolated root
of multiplicity 3

Randomization or Embedding:

{
x2 + γ1y2 = 0
xy + γ2y2 = 0

or


x2 + γ1z = 0
xy + γ2z = 0
y2 + γ3z = 0,

where γ1, γ2, γ3 ∈ C are random numbers and z is a slack variable,
raises the multiplicity from 3 to 4!
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Deflation for Isolated Singular Solutions
restoring quadratic convergence of Newton’s method

input: f (x) = 0 a polynomial system;
x∗ an approximate solution: f (x∗) ≈ 0

Stage 1: recondition the problem

output: G(x,λ) = 0 an extension to f ;
(x∗,λ∗) is a regular solution: G(x∗,λ∗) = 0 ⇒ f (x∗) = 0.

Stage 2: compute the multiplicity

input: g(x) = 0 a “good” system for x∗

Newton converges quadratically starting from x∗.
Apply algorithms of [Dayton & Zeng, 2005]
or [Bates, Peterson & Sommese, 2006].

output: a quadratically convergent method to refine x∗

and the multiplicity structure of x∗
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Deflation Operator Dfl reduces to Corank One

Consider f (x) = 0, N equations in n unknowns, N ≥ n.

Suppose Rank(A(z0)) = R < n for z0 an isolated zero of f (x) = 0.

Choose h ∈ C
R+1 and B ∈ C

n×(R+1) at random.
Introduce R + 1 new multiplier variables λ = (λ1, λ2, . . . , λR+1).

Dfl(f )(x,λ) :=


f (x) = 0
A(x)Bλ = 0

hλ = 1

Rank(A(x)) = R
⇓

corank(A(x)B) = 1

The operator Dfl is used recursively if necessary, note:
(1) # times bounded by multiplicity
(2) symbolic implementation easy, but leads to expression swell
(3) exploiting the structure for evaluation is efficient
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The Simple Example – with deflation
reconditioning the multiple solution

f (x , y) =


x2 = 0
xy = 0
y2 = 0

Jf (x , y) =

 2x 0
y x
0 2y

 z0 = (0, 0), m = 3
Rank(Jf (z0)) = 0

A nontrivial linear combination of the columns of Jf (z0) is zero.

F (x , y , λ1) =


f (x , y) = 0 2x 0

y x
0 2y

[ b11

b21

]
λ1 =

 0
0
0

 , random b11, b21

h1λ1 = 1, random h1 ∈ C

The system F (x , y , λ1) = 0 has (0, 0, λ∗
1) as regular zero!
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Newton’s Method with Deflation�
�

�
�

Input: f (x) = 0 polynomial system;
x0 initial approximation for x∗;
ε tolerance for numerical rank.

�
[A+, R] := SVD(A(xk ), ε);
xk+1 := xk − A+f (xk );

Gauss-Newton

��������

�������

�������

�������R = #columns(A)?
Yes�
�
�
�
�Output: f ; xk+1.

�No

f := Dfl(f )(x, λ) =

{
f (x) = 0

G(x, λ) = 0 ; Deflation Step

λ̂ := LeastSquares(G(xk+1,λ));
k := k + 1; xk := (xk , λ̂);

�
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Multiplicity of an Isolated Zero via Duality
Analogy with Univariate Case: z0 is m-fold zero of f (x) = 0:

f (z0) = 0,
∂f
∂x

(z0) = 0,
∂2f
∂x2 (z0) = 0, . . . ,

∂m−1f
∂xm−1 (z0) = 0︸ ︷︷ ︸

m = number of linearly independent polynomials annihilating z0

.

The dual space D0 at z0 is spanned by m linear independent
differentiation functionals annihilating z0.

Consider again f (x , y) =


x2 = 0
xy = 0
y2 = 0

�

�	
	
	 






x2

xy

y2

The multiplicity of z0 = (0, 0) is 3 because

D0 = span{∂00[z0], ∂10[z0], ∂01[z0]}, with ∂ij [z0] =
1

i!j!
∂ i+j

∂xi∂yj f (z0).
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Computing the Multiplicity Structure
following B.H. Dayton and Z. Zeng, ISSAC 2005

Looking for differentiation functionals d [z0] =
∑

a

ca∂a[z0],

with ∂a[z0](p) =
1

a1!a2! · · · an!

(
∂a1+a2+···+an

∂xa1
1 ∂xa2

2 · · · ∂xan
n

p

)
(z0).

Membership criterium for d [z0]:

d[z0] ∈ D0 ⇔ d[z0](pfi) = 0, ∀p ∈ C[x], i = 1, 2, . . . , N.

To turning this criterium into an algorithm, observe:
1 since d [z0] is linear, restrict p to xk = xk1

1 xk2
2 · · · xkn

n ; and
2 limit degrees k1 + k2 + · · · + kn ≤ a1 + a2 + · · · + an,

as z0 = 0 vanishes trivially if not annihilated by ∂a.
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Computing the Multiplicity Structure – An Example

f1 = x1 − x2 + x2
1 , f2 = x1 − x2 + x2

2 following B.H. Dayton and Z. Zeng

|a|=0︷︸︸︷
∂00

|a|=1︷ ︸︸ ︷
∂10 ∂01

|a|=2︷ ︸︸ ︷
∂20 ∂11 ∂02

|a|=3︷ ︸︸ ︷
∂30 ∂21 ∂12 ∂03

f1
f2S1

x1f1
x1f2
x2f1
x2f2S2
x2

1 f1
x2

1 f2
x1x2f1
x1x2f2

x2
2 f1

x2
2 f2S3

0 1 –1 1 0 0 0 0 0 0
0 1 –1 0 0 1 0 0 0 0
0 0 0 1 –1 0 1 0 0 0
0 0 0 1 –1 0 0 0 1 0
0 0 0 0 1 –1 0 1 0 0
0 0 0 0 1 –1 0 0 0 1
0 0 0 0 0 0 1 –1 0 0
0 0 0 0 0 0 1 –1 0 0
0 0 0 0 0 0 0 1 –1 0
0 0 0 0 0 0 0 1 –1 0
0 0 0 0 0 0 0 0 1 –1
0 0 0 0 0 0 0 0 1 –1

Nullity(S2) = Nullity(S3) ⇒ stop algorithm
D0 = span{ ∂00, ∂10 + ∂01,−∂10 + ∂20 + ∂11 + ∂02 } ⇒ multiplicity = 3
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Numerical Irreducible Decomposition
specification of input and output

Input: f (x) = 0, x = (x1, x2, . . . , xn), f = (f1, f2, . . . , fN) ∈ (C[x])N .

The #equations N may differ from n, the #unknowns.

A numerical irreducible decomposition consists of
1 for every dimension: a description of sets of solutions,
2 for every pure dimensional solution set: its decomposition in

irreducible components.

The output is summarized in the following numbers
1 for every dimension: the degree of the solution set,
2 for every pure dimensional solution set: the degrees of all

irreducible components, and their multiplicities.
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Positive Dimensional Solution Sets
represented numerically by witness sets

Given a system f (x) = 0, we represent
a component of f −1(0) of dimension k and degree d by

k general hyperplanes L to cut the dimension; and

d generic points in f −1(0) ∩ L.

Witness set representations reduce to isolated solutions,
with continuation methods we sample solution sets.

Using a flag of linear spaces, defined by an decreasing sequence of
subsets of the k general hyperplanes,

C
n ⊃ Ln−1 ⊃ · · · ⊃ L1 ⊃ L0 = ∅,

we move solutions with nonzero slack values to generic points on
lower dimensional components, using a cascade of homotopies.
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Example of a Homotopy in the Cascade

To compute numerical representations of the twisted cubic and the four
isolated points, as given by the solution set of one polynomial system,
we use the following homotopy:

H(x, z1, t) =


 (x2

1 − x2)(x1 − 0.5)
(x3

1 − x3)(x2 − 0.5)
(x1x2 − x3)(x3 − 0.5)

 + t

 γ1

γ2

γ3

 z1

t (c0 + c1x1 + c2x2 + c3x3) + z1

 = 0

At t = 1: H(x, z1, t) = E(f )(x, z1) = 0.
At t = 0: H(x, z1, t) = f (x) = 0.

As t goes from 1 to 0, the hyperplane is removed from the system,
and z1 is forced to zero.
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Computing a Numerical Irreducible Decomposition

input: f (x) = 0 a polynomial system with x ∈ C
n

Stage 1: represent the k-dimensional solutions Zk , k = 0, 1, . . .

output: sequence [W0, W1, . . . , Wn−1] of witness sets
Wk = (Ek , E−1

k (0) \ Jk ), deg Zk = #(E−1
k (0) \ Jk )

Ek = f + k random hyperplanes, Jk = “junk”

Stage 2: decompose Zk , k = 0, 1, . . . into irreducible factors

output: Wk = {Wk1, Wk2, . . . , Wknk
}, k = 1, 2, . . . , n − 1

nk irreducible components of dimension k

output: a numerical irreducible decomposition of f −1(0)
is a sequence of partitioned witness sets
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The Riemann Surface of z − w3 = 0:

-2

-1

0 Re(z)

1-1.5
-2

-1

-1

-0.5

Re(z^1/3)

0

0

1
2

0.5

2Im(z)

1

1.5

Loop around the singular point (0,0) permutes the points.
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Generating Loops by Homotopies

WL represents a k-dimensional solution set of f (x) = 0, cut out by k
random hyperplanes L. For k other hyperplanes K , we move WL to
WK , using the homotopy hL,K ,α(x, t) = 0, from t = 0 to 1:

hL,K ,α(x, t) =

(
f (x)

α(1 − t)L(x) + tK (x)

)
= 0, α ∈ C.

The constant α is chosen at random, to avoid singularities, as t < 1.
To turn back we generate another random constant β, and use

hK ,L,β(x, t) =

(
f (x)

β(1 − t)K (x) + tL(x)

)
= 0, β ∈ C.

A permutation of points in WL occurs only among points on the same
irreducible component.
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Linear Traces as Stop Criterium

Consider

f (x , y(x)) = (y − y1(x))(y − y2(x))(y − y3(x))
= y3 − t1(x)y2 + t2(x)y − t3(x)

We are interested in the linear trace: t1(x) = c1x + c0.
Sample the cubic at x = x0 and x = x1. The samples are
{(x0, y00), (x0, y01), (x0, y02)} and {(x1, y10), (x1, y11), (x1, y12)}.

Solve

{
y00 + y01 + y02 = c1x0 + c0

y10 + y11 + y12 = c1x1 + c0
to find c0, c1.

With t1 we can predict the sum of the y ’s for a fixed choice of x .
For example, samples at x = x2 are {(x2, y20), (x2, y21), (x2, y22)}.
Then, t1(x2) = c1x2 + c0 = y20 + y21 + y22.
If �=, then samples come from irreducible curve of degree > 3.
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Linear Traces – an example

f−1(0)
x0

�
y00

�
y01

�
y02

x1�
y10

�
y11

�
y12

x2�
y20

�
y21�
y22

Use {(x0, y00), (x0, y01), (x0, y02)} and {(x1, y10), (x1, y11), (x1, y12)}
to find the linear trace t1(x) = c0 + c1x .
At {(x2, y20), (x2, y21), (x2, y22)}: c0 + c1x2 = y20 + y21 + y22?
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Numerical Primary Decomposition
specification of input and output

Input: f (x) = 0, x = (x1, x2, . . . , xn), f = (f1, f2, . . . , fN) ∈ (C[x])N .

Consider the ideal I generated by the polynomials in f .

The output of a numerical primary decomposition is
a list of irreducible components:
→ each component is a solution set of an associated prime ideal
in the primary decomposition of I,

Each component contains

an indication whether embedded or isolated
– isolated means: not contained in another component,

its dimension, degree, and multiplicity structure,

sufficient information to solve the ideal membership problem.
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Deflation reveals Embedded Components
Anton Leykin, ISSAC 2008

Embedded components become visible after deflation.

Let I = 〈f1, f2, . . . , fN〉, ∂k = ∂
∂xk

, k = 1, 2, . . . , n.

The first order deflation matrix of I is

A(1)
I (x) =


f1 ∂1f1 ∂2f1 · · · ∂nf1
f2 ∂1f2 ∂2f2 · · · ∂nf2
...

...
...

. . .
...

fN ∂1fN ∂2fN · · · ∂nfN


Consider A(1)

I (x)aT , where a = (a0, a1, a2, . . . , an) in C[x, a].

Compute a numerical irreducible decomposition to the deflated ideal
I(1) = 〈A(1)

I (x)aT 〉 and apply (x, a) �→ x to the result.
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An Example

Consider I = 〈x2, xy〉 = 〈x〉 ∩ 〈x2, y〉.
We see the embedded point (0, 0) = V (〈x 2, y〉) after one deflation:

A(1)
I (x , y) =

[
x2 2x 0
xy y x

]
.

The deflated ideal is

I(1) = 〈x2, xy , a12x , a1y + a2x〉.

Computing V (I (1)) via its radical:√
I(1) = 〈x , ya1〉 = 〈x , a1〉 ∩ 〈x , y〉.
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Summary
a complexity classification

We considered three types of solving:

1 zero dimensional solving
typically one single homotopy
parallel implementations allow tracking of millions of paths

2 numerical irreducible decomposition
need to add extra linear equations
different homotopies used after each other

3 numerical primary decomposition
one deflation doubles the dimension
numerical irreducible decomposition is blackbox
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