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the cyclic 4-roots system

The equations for the cyclic 4-roots problem are

f(x) =


x1 + x2 + x3 + x4 = 0

x1x2 + x2x3 + x3x4 + x4x1 = 0
x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2 = 0

x1x2x3x4 − 1 = 0.

This system has two solution curves of degree two.
There are no isolated solutions.

Lemma (Backelin’s Lemma)

If n has a quadratic divisor, n = `k2, ` < k,
then there are (k − 1)-dimensional cyclic n-roots.

Cases we can do are n = 8,9,12, n = 16 is still too hard.
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the cyclic 5-roots system

The equations for the cyclic 5-roots problem are

f(x) =


x1 + x2 + x3 + x4 + x5 = 0

x1x2 + x2x3 + x3x4 + x4x5 + x5x1 = 0
x1x2x3 + x2x3x4 + x3x4x5 + x4x5x1 + x5x1x2 = 0

x1x2x3x4 + x2x3x4x5 + x3x4x5x1 + x4x5x1x2 + x5x1x2x3 = 0
x1x2x3x4x5 − 1 = 0.

70 isolated solutions, no positive dimensional solutions.

Theorem (Uffe Haagerup)

If n = p, a prime, the number of cyclic p-roots equals
(

2p − 2
p − 1

)
.

For n = 6,7,10,11,13, the number of cyclic n-roots equals
respectively 156, 924, 34900, 184756, 2704156.
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biunimodular vectors

A biunimodular vector u ∈ Cn of a unitary matrix A:
1 all coordinates of u have modulus one: |ui | = 1, and
2 for v = Au, |vi | = 1, i = 1,2, . . . ,n.

This notion dates back to Gauss.

A complex Hadamard matrix H of size n:
1 all entries are complex numbers with modulus one, and
2 H∗H = nI, where I is the identity matrix.

There is a one-to-one correspondence between cyclic n-roots
and circulant Hadamard matrices.

Conjecture (Bjöck and Saffari)
If n is not divisible by a square, then the set of cyclic n-roots is finite.
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Solving Polynomial Systems with PHCpack and phcpy
PHCpack is software for Polynomial Homotopy Continuation
phcpy is a new Python package, available at www.phcpack.org

use case from the phcpy tutorial:

reproduces J. Mech. Design paper
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solving polynomial systems numerically

What does numerically solving a polynomial system mean?
The input data may be given with limited accuracy.
The output is approximate.

A polynomial in several variables consist of
exact data: exponents span its Newton polytope; and
approximate data: coefficients, parameter values.

Based on the exact data (the exponents) we compute an upper bound
on the number of solutions.

At the end of the numerical computations, we verify whether the
number of solutions matches the apriori computed upper bound.
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parameter continuation schematic in C
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polynomial homotopy continuation

f(x) = 0 is a polynomial system we want to solve,
g(x) = 0 is a start system (g is similar to f) with known solutions.

A homotopy h(x, t) = γ(1− t)g(x) + t f(x) = 0, t ∈ [0,1], γ ∈ C,
to solve f(x) = 0 defines solution paths x(t): h(x(t), t) ≡ 0.

Numerical continuation methods track the paths x(t), from t = 0 to 1.

Newton’s method is the most computationally intensive stage:
1 Evaluation and differentiation of all polynomials in the system.
2 Solve a linear system for the update to the approximate solution.

Bootstrapping to solve a start system g(x) = 0:
Random coefficients of g imply that all solutions are regular.
Polyhedral homotopies deform g to 2-nomial systems.
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the gamma trick

A homotopy h(x, t) = γ(1− t)g(x) + t f(x) = 0 deforms the
polynomials in the start system g(x) = 0 to the polynomials in the
system f(x) = 0 that has to be solved, as t goes from zero to one.

The constant γ ∈ C is generated at random.

1 For t = 0, h(x,0) = g(x) = 0 has only regular solutions.
2 The number of solutions of g(x) = 0 equals the upper bound,

is maximal for all systems in the homotopy h(x, t) = 0.

The main theorem in elimination theory states that, in projective space,
the projection of an algebraic set is again an algebraic set.

Consider the discriminant variety of h(x, t) = 0, eliminate x.
After elimination, the polynomial p(t) = 0 has its roots where the
solutions of h(x, t) = 0 are singular. Because p(0) 6= 0, p 6≡ 0 and
there are only finitely many singularities in the complex plane.
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optimal homotopies

Exploiting the structure correctly is critical for the performance of a
homotopy. We say that a homotopy is optimal if every solution path
converges to a solution of a generic instance of the problem.

We have optimal homotopies for three classes of systems:

1 Linear-product start systems in linear homotopies.
Given a polynomial in several variables, deform the polynomial to
a product of linear factors.

2 Polyhedral homotopies for sparse polynomial systems.
The sparsest kind of systems have two monomials with nonzero
coefficient in every equation.

3 Pieri homotopies and Littlewood-Richardson homotopies for
Schubert problems in enumerative geometry.
Given four lines in three space, compute all lines which meet the
four given lines in a point.
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a totem pole of homotopies
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Newton polytopes and mixed volumes
recognizing the sparse structure of a polynomial system

Most polynomials have few nonzero coefficients:

f (x) =
∑
a∈A

caxa, ca 6= 0, xa = xa1
1 xa2

2 · · · x
an
n .

The support A of f spans the Newton polytope P = ConvHull(A).
P = (P1,P2, . . . ,Pn) collects the Newton polytopes of a system f .
Remember the principle of conservation of number (classical)
or coefficient-parameter polynomial continuation (numerical):

Nc = the number of solutions for generic coefficients c.

Bernshteı̌n’s theorem (1975): Nc depends only on P.

In particular: Nc = V (P), the mixed volume of P.
Special case: P = P1 = P2 = · · · = Pn: Nc = n!volume(P).
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the theorems of Bernshteı̌n

Mixed volumes relate volume to surface area:

Vn(P1,P2, . . . ,Pn) =
∑

v

p1(v) Vn−1(invP2, . . . , invPn),

v ∈ Zn, gcd(v) = 1, p1(v) = min
x∈P1
〈x,v〉 is a support function

invPk = { x ∈ Pk | 〈x,v〉 = pk (v) } is a face of Pk .

Theorem A: The number of roots of a generic system equals
the mixed volume of its Newton polytopes.

Theorem B: Solutions at infinity are solutions of systems
supported on faces of the Newton polytopes.

Jan Verschelde (UIC) Solving Polynomial Systems 1 February 2019 18 / 44



polygons in general position

The system

f(x) =

{
c1,(1,1)x1x2 + c1,(1,0)x1 + c1,(0,1)x2 + c1,(0,0) = 0

c2,(2,2)x2
1 x2

2 + c2,(1,0)x1 + c2,(0,1)x2 = 0.

has Newton polygons:

t
(0,0)

t(0,1) t(1,1)t
(1,0)

P1 t
(1,0)

t(0,1)

t(2,2)
�
�
�
�

@
@

��
��

P2

∀v 6= 0 : #invA1 +#invA2 ≤ 3⇒ V (P1,P2) = 4 is always exact,

for all nonzero coefficients of f, because ≥ 4 monomials are needed
for invf(x) = 0 to have all its roots in (C∗)2.
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polyhedral homotopies
constructive proofs of Bernshteı̌n’s theorems

Polyhedral homotopies implement Bernshteı̌n’s theorems.

An effective complement to the cheater’s homotopy.

The methods are optimal in the sense that every solution path
converges to an isolated solution . . .

. . . provided the system is sufficiently generic.

Jan Verschelde (UIC) Solving Polynomial Systems 1 February 2019 20 / 44



Solving Polynomial Systems

1 Introduction
polynomial systems
PHCpack and phcpy

2 Polynomial Homotopy Continuation
solving polynomial systems numerically
exploiting sparse structures

3 Numerical Irreducible Decomposition
witness sets
cascades of homotopies
computational experiments

4 Parallel and Cloud Computing
speedup and quality up
web interfaces

Jan Verschelde (UIC) Solving Polynomial Systems 1 February 2019 21 / 44



numerical algebraic geometry
Introduced in 1995 as a pun on numerical linear algebra.

In numerical algebraic geometry, we apply homotopy continuation to
compute positive dimensional solutions of polynomial systems.

Four homotopies compute a numerical irreducible decomposition:
1 Cascade homotopies compute generic points on all solution

components, over all dimensions.
2 A homotopy membership test decides whether a given point

belongs to a component of the solution set.
3 Monodromy loops factor pure dimensional solution sets into

irreducible components.
4 A diagonal homotopy intersects solution sets.

The data structure to represent a solution set is a witness set:
1 a polynomial system augmented with random linear equations;
2 solutions of the augmented system are generic points.
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an illustrative example

Consider the following polynomial system:
(x2 + y2 + z2 − 1)(y − x2)(x − 0.5) = 0
(x2 + y2 + z2 − 1)(z − x3)(y − 0.5) = 0
(x2 + y2 + z2 − 1)(z − xy)(z − 0.5) = 0

In factored form, we read off the solutions:
dimension = 2: the sphere,
dimension = 1: the twisted cubic and three lines,
dimension = 0: one isolated point.
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a sphere, the twisted cubic, an isolated point
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a witness set for the sphere
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a witness set for the twisted cubic
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a random line will miss the twisted cubic
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a random line will intersect the sphere
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witness sets

To compute the degree of the twisted cubic, consider

E(f)(x) =


x2 − x2

1 = 0
x3 − x3

1 = 0
c0 + c1x1 + c2x2 + c3x3 = 0

c0, c1, c2, c3 ∈ C,

where c0, c1, c2, and c3 are random numbers.
The substitution x2 = x2

1 and x3 = x3
1 in the last equation shows that

the degree of f−1(0) equals three.

A witness set for a k -dimensional solution set consists of
k hyperplanes with random coefficients; and
the set of d isolated solutions on those hyperplanes.

Because the hyperplanes are random, all d isolated solutions are
generic points and d is the degree of the set.
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an example

Consider the system

f(x) =


(x2

1 − x2)(x1 − 0.5) = 0
(x3

1 − x3)(x2 − 0.5) = 0
(x1x2 − x3)(x3 − 0.5) = 0

The solutions of the system f(x) = 0 are
the twisted cubic, a one dimensional solution set; and
four isolated points.

Can we compute all solutions with one homotopy?
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a cascade homotopy

To compute numerical representations of the twisted cubic and the four
isolated points, use

h(x, z1, t)

=


 (x2

1 − x2)(x1 − 0.5)
(x3

1 − x3)(x2 − 0.5)
(x1x2 − x3)(x3 − 0.5)

 + t

 γ1
γ2
γ3

 z1

t (c0 + c1x1 + c2x2 + c3x3) + z1

 = 0.

At t = 1: h(x, z1, t) = E1(f)(x, z1) = 0.

At t = 0: h(x, z1, t) = f(x) = 0.

As t goes from 1 to 0, the hyperplane is removed from the embedded
system, and z1 is forced to zero.
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a superwitness set cascade

Summarizing the progress of the path tracking:

13 paths - 0 paths to infinity
3 solutions with z1 = 0
10 solutions with z1 6= 0

- W1 witness set

?

10 paths - 1 path to infinity
9 converging paths - Ŵ0 witness superset

Starting with 13 paths of the embedded system,
the cascade produces three witness points for the cubic
and 9 points which may be isolated or lie on the cubic.
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regularity results

Theorem (superwitness set generation)
For an embedding Ei(f)(x, z) of f(x) = 0 with i random hyperplanes
and i slack variables z = (z1, z2, . . . , zi),
we have

1 solutions with z = 0 contain deg W generic points on every
i-dimensional component W of f(x) = 0;

2 solutions with z 6= 0 are regular; and
3 the solution paths defined by the cascading homotopy starting at

t = 0 with all solutions with zi 6= 0
reach at t = 1 all isolated solutions of Ei−1(f)(x, z) = 0.
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an algorithm
Input: f(x) = 0 a polynomial system;

d the top dimension of f−1(0).
Output: Ŵ = [Ŵd , Ŵd−1, . . . , Ŵ0]

super witness sets for all dimensions.
V := Solve(Ed(f)(x, z) = 0);
for k from d down to 1 do

Ŵk := { (x, z) ∈ V | z = 0 };
V := { (x, z) ∈ V | zk 6= 0 };
if V = ∅ then return Ŵ ;

else h(x, z, t) := (1− t)Ek (f)(x, z) + t
(
Ek−1(f)(x, z)

zk

)
;

V := { (x, z) | h(x, z,1) = 0 };
end if;

end for;
Ŵ0 := { (x, z) ∈ V | z = 0 }.
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solving cyclic 8- and cyclic 9-roots systems

Both cyclic 8 and cyclic 9-roots are relatively small problems.

Wall clock times in seconds with phc -B -tp for p threads:

cyclic 8-roots cyclic 9-roots
p seconds speedup seconds speedup
1 181.765 1.00 2598.435 1.00
2 167.871 1.08 1779.939 1.46
4 89.713 2.03 901.424 2.88
8 47.644 3.82 427.800 6.07

16 32.215 5.65 267.838 9.70
32 22.182 8.19 153.353 16.94
64 20.103 9.04 150.734 17.24

With 64 threads, we can solve the cyclic 9-roots problem faster
than solving the cyclic 8-roots problem on one thread.
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running in double double and quad double precision

Double double and quad double arithmetic are implemented in QDlib,
a software library by Y. Hida, X. S. Li, and D. H. Bailey, 2001.

In double precision, with 64 threads, the time
for cyclic 8-roots reduces from 3 minutes to 20 seconds and
for cyclic 9-roots from 43 minutes to 2 minutes and 30 seconds.

The wall clock times below are with 64 threads in higher precision.

cyclic 8-roots cyclic 9-roots
seconds = hms format seconds = hms format

dd 53.042 = 53s 498.805 = 8m19s
qd 916.020 = 15m16s 4761.258 = 1h19m21s

With 64 threads, we can compensate for the computational overhead
caused by double double precision and achieve quality up.

Jan Verschelde (UIC) Solving Polynomial Systems 1 February 2019 38 / 44



solving the cyclic 12-roots system in parallel
The wall clock time on the blackbox solver on one thread is about 95 hours
(almost 4 days), which includes the linear-product bound.
The time reduces from 4 days to less than 3 hours with 64 threads:

solving top system cascade and filter grand
p start contin total cascade filter total total speedup
2 62813 47667 110803 44383 2331 46714 157518 1.00
4 21181 25105 46617 24913 1558 26471 73089 2.16
8 8933 14632 23896 13542 946 14488 38384 4.10

16 4656 7178 12129 6853 676 7529 19657 8.01
32 4200 3663 8094 3415 645 4060 12154 12.96
64 4422 2240 7003 2228 557 2805 9808 16.06

The solving of the top dimensional system breaks up in two stages:
the solving of a start system (start) and the
continuation to the solutions of the top dimensional system (contin).

Speedups are good in the cascade, but the filtering contains the factorization
in irreducible components, which does not run in parallel.

Jan Verschelde (UIC) Solving Polynomial Systems 1 February 2019 39 / 44



running in double double precision

A run in double double precision with 64 threads ends
after 7 hours and 37 minutes.

This time lies between the times in double precision
with 8 threads, 10 hours and 39 minutes, and
with 16 threads, 5 hours and 27 minutes.

Confusing quality with precision, from 8 to 64 threads,
the working precision can be doubled,
with a reduction in time by 3 hours, from 10.5 hours to 7.5 hours.
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parallel granularity

Quality up: how much better are the results on p processors
if we can afford the same amount of wall clock time?

1 Distributed Memory Parallel Programming with Message Passing.
Solutions paths are distributed in a manager/worker paradigm,
using dynamic load balancing.

2 Shared Memory Parellel Programming with Multithreading.
A number of threads collaborate in a work crew model:
+ granularity can be much finer, less overhead;
− thread safety is a concern, careful with memory management.

3 Acceleration on Graphics Processing Units (GPU):
I memory bound up to real double double arithmetic,
I compute bound starts at complex double double arithmetic.
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phcpy in a SageMath kernel of a Jupyter notebook

• Code snippets suggest
typical applications, and
guide the novice user.
• Solve polynomials

by pointing and clicking.
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