# University of Illinois at Chicago

#### **0.** Motivation

Apply polyhedral homotopies to polynomial system arising in mechanisms design. Special structure: not so sparse but still mixed volume < degree bounds Five basic joints:

| Revolute. | R | Prismatic.  | Ρ | Cylindric <sup>.</sup> | C | Universal  | Т | S        | pherical. | S        |
|-----------|---|-------------|---|------------------------|---|------------|---|----------|-----------|----------|
|           | Ν | 1 115matic. | T | Cymunc.                | C | Universal. | T | <b>N</b> | phoneal.  | <b>D</b> |

| <b>Basic chains</b> | Surface           | Total deg | LPD bound | Mixvol  |
|---------------------|-------------------|-----------|-----------|---------|
| PRS                 | elliptic cylinder | 2,097,152 | 247,968   | 125,888 |
| RRS                 | circular torus    | 2,097,152 | 868,352   | 474,112 |
| RRS                 | general torus     | 4,194,304 | 448,702   | 226,512 |



Figure 4.4: The elliptic cylinder reachable by a PRS serial chain.



Figure 4.8: The general torus reachable by the wrist center of an RRS serial chain.

#### **1.** Three Stages to Solve a Polynomial system $f(\mathbf{x}) = 0$

1. Compute mixed volume of the Newton polytopes spanned by the supports of f

- 2. Solve a random coefficient start system  $g(\mathbf{x}) = 0$  which has the same monomials as with random coefficients and has exactly mixed volume isolated solutions.
- 3. Use  $(1 t)g(\mathbf{x}) + tf(\mathbf{x}) = 0$  to solve  $f(\mathbf{x}) = 0$ .
- Stages 2 and 3 are computationally most intensive  $(1 \ll 2 < 3)$ .

#### **References**

- [1] H.-J. Su, J.M. McCarthy, and L.T. Watson. Generalized linear product homotopy algorithms and the computation of reachable surfaces. ASME Journal of Information and Computer Sciences in Engineering, 2004.
- [2] H.-J. Su, C.W. Wampler, and J.M. McCarthy. Geometric design of cylindric **PRS serial chains** ASME Journal of Mechanical Design, 2004.

## **Parallel Implementation of the Polyhedral Homotopy Method**

### Jan Verschelde and Yan Zhuang

email: jan@math.uic.edu

#### 2. Statio

Since poly same amo

| Work La<br>hedral hom<br>int of work                                                                                                                               | oad Balancin<br>notopies solve a g                                                                                                                                                                                                                | generic sys                                               | tem, we ex                                                         | pect every path to take the                                                              | <b>3. Dyn</b><br>For poly<br>load bal                      | namic W<br>ynomials v<br>lancing is r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>ork Lo</b><br>which are<br>needed.                                                               | ad Bala<br>not so s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a <b>no</b><br>par                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| lgorithm: $\Delta_{\omega}$ , <b>put:</b> $\Delta_{\omega}$ , <b>utput:</b> $G^{-}$                                                                                | Sketch of a paral $G(\mathbf{x}) = 0$ .mixed $-1(0)$ .                                                                                                                                                                                            | llel version<br>- <i>cell con£g</i>                       | of polyhe<br>guration and<br>all solut                             | dral homotopies.<br>In d generic system<br>ions to $G(\mathbf{x}) = 0$                   | Algorith<br>Input                                          | hm: Dynar<br>t: $\triangle_{\omega}, V, p$<br>ut: $G^{-1}(0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nic distril                                                                                         | oution of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ce<br>m                                      |
| Manag<br>read inpu<br>broadcast<br>distribute<br>collect solu<br>write to                                                                                          | gerWorkat £ledata $\rightarrow$ receivecells $\rightarrow$ receivetrack putions $\leftarrow$ send sol£le                                                                                                                                          | xers<br>e data constant<br>cells state<br>oaths<br>utions | lata = syst<br>atic worklo<br>compute                              | em and lifting<br>oad distribution<br>e solutions                                        | if #△<br>distr<br>else<br>distr<br>distr<br>distr          | $\Delta_{\omega} \leq p$ then<br>the the formula of $V$ pathesis of $V$ pathe | n<br>hs;<br>orst $\# \triangle_{\omega}$<br>ast cell;                                               | - 1 cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | >,                                           |
| ice the stati                                                                                                                                                      | ic distribution of                                                                                                                                                                                                                                | the cells w                                               | vith an exa                                                        | mple.                                                                                    | Algorit                                                    | hm: Dynan $\cdot C(\mathbf{x}) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nic distril                                                                                         | oution of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ce.                                          |
| manager                                                                                                                                                            | r worker                                                                                                                                                                                                                                          | 1 w                                                       | orker 2                                                            | worker 3                                                                                 |                                                            | • $G(\mathbf{X}) = \mathbf{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>J</b> , V .                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |
| <pre>'ol(cell 1) = 'ol(cell 2) = 'ol(cell 3) = 'ol(cell 4) = 'ol(cell 5) = 'ol(cell 5) = 'ol(cell 6) = 'ol(cell 7) = 'ol(cell 8) = otal #paths for start sys</pre> | $= 5 \qquad \text{cell 1 : } \\ = 4 \qquad \text{cell 2 : } \\ = 4 \qquad \text{cell 3 : } \\ = 6 \qquad \text{cell 4 : } \\ = 7 \\ = 3 \\ = 4 \\ = 8 \\ \hline \hline \text{: 41 } \text{ track paths} \\ \text{stems to solve the} \end{cases}$ | 5 $4$ $1$ $ce$ $ce$ $ce$ $ce$ $ce$ $ce$ $ce$ $ce$         | ell 4 : 5<br>ell 5 : 7<br>ell 6 : 2<br>a paths : 14<br>-roots prob | cell 6 : 1<br>cell 7 : 4<br>cell 8 : 8<br>track paths : 13<br>lems, using a cluster con- | recei<br>creat<br>solve<br>track<br>send<br><b>end d</b> e | ive C;<br>te polyhedr<br>e the start s<br>c paths;<br>solutions t<br>o.<br>speedup on<br>#workers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | al homot<br>system $\widehat{G}_{0}$<br>to manage<br>the cycli<br><b>Static ve</b><br><b>Static</b> | opy $\widehat{G}_C(\mathbf{x}) =$<br>$C(\mathbf{y}, 0) =$<br>er;<br>$C(\mathbf{y}, 0) =$<br>$C(\mathbf{y}, 0) =$<br>C | <b>y</b> , {<br>= <b>0</b> ;<br>= <b>0</b> ; |
| with 13 wo                                                                                                                                                         | orkers, with static                                                                                                                                                                                                                               | load distri                                               | ibution.                                                           |                                                                                          |                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.7021                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |
|                                                                                                                                                                    | Problem                                                                                                                                                                                                                                           | <b>#Paths</b>                                             | CPU Ti                                                             | me                                                                                       |                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24.51/2                                                                                             | $\begin{array}{c c} 2.1 \\ 2.9 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |
|                                                                                                                                                                    | cyclic 6-roots                                                                                                                                                                                                                                    | 156                                                       | 0.1                                                                | 19m                                                                                      |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.303U                                                                                             | 2.0<br>3 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |
|                                                                                                                                                                    | cyclic 7-roots                                                                                                                                                                                                                                    | 924                                                       | 0                                                                  | 30m                                                                                      |                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.6913                                                                                             | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |
|                                                                                                                                                                    | cyclic 8-roots                                                                                                                                                                                                                                    | 2,560                                                     | 0.7                                                                | 78m                                                                                      |                                                            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.3779                                                                                             | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |

We introd

| <b>c Work L</b><br>yhedral hom<br>ount of work                                                                                                                       | oad Balancin<br>otopies solve a g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>g</b><br>generic sys                                                                                                     | tem, we expec                                                                                  | ct every path to take the                                                                               | <b>3. Dynamic W</b><br>For polynomials v<br>load balancing is 1                                                                                                                                                       | <b>ork Los</b><br>which are<br>needed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ad Bala<br>not so s                                      | ano<br>spai                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------|
| Algorithm: S<br>Input: $\triangle_{\omega}$ , (<br>Output: $G^-$<br>Manage<br>read input<br>broadcast<br>distribute<br>collect solut<br>write to a<br>luce the stati | Sketch of a paral<br>$G(\mathbf{x}) = 0.mixed$<br>$^{1}(0).$<br><b>er</b> Work<br>t file<br>data $\rightarrow$ receive<br>cells $\rightarrow$ receive<br>track p<br>stions $\leftarrow$ send sol<br>file<br>c distribution of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ilel version         -cell con£g         -cell con£g $cers$ $cers$ $cells$ $sta$ $cells$ $sta$ $oaths$ $utions$ $the cells$ | of polyhedra<br>guration and g<br>all solution<br>data = system<br>atic workload<br>compute so | I homotopies.<br>generic system<br>as to $G(\mathbf{x}) = 0$<br>and lifting<br>distribution<br>blutions | Algorithm: Dynar<br>Input: $\triangle_{\omega}, V, p$<br>Output: $G^{-1}(0)$<br>if $\# \triangle_{\omega} \leq p$ then<br>distribute $V$ particles<br>else<br>distribute the factorial<br>end if.<br>Algorithm: Dynar | nic distribution<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br>$\frac{1}{n}$<br> | oution of                                                | ce<br><i>m</i><br>5;<br>ce           |
| manager                                                                                                                                                              | worker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 w                                                                                                                         | orker 2                                                                                        | worker 3                                                                                                | $\frac{\text{Input: } G(\mathbf{x}) = 0}{\mathbf{d}0}$                                                                                                                                                                | <b>J</b> , <i>V</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          |                                      |
| Vol(cell 1) =<br>Vol(cell 2) =<br>Vol(cell 3) =<br>Vol(cell 4) =<br>Vol(cell 5) =<br>Vol(cell 6) =<br>Vol(cell 7) =                                                  | = 5 	 cell 1 : 4 	 cell 2 : 4 	 cell 2 : 4 	 cell 3 : 4 	 cell 3 : 4 	 cell 4 	 cell 4 : 4 	 c | 5<br>4<br>1 c<br>c<br>c                                                                                                     | ell 4 : 5<br>ell 5 : 7<br>ell 6 : 2                                                            | cell 6 : 1<br>cell 7 : 4<br>cell 8 : 8                                                                  | receive <i>C</i> ;<br>create polyhedr<br>solve the start s<br>track paths;<br>send solutions<br>end do.                                                                                                               | cal homoto<br>system $\widehat{G}_{\alpha}$<br>to manage<br>the cycli<br>Static ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | opy $\widehat{G}_C(\mathbf{y}, 0) =$<br>er;<br>c 7-roots | <b>y</b> , {<br>= <b>0</b> ;<br>5 pr |
| total #paths :                                                                                                                                                       | : 41 track paths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | : 14 track                                                                                                                  | t paths : 14 tr                                                                                | rack paths : 13                                                                                         | #workers                                                                                                                                                                                                              | Static                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Speedur                                                  |                                      |
| e for start sys                                                                                                                                                      | stems to solve the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | he cyclic $n$                                                                                                               | -roots probler                                                                                 | ns, using a cluster con-                                                                                |                                                                                                                                                                                                                       | 50.7021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          |                                      |
| i witii 15 woi                                                                                                                                                       | Droblom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{\text{#Detha}}{\text{HDetha}}$                                                                                       |                                                                                                |                                                                                                         | 2                                                                                                                                                                                                                     | 24.5172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.1                                                      |                                      |
| _                                                                                                                                                                    | Problem<br>avalia 6 reata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             | CPU IIme                                                                                       |                                                                                                         | 3                                                                                                                                                                                                                     | 18.3850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.8                                                      | ]                                    |
| -                                                                                                                                                                    | cyclic o-roots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{130}{024}$                                                                                                           | 0.191                                                                                          | $\frac{\Pi}{n}$                                                                                         | 4                                                                                                                                                                                                                     | 14.6994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.4                                                      | ]                                    |
| -                                                                                                                                                                    | cyclic & roots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 724<br>2560                                                                                                                 | 0.301                                                                                          | $\frac{11}{n}$                                                                                          | 5                                                                                                                                                                                                                     | 11.6913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.3                                                      | ]                                    |
|                                                                                                                                                                      | cycne 0-10018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>4,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                               | U. / OL                                                                                        | 11                                                                                                      | 6                                                                                                                                                                                                                     | 10.2770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                       |                                      |

Wall time £guration

| Problem         | <b>#Paths</b> | CPU Time |
|-----------------|---------------|----------|
| cyclic 6-roots  | 156           | 0.19m    |
| cyclic 7-roots  | 924           | 0.30m    |
| cyclic 8-roots  | 2,560         | 0.78m    |
| cyclic 9-roots  | 11,016        | 3.64m    |
| cyclic 10-roots | 35,940        | 21.33m   |
| cyclic 11-roots | 184,756       | 2h 39m   |
| cyclic 12-roots | 500,352       | 24h 36m  |



#### **More References**

- [3] H.-J. Su, J.M. McCarthy, M. Sosonkina, and L.T. Watson. Algorithm 8xx: POL-SYS\_GLP:A parallel general linear product homotopy code for solving poly**nomial systems of equations.** To appear in ACM Trans. Math. Softw.
- [4]T.Gao, T.Y.Li and M.Wu Algorithm 846: MixedVol: A software package for mixed volume computation. ACM Trans. Math. Softw., 2005.
- [5]Takayuki Gunji, Sunyoung Kim, Katsuki Fujisawa and Masakazu Kojima **PHoMpara-Parallel Implementation of Polyhedral Homotopy Continuation** Method for Polynomial Systems. Computing Volume 77, Issue 4 2006.
- [6]J. Verschelde Algorithm 795: PHCpack: A general-purpose solver for poly**nomial systems by homotopy continuation.** ACM Trans. Math. Softw., 1999.
- [7]J. Verschelde and Y. Zhuang Parallel implementation of the polyhedral homotopy method. *Proceedings of HPSEC 2006.*

yzhuan1@math.uic.edu

Wall time for mechanism design problems on our cluster and argo.

5.2

6.5

6.8

7.3

7.7

7.9

9.6877

7.8157

7.5133

6.9154

6.5668

6.4407

5.1462 9.8

8

10

12

10 13

|                   | Boun      | ds on #Soluti | ons     | dynamic load distribution |              |  |
|-------------------|-----------|---------------|---------|---------------------------|--------------|--|
| Surface           | Total deg | LPD bound     | Mixvol  | our cluster               | time on argo |  |
| elliptic cylinder | 2,097,152 | 247,968       | 125,888 | 11h 33m                   | 6h 12m       |  |
| circular torus    | 2,097,152 | 868,352       | 474,112 | 7h 17m                    | 4h 3m        |  |
| general torus     | 4,194,304 | 448,702       | 226,512 | 14h 15m                   | 6h 36m       |  |

#### 4. Conclusion

A static work load distribution provides already a decent speedup of the polyhedral homotopies on a cluster computer for "small" or very sparse system. However, for polynomial systems which are not so sparse as the mechanisms design problems, dynamic load balancing is needed.

### cing

rse as mechanisms design problems, dynamic

ells executed by the manager.

nixed-cell configuration, volume, #processors all solutions to  $G(\mathbf{x}) = \mathbf{0}$ *distribute path by path* 

> distribute cell by cell *distribute path by path*

ells executed by all the workers. **Output:** a subset of  $G^{-1}(\mathbf{0})$ .

receive cell

s) = 0; perform coordinate transformation one linear system to solve track Vol(C) paths or just one path message to manager reporting results

#### roblem for an increasing number of workers

|          |            | 0       |         |
|----------|------------|---------|---------|
| nic on o | ur cluster | Dynamic | on argo |
| ynamic   | Speedup    | Dynamic | Speedup |
| 53.0707  |            | 29.2389 |         |
| 25.3852  | 2.1        | 15.5455 | 1.9     |
| 7.6367   | 3.0        | 10.8063 | 2.7     |
| 2.4157   | 4.2        | 7.9660  | 3.7     |
| 0.3054   | 5.1        | 6.2054  | 4.7     |
| 9.3411   | 5.7        | 5.0996  | 5.7     |
| 8.4180   | 6.3        | 4.2603  | 6.9     |
| 7.4337   | 7.1        | 3.8528  | 7.6     |
| 6.8029   | 7.8        | 3.6010  | 8.1     |
| 5.7883   | 9.2        | 3.2075  | 9.1     |
| 5.3014   | 10.0       | 2.8427  | 10.3    |
| 4.8232   | 11.0       | 2.5873  | 11.3    |
| 4.6894   | 11.3       | 2.3224  | 12.6    |