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problem statement

+ Parallel computers are fast,
+ and can solve large problems,
− but the propagation of roundoff errors increases,
− and the hardware supports only double precision.

Quality Up: If we can afford the same time time as on a sequential run,
how much can we improve the quality of the results on a parallel run?

Specific for this talk: compensate for the cost overhead of
multiple double precision arithmetic with parallel computations.
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software libraries for multiple double arithmetic

Y. Hida, X. S. Li, and D. H. Bailey:

Algorithms for quad-double precision floating point arithmetic.
In the Proceedings of the 15th IEEE Symposium on Computer
Arithmetic, pages 155–162, 2001.

M. Joldes, J.-M. Muller, V. Popescu, and W. Tucker:

CAMPARY: Cuda Multiple Precision Arithmetic Library and
Applications.
In Mathematical Software – ICMS 2016, the 5th International
Conference on Mathematical Software, pages 232-240,
Springer-Verlag, 2016.
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error free transformations

Computing the 2-norm of a vector of dimension 64
of random complex numbers on the unit circle equals 8.
Observe the second double of the multiple double 2-norm.

double double : 8.00000000000000E+00 - 6.47112461314111E-32
triple double : 8.00000000000000E+00 + 1.78941597340672E-48
quad double : 8.00000000000000E+00 + 3.20475411419393E-65
penta double : 8.00000000000000E+00 + 2.24021706293649E-81
octo double : 8.00000000000000E+00 - 9.72609915198313E-129
deca double : 8.00000000000000E+00 + 3.05130075600701E-161
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multiple double operation count
for 2, 3, 4, 5, 8, and 10 double arithmetic

double double triple double quad double
+ − ∗ / + − ∗ / + − ∗ /

add 8 12 13 22 35 54
mul 5 9 9 83 84 42 99 164 73
div 33 18 16 3 113 214 63 4 266 510 112 5

penta double octo double deca double
+ − ∗ / + − ∗ / + − ∗ /

add 44 78 95 174 139 258
mul 162 283 109 529 954 259 952 1743 394
div 474 898 175 6 1599 3070 448 9 2899 5598 700 11
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the software package PHCpack

PHC stands for Polynomial Homotopy Continuation.
phc -b is a blackbox solver for polynomial systems.
ACM Transactions on Mathematical Software archived version 1.0
in 1999. The code is developed with the GNU Ada compiler.
Ada works well for a large research software package.
Its multitasking is effective and convenient to define in code.
Use of multitasking on multicore processors was described in the
proceedings of PASCO 2010 (PASCO = Parallel Symbolic
Computation) in a joint paper with Genady Yoffe.
NSF Award 1440534 of the SI2-SSE program led to the
acquisition of a CentOS Linux workstation with 256 GB RAM
and two 22-core 2.2 GHz Intel Xeon E5-2699 processors.
Under this award, PHCpack was further developed into a
Sustainable Software Element, available on github.
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Parallel Newton

One step of Newton’s method requires
1 evaluation and differentiation, and
2 the solution of a linear system.

Consider f(x) = 0 as a system of polynomials in several variables,
with coefficients as truncated power series in the variable t .

We compute x(t) a power series solution to f(x) = 0,
starting at a point x(0) = z, x(t) = z + x1t + x2t2 + · · · .

With linearization, instead of vectors and matrices of power series,
we consider power series with vectors and matrices as coefficients.
(Joint with Nathan Bliss, Linear Algebra and Its Applications, 2018.)

Now we can make our problem statement more specific . . .
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error analysis of a lower triangular block Toeplitz solver
joint with Simon Telen and Marc Van Barel, in the CASC 2020 proceedings

Solving (A0 + A1t + A2t2 + · · ·+ Ai t i)(x0 + x1t + x2t2 + · · ·+ xi t i)
= (b0 + b1t + b2t2 + · · ·+ bi t i)

leads to a lower triangular block system:
A0
A1 A0
A2 A1 A0
...

...
...

. . .
Ai Ai−1 Ai−2 · · · A0




x0
x1
x2
...
xi

 =


b0
b1
b2
...
bi

 .

Let κ be the condition number of A0. Let ‖A0‖ = ‖x0‖ = 1, ‖xi‖ ≈ ρi .
In our context, ρ ≈ 1/R, where R is the convergence radius.

If ‖Ai‖ ≈ ρi , then
‖∆xi‖
‖xi‖

≈ κi+1εmach, and accuracy is lost.

With multiple double precision, a small εmach gives accurate results.
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medium grained parallelism

With multiple double arithmetic, programs become compute bound.

One job takes at least several minutes.

A crew of worker tasks processes a queue of jobs.

Medium grained parallelism is applied:

1 To evaluate and differentiate a system of polynomials,
one job is concerned with one polynomial.

2 The block triangular linear system is solved with pipelining.
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computational experiments

Runs done on a CentOS Linux workstation with 256 GB RAM and two
22-core 2.2 GHz Intel Xeon E5-2699 processors.

Generated polynomial systems of
64 polynonomials with 64 monomials per polynomial,
considered power series of degrees 8, 16, 32, and
reported efficiencies for 2, 4, 8, 16, 32, and 40 worker threads.

Efficiency = speedup divided by the number of worker threads.
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power series of degree 8
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power series of degree 16
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power series of degree 32
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conclusions

As programs become compute bound with multiple double arithmetic,
the efficiencies improve already significantly in triple double precision.

However, the efficiency is limited by the medium grained parallelism.

The Ada 202X parallel features look a promising development
to overcome this limitation.
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