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problem statement

The problem:
Solve a polynomial system on a computer with multicore processors.

@ What does solve mean?

» compute a numerical irreducible decomposition,
» in blackbox mode: fixed algorithms, tolerances, and parameters.

© What type of shared memory parallelism?

» pipelining to interlace root counting with path tracking,
» multithreading: apply dynamic load balancing to path trackers.

Focus on one benchmark: the cyclic n-roots problems, n = 12.

Free and Open Source Software: QDlib, MixedVol, DEMiCs, PHCpack.
https://github.com/janverschelde/phcpack

Extend blackbox solver in PHCpack: phc -B —tp, with p threads.
phc -B -t88 cyclic12 cyclic12.out
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the cyclic 4-roots system

what is a polynomial system?
The equations for the cyclic 4-roots problem are
X1 +X2+X3+X4:0
X1Xo + XoX3 + X3Xq + X4X1 =0
f(x) = 1X2 + X2X3 + X3gX4 + XaXq

X1 XoX3 + XoX3X4 + X3XaX1 + XgX1X2 =0
X1XoX3Xq4 — 1=0.

This system has two solution curves of degree two.
There are no isolated solutions. Our focus ison n =8,9,12.

Lemma (Backelin’s Lemma)

If n has a quadratic divisor, n = (k®, { < K,
then there are (k — 1)-dimensional cyclic n-roots.

H. Fihr and Z. Rzeszotnik: On biunimodular vectors of unitary matrices.
Linear Algebra and its Applications 484: 86—129, 2015.

Jan Verschelde (UIC) Parallel Polynomial Homotopy Continuation ICIAM 2019, 17 July 5/28



the embedded cyclic 4-roots system

how to represent solution curves?

To compute generic points on the solution curves, the system
is augmented by one linear equation and one slack variable z;.

X{+Xo+ X3+ Xg+7121 =

X1X2 + XoX3 + X3X4 + X4 X1 + Y221 =

E; (f(X), Z1) = X1 XoX3 + XoX3X4 + X3X4X1 + X4 X1 X2 + V324 =
X1 XoX3X4 — 1+ Y421 =

Co+ CiXq1 + CoXo + C3X3 +CsXq4 +29 =

coooo

The constants Y15 Y25 V3y V4 and Co, C1, C2, C3, C4
are randomly generated complex numbers.

The 4 solutions with z; = 0 are generic points on the solution curves.
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polyhedral homotopies in parallel

Polyhedral homotopies solve sparse polynomial systems.

@ The mixed volume provides a generically sharp root count.
@ Polyhedral homotopies track as many paths as the mixed volume.

The Bézout bound for the cyclic 12-roots problem is 479,001,600.
A linear-product bound lowers this to 342,875,319.
The mixed volume of the cyclic 12-roots system equals 500,352.
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a 2-stage pipeline

The input to the pipeline is a random coefficient system g(x) = 0
and the output are its solutions in the set g='(0).

g(x) = 0 g0

A 2-stage pipeline:

@ thread P, computes the cells which define paths; and

© p—1threads Py, P, ..., P,_4 track paths to solve g(x) = 0.

Jan Verschelde (UIC) Parallel Polynomial Homotopy Continuation ICIAM 2019, 17 July 10/28



a space time diagram
Suppose the subdivision of the Newton polytopes has six cells.
For regularity, assume

@ producing one cell takes one time unit; and

@ solving a start system takes 3 time units.
P,

3 33 33 83 86 Ss SG‘
2 32 82 32 85 85 85
1
0

S1|S51|S1[S54|S4|54

Cq| C2| C3|C4|C5| Ce ot
T 2 3 4 5 6 7 8 9

A space time diagram for a 2-stage pipeline:
@ one thread produces 6 cells Cy, Co, ..., Cg; and
© 3 threads solve 6 start systems S;, So, ..., Ss.

The total time equals 9 units. It takes 24 time units sequentially.
This pipeline with 4 threads gives a speedup of 24/9 ~ 2.67.
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speedup

Consider a scenario with p threads:
@ the first thread produces n cells; and
@ the other p — 1 threads track all paths corresponding to the cells.

Assume that tracking all paths for one cell costs F times the amount of
time it takes to produce that one cell.
The sequential time Ty, parallel time Tp, and speedup S, are

Fn S—E— n(1+F)
p T p_71+pFTn1.

Ty =n+ Fn, Tp:p—1+p_1,

The pipeline latency is p — 1, the time to fill up the pipeline with jobs.

Theorem
IftF =p—1,then S, = p for n — oo. J
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times with pipelined polyhedral homotopies

We run phc on a two 22-core 2.20 GHz processors.

Times of the pipelined polyhedral homotopies
on the embedded cyclic 12-roots system, 983,952 paths,
for increasing values 2, 4, 8, 16, 32, 64 of the tasks p:

p | seconds = hmsformat | speedup
2 62812.764 = 17h26mb2s 1.00
4 21181.058 5h53m01s 2.97
8 8932.512 2h28m53s 7.03
16 4656.478 1h17m36s 13.49
32 4200.362 1h10mO1s 14.95
64 4422.220 = 1h13m42s 14.20

The mixed volume computation is done by Mixedvol,
ACM TOMS Algorithm 846 of T. Gao, T.Y. Li, and M. Wu.
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dynamic enumeration for mixed cells

DEMicCs of T. Mizutani and A. Takeda computes all mixed cells
in a greedy manner, at a faster pace than Mixedvol.

Times of the pipelined polyhedral homotopies with DEMICs,
on the embedded cyclic 12-roots system, 983,952 paths,
for increasing values 2, 4, 8, 16, 32, 64 of tasks p.

p | seconds = hmsformat | speedup
2 56614 = 15h43m34s 1.00
4 21224 = 5h53m44s 2.67
8 9182 = 2h23m44s 6.17
16 4627 = 1h17m07s 12.24
32 2171 = 36m1iis 26.08
64 1989 = 33m09s 28.46

The last time is an average over 13 runs. With 64 threads the times
ranged between 23 minutes and 47 minutes.
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an example

Consider the following system:

(x1 = D(x1 =2)(x —3)(xs —4) =0
f) = 4 (= le = 1)0e—2)0e ~3) =0
(x1 =1)(x1 =2)(x3 —1)(x3—2)=0
(x1 = 10 = 1)(6 — 1)(xs = 1) = 0.

In its factored form, the numerical irreducible decomposition shows:
@ The three dimensional solution set is defined by x; = 1.

@ For xy = 2, xo, = 1 defines a two dimensional solution set.
© There are twelve lines:

0 (2727)(37 1 )s (2723 1,X4), (2733 1,X4), (2733)(37 1 ):
9 (37 1 y 1,X4), (37 1 ) 2,X4), (372a 17X4); (373a 17X4),
e (47 1 ) 17X4)l (47 1 B 27X4)’ (4723 17X4)a (4733 17X4)'
© 4 isolated points: (3,2,2,1), (3,3,2,1), (4,3,2,1), (4,2,2,1).
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the top dimensional system

Because the top dimension is three, three random hyperplanes
and three slack variables z;, z,, z3 are added:

([ (1 = 1)(x1 = 2)(x1 =3)(X1 —4) + 71121 + V1222 + 71323 =0
(x1 = 1)(x2 = 1)(x2 — 2)(X2 — 3) + 72,121 + 12222 + 72323 =0
(x1 = 1)(x1 =2)(x3 — 1)(X3 = 2) + 73,121 + 73222 + 73323 =0
(x1 =1)(x2 = 1)(x3 = 1)(Xa = 1) + 72,121 + 74222 + 14323 =0

C1,1X4 + Ci2Xo + C13X3 +C1a + 21 = 0
Co1X1 + CooXo + Co3X3 + Cog+ 2o = 0
C3,1X1 + C32X2 + C33X3 + C34 + 23 =0

Solving this system will give one generic point on x; = 1
and start solutions for the lower dimensional solution sets.
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a cascade of homotopies
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speedup

Assume that every path requires the same amount of time.
Theorem

Let T, be the time it takes to track n paths with p threads.
Then, the optimal speedup Sy is

p—r

Sp:p—T, r = nmod p.

Ifn < p, then Sp = n.

Corollary
Let T, be the time it takes to track with p threads
a sequence of ng, ny, ..., np paths. Then, the optimal speedup Sy is
Sp=p-— dp—ro—;l—--'—rD7 rk =nkmodp, k=0,1,...D.
P

v
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homotopy membership tests

The solution line x; = 1 is represented by a generic point.
The isolated solution is the point (2, 0).

A homotopy membership verifies (2,0) does not belong to the line.

(X1 —1)(X1 —2)+’Y1Z1 =0
h(X, Zq, t) = (X1 - 1)X22 +vzi = 0
(1-tecg+tes+cixg+Cxo+21 = 0.

For t = 0, the constant ¢ is so that (2, 0) satisfies the last equation.

Tracking the path starting at (2,0,0) computes another generic point
on x; = 1if (2,0) would lie on the solution line x; = 1.
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testing singular candidate isolated points

| 8 candidate isolated solutions |
/

\
4 regular 4 singular

on 3D? | track 4 paths

3 on three dimensional set
1 singular

on 2D? | track 1 path

0 on two dimensional set
1 singular

on 1D? | track 12 paths

1 on one dimensional set
0 singular

!

\4 regular isolated solutions‘ \ no isolated singular solutions
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cascades of homotopy membership filters

Points on higher dimensional solution sets are removed.

On the example, we have one linear 3-dimensional set,
one linear 2-dimensional set, 12 lines, and 4 isolated points.

l

- [18] {15 (12

Y

The numbers at the right equal the number of paths in each stage.
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speedup

Corollary

Let T, be the time it takes to filter np, np_1, ..., ngy1 Singular points on

components respectively of dimensions D, D — 1, ...,/ + 1 and

degrees dp, dp_+1, ..., dp1. Then, the optimal speedup is
(D-Op—rp—"rpq—- =l

szp_ Tp 9 rk:(nkdk) mOdpu

fork=0+1,....D—1,D.

There are two reasons for a reduced parallelism:

@ The number of singular solutions and the degrees of the solution
sets could be smaller than the number of available cores.

@ To filter the output of the cascade, there are D(D + 1)/2 stages,
so longer sequences of homotopies are considered.
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Parallel Polynomial Homotopy Continuation

e Computational Experiments
@ solving the cyclic 8- and cyclic 9-roots systems
@ solving the cyclic 12-roots system
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solving cyclic 8- and cyclic 9-roots systems

Both cyclic 8 and cyclic 9-roots are relatively small problems.

Wall clock times in seconds with phc -B —tp for p threads:

cyclic 8-roots

cyclic 9-roots

p || seconds | speedup seconds | speedup
1 181.765 1.00 2598.435 1.00
2 167.871 1.08 1779.939 1.46
4 89.713 2.03 901.424 2.88
8 47.644 3.82 427.800 6.07
16 32.215 5.65 267.838 9.70
32 22.182 8.19 153.353 16.94
64 20.103 9.04 150.734 17.24

With 64 threads, we can solve the cyclic 9-roots problem faster
than solving the cyclic 8-roots problem on one thread.

Jan Verschelde (UIC)

Parallel Polynomial Homotopy Continuation

ICIAM 2019, 17 July

24/28



running in double double and quad double precision

Double double and quad double arithmetic are implemented in QDlib,
a software library by Y. Hida, X. S. Li, and D. H. Bailey, 2001.

In double precision, with 64 threads, the time
@ for cyclic 8-roots reduces from 3 minutes to 20 seconds and
@ for cyclic 9-roots from 43 minutes to 2 minutes and 30 seconds.

The wall clock times below are with 64 threads in higher precision.

cyclic 8-roots cyclic 9-roots
seconds = hms format seconds = hms format
dd 53.042 = 53s 498.805 = 8m19s
qd 916.020 = 15m16s 4761.258 = 1h19m21s

With 64 threads, we can compensate for the computational overhead
caused by double double precision and achieve quality up.
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solving the cyclic 12-roots system in parallel

The wall clock time on the blackbox solver on one thread is about 95 hours
(almost 4 days), which includes the linear-product bound.
The time reduces from 4 days to less than 3 hours with 64 threads:

solving top system cascade and filter grand

p | start | contin | total cascade | filter | total total | speedup

2 || 62813 | 47667 | 110803 44383 | 2331 | 46714 || 157518 1.00

4 || 21181 | 25105 | 46617 24913 | 1558 | 26471 73089 2.16

8 8933 | 14632 | 23896 13542 | 946 | 14488 38384 4.10
16 4656 | 7178 | 12129 6853 | 676 | 7529 19657 8.01
32 4200 | 3663 8094 3415 | 645 | 4060 12154 12.96
64 4422 | 2240 7003 2228 | 557 | 2805 9808 16.06

The solving of the top dimensional system breaks up in two stages:

@ the solving of a start system (start) and the
@ continuation to the solutions of the top dimensional system (contin).

Speedups are good in the cascade, but the filtering contains the factorization
in irreducible components, which does not run in parallel.
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running in double double precision

A run in double double precision with 64 threads ends
after 7 hours and 37 minutes.
This time lies between the times in double precision

@ with 8 threads, 10 hours and 39 minutes, and

@ with 16 threads, 5 hours and 27 minutes.

Confusing quality with precision, from 8 to 64 threads,
the working precision can be doubled,
with a reduction in time by 3 hours, from 10.5 hours to 7.5 hours.
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conclusions

A numerical irreducible decomposition for the cyclic 12-roots system
can be computed in less than 3 hours with 64 threads,

@ using pipelining to solve the top dimensional system,

@ with multitasking for the cascade and filtering stages.
In double double precision, it takes 7.5 hours with 64 threads.
Published as A Blackbox Polynomial System Solver on Parallel Shared
Memory Computers, in the Proceedings of the 20th International Workshop

on Computer Algebra in Scientific Computing (CASC 2018), volume 11077 of
Lecture Notes in Computer Science, pages 361-375, Springer-Verlag, 2018.

Robust numerical path tracking in polynomial homotopy continuation,
joint work with Simon Telen and Marc Van Barel,

talk on Friday 19 July 2019, 15:10-15:30, CP FT-1-8 10 3.
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