
Parallel Polynomial Evaluation

Jan Verschelde
joint work with Genady Yoffe

University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science

http://www.math.uic.edu/˜jan
jan@math.uic.edu

SIAM Conference on Parallel Processing for Scientific Computing
Session CP4 on Solvers in Applications

Savannah, 15-17 February 2012

Jan Verschelde (UIC) Parallel Polynomial Evaluation SIAM PP 2012 1 / 25

Outline

1 Solving Polynomial Systems Accurately
compensating for the cost of quad double arithmetic
speedup and quality up
refining solutions of an academic benchmark

2 Parallel Polynomial Evaluation
two algorithms for sparse polynomials
distributed evaluation of all monomials
using algorithmic differentiation

Jan Verschelde (UIC) Parallel Polynomial Evaluation SIAM PP 2012 2 / 25

solving polynomial systems

On input is a polynomial system f (x) = 0.

A homotopy is a family of systems:

h(x, t) = (1 − t)g(x) + t f (x) = 0.

At t = 1, we have the system f (x) = 0 we want to solve.
At t = 0, we have a good system g(x) = 0:

solutions are known or easier to solve; and

all solutions of g(x) = 0 are regular.

Tracking all solution paths is pleasingly parallel,
although not every path requires the same amount of work.

Jan Verschelde (UIC) Parallel Polynomial Evaluation SIAM PP 2012 3 / 25

efficiency and accuracy

We assume we have the “right” homotopy, or we have no choice:
the family of systems is naturally given to us.

We want accurate answers, two opposing situations:

Adaptive refinement: starting with machine arithmetic
leads to meaningful results, e.g.: leading digits, magnitude.

Problem is too ill-conditioned for machine arithmetic
e.g.: huge degrees, condition numbers > 1016.

Runs of millions of solution paths are routine (using MPI),
but then often some end in failure and spoil the run.

Goal: use multicore CPUs to track one difficult solution path.

Jan Verschelde (UIC) Parallel Polynomial Evaluation SIAM PP 2012 4 / 25

speedup and quality up
Selim G. Akl, Journal of Supercomputing, 29, 89-111, 2004

How much faster if we can use p cores?

Let Tp be the time on p cores, then

speedup =
T1

Tp
→ p,

keeping the working precision fixed.

How much better if we can use p cores?

Take quality as the number of correct decimal places.

Let Qp be the quality on p cores, then

quality up =
Qp

Q1
→ p,

keeping the time fixed.

Jan Verschelde (UIC) Parallel Polynomial Evaluation SIAM PP 2012 5 / 25

accuracy ∼ precision

Taking a narrow view on quality:

quality up =
Qp

Q1
=

decimal places with p cores
decimal places with 1 core

Confusing working precision with accuracy is
okay if running Newton’s method on well conditioned solution.

Can we keep the running time constant?

If we assume optimal (or constant) speedup
and Qp/Q1 is linear in p, then we can rescale.

Goal: determine thresholds on the dimensions and degrees of the
system for a significant speedup on 8 cores.

Jan Verschelde (UIC) Parallel Polynomial Evaluation SIAM PP 2012 6 / 25

error-free transformations
From §3 of Verification methods: Rigorous results using floating-point
arithmetic by S.M. Rump, Acta Numerica 2010:

An algorithm by Knuth (1969) allows to

recover the error of a floating-point addition using only basic
floating-point operations.

Dekker (1971) extended this idea to other floating-point operations.

According to Rump, this leads to a rigorous compututations (e.g.: sum
of floating-point numbers) using only floating-point computations.
A quad double is an unevaluated sum of 4 doubles, improves working
precision from 2.2 × 10−16 to 2.4 × 10−63.

Y. Hida, X.S. Li, and D.H. Bailey: Algorithms for quad-double precision
floating point arithmetic. In 15th IEEE Symposium on Computer Arithmetic
pages 155–162. IEEE, 2001. Software at
http://crd.lbl.gov/∼dhbailey/mpdist/qd-2.3.9.tar.gz.

Jan Verschelde (UIC) Parallel Polynomial Evaluation SIAM PP 2012 7 / 25

hardware and software

Running on a modern workstation (not a supercomputer):

Hardware: Mac Pro with 2 Quad-Core Intel Xeons at 3.2 Ghz
Total Number of Cores: 8 1.6 GHz Bus Speed
12 MB L2 Cache per processor, 8 GB Memory

Standalone code by Genady Yoffe: multithreaded routines in C
(recently upgraded to C++, use of Standard Template Library)
for polynomial evaluation and linear algebra, with pthreads.

PHCpack is written in Ada, compiled with gnu-ada compiler
gcc version 4.3.4 20090511 for GNAT GPL 2009 (20090511)
Target: x86_64-apple-darwin9.6.0
Thread model: posix
Also compiled for Linux and Windows (win32 thread model).

Jan Verschelde (UIC) Parallel Polynomial Evaluation SIAM PP 2012 8 / 25

cost overhead of arithmetic

Solve 100-by-100 system 1000 times with LU factorization:

type of arithmetic user CPU seconds

double real 2.026s
double complex 16.042s

double double real 20.192s
double double complex 140.352s

quad double real 173.769s
quad double complex 1281.934s

Fully optimized Ada code on one core of 3.2 Ghz Intel Xeon.

Overhead of complex arithmetic: 16.042/2.026 = 7.918,
140.352/20.192 = 6.951, 1281.934/173.769 = 7.377.

Overhead of double double complex: 140.352/16.042 = 8.749.

Overhead of quad double complex: 1281.934/140.352 = 9.134.

Jan Verschelde (UIC) Parallel Polynomial Evaluation SIAM PP 2012 9 / 25

an academic benchmark: cyclic n-roots

The system

f (x) =




fi =
n=1∑
j=0

i∏
k=1

x(k+j)mod n = 0, i = 1,2, . . . ,n − 1

fn = x0x1x2 · · · xn−1 − 1 = 0

appeared in

G. Björck: Functions of modulus one on Zp whose Fourier
transforms have constant modulus. In Proceedings of the Alfred Haar
Memorial Conference, Budapest, pages 193–197, 1985.

J. Backelin and R. Fröberg: How we proved that there are exactly 924
cyclic 7-roots. In ISSAC’91 proceedings, pages 101-111, ACM, 1991.

very sparse, well suited for polyhedral methods

Jan Verschelde (UIC) Parallel Polynomial Evaluation SIAM PP 2012 10 / 25

Newton’s method with QD arithmetic
Refining the 1,747 generating cyclic 10-roots is pleasingly parallel.

double double complex
#workers real user sys speedup

1 4.818s 4.790s 0.015s 1
2 2.493s 4.781s 0.013s 1.933
4 1.338s 4.783s 0.015s 3.601
8 0.764s 4.785s 0.016s 6.306

quad double complex
#workers real user sys speedup

1 58.593s 58.542s 0.037s 1
2 29.709s 58.548s 0.054s 1.972
4 15.249s 58.508s 0.053s 3.842
8 8.076s 58.557s 0.058s 7.255

For quality up: compare 4.818s with 8.076s.
With 8 cores, doubling accuracy in less than double the time.

Jan Verschelde (UIC) Parallel Polynomial Evaluation SIAM PP 2012 11 / 25

the quality up factor

Compare 4.818s (1 core in dd) with 8.076s (8 cores in qd).
With 8 cores, doubling accuracy in less than double the time.

The speedup is close to optimal: how many cores would we need to
reduce the calculation with quad doubles to 4.818s?

8.076
4.818

× 8 = 13.410 ⇒ 14 cores

Denote y(p) = Qp/Q1 and assume y(p) is linear in p.

We have y(1) = 1 and y(14) = 2, so we interpolate:

y(p)− y(1) =
y(14)− y(1)

14 − 1
(p − 1).

and the quality up factor is y(8) = 1 +
7

13
≈ 1.538.

Jan Verschelde (UIC) Parallel Polynomial Evaluation SIAM PP 2012 12 / 25

parallel polynomial evaluation

We consider sparse polynomials:

f (x) =
∑
a∈A

caxa, ca ∈ C \ {0}, xa = xa1
1 xa2

2 · · · xan
n .

Sparse means: #A is O(n) or O(n2), often #A � deg(f).

Given F = (f1, f2, . . . , fn) and some z ∈ C
n, compute F (z)

and the Jacobian matrix JF (z) of all partial derivatives.

Two parallel algorithms:
1 Collect all monomials with coefficients in F and JF in the

vectors M and C. Distribute M and C among threads.
2 For each monomial xa in F , evaluate xa and all its partial

derivatives using Algorithmic Differentiation techniques.

Jan Verschelde (UIC) Parallel Polynomial Evaluation SIAM PP 2012 13 / 25

related work

A. Chakraborty, D.C.S Allison, C.J. Ribbens, and L.T. Watson:
The parallel complexity of embedding algorithms for the
solution of systems of nonlinear equations. IEEE Transactions
on Parallel and Distributed Systems 4(4):458–465, 1993.

C. Bischof, N. Guertler, A. Kowartz, and A. Walther: Parallel
Reverse Mode Automatic Differentiation for OpenMP
Programs with ADOL-C. In Advances in Automatic
Differentiation, pages 163–173, Springer 2008.

Jan Verschelde (UIC) Parallel Polynomial Evaluation SIAM PP 2012 14 / 25

polynomial system evaluation
Need to evaluate system and its Jacobian matrix. Running example:
30 polynomials, each with 30 monomials of degree 30 in 30 variables
leads to 930 polynomials, with 11,540 distinct monomials.
We represent a sparse polynomial

f (x) =
∑
a∈A

caxa, ca ∈ C \ {0}, xa = xa1
1 xa2

2 · · · xan
n ,

collecting the exponents in the support A in a matrix E , as

F (x) =
m∑

i=1

cixE[ki ,:], ci = ca, a = E [ki , :]

where k is an m-vector linking exponents to rows in E : E [ki , :] denotes
all elements on the ki th row of E . Storing all values of the monomials
in a vector V , evaluating F (and f) is equivalent to an inner product:

F (x) =
m∑

i=1

ciVki
, V = xE .

Jan Verschelde (UIC) Parallel Polynomial Evaluation SIAM PP 2012 15 / 25

polynomial system evaluation with threads

Two jobs:
1 evaluate V = xE , all monomials in the system;
2 use V in inner products with coefficients.

Our running example: evaluating 11,540 monomials of degree 30
requires about 346,200 multiplications.
Since evaluation of monomials dominates inner products,
we do not interlace monomial evaluation with inner products.

Static work assignment: if p threads are labeled as 0,1, . . . ,p − 1,
then i th entry of V is computed by thread t for which i mod p = i .

Synchronization of jobs is done by p boolean flags.
Flag i is true if thread i is busy.
First thread increases job counter only when no busy threads.
Threads go to next job only if job counter is increased.

Jan Verschelde (UIC) Parallel Polynomial Evaluation SIAM PP 2012 16 / 25

speedup and quality up for evaluation
930 polynomials of 30 monomials of degree 30 in 30 variables:

double double complex
#tasks real user sys speedup

1 1m 9.536s 1m 9.359s 0.252s 1
2 0m 37.691s 1m 10.126s 0.417s 1.845
4 0m 21.634s 1m 10.466s 0.753s 3.214
8 0m 14.930s 1m 12.120s 1.711s 4.657

quad double complex
#tasks real user sys speedup

1 9m 19.085s 9m 18.552s 0.563s 1
2 4m 43.005s 9m 19.402s 0.679s 1.976
4 2m 24.669s 9m 20.635s 1.023s 3.865
8 1m 21.220s 9m 26.120s 2.809s 6.884

Speedup improves with quad doubles. Quality up: with 8 cores
overhead reduced to 17%, as 81.220/69.536 = 1.168.

Jan Verschelde (UIC) Parallel Polynomial Evaluation SIAM PP 2012 17 / 25

the quality up factor

8 cores reduced overhead to 17%, as 81.220/69.536 = 1.168.

The speedup is close to optimal: how many cores would we need to
reduce the calculation with quad doubles to 69.536s?

81.220
69.536

× 8 = 9.344 ⇒ 10 cores

Denote y(p) = Qp/Q1 and assume y(p) is linear in p.

We have y(1) = 1 and y(10) = 2, so we interpolate:

y(p)− y(1) =
y(10)− y(1)

10 − 1
(p − 1).

and the quality up factor is y(8) = 1 +
7
9
≈ 1.778.

Jan Verschelde (UIC) Parallel Polynomial Evaluation SIAM PP 2012 18 / 25

Speelpenning product: reduce n2 to 3n − 5
A. Griewank & A. Walther, SIAM 2008

To evaluate g(x) = x1x2x3x4x5 and
∂g
∂x1

,
∂g
∂x2

,
∂g
∂x3

,
∂g
∂x4

, and
∂g
∂x5

at z = (z1, z2, z3, z4, z5), we do

1 Store consecutive products in P (4 � operations):

P = (z1 | z1 � z2 | z1z2 � z3 | z1z2z3 � z4 | z1z2z3z4 � z5).

2 Store products in reverse order in Q (3 � operations):

Q = (z5 | z4 � z5 | z3 � z4z5 | z2 � z3z4z5).

3 We have g(z) = P5,
∂g
∂x5

(z) = P4, and
∂g
∂x1

(z) = Q4.

Then
∂g
∂x2

(z) = P1 � Q3,
∂g
∂x3

(z) = P2 � Q2, and
∂g
∂x4

(z) = P3 � Q1.

Jan Verschelde (UIC) Parallel Polynomial Evaluation SIAM PP 2012 19 / 25

evaluation of monomials and their derivatives

Denote by k the number of variables appearing in a monomial xa,
i.e.: xa = x

ai1
i1

x
ai2
i2

· · · xaik
ik

.

To evaluate xa and its k derivatives at z:
1 Evaluate the factor x

ai1
−1

i1
x

ai2
−1

i2
· · · xaik

−1
ik

at z.
If the powers of the variables are precomputed,
evaluation of the factor takes k − 1 multiplications.

2 Evaluate xi1xi2 · · · xik and all its derivatives at z
in 3k − 5 multiplications.

3 Multiply the evaluated xi1xi2 · · · xik and all its derivatives by the
evaluated factor, additionally, multiply the ij th derivative by aij .
This takes 2k + 1 multiplications.

Evaluating of xa and all its derivatives takes 6k − 5 multiplications.

Jan Verschelde (UIC) Parallel Polynomial Evaluation SIAM PP 2012 20 / 25

multithreaded monomial evaluation and derivatives

Three stages:
1 Compute all powers of all variables: x j

i ,
for i = 1,2, . . . ,n, and j = 1,2, . . . ,di .

Each thread computes powers of a subset of the variables.

2 Evaluation of all monomials in the system and computation of all
monomials of the derivatives of the monomials.

Each tread computes for a subset of the monomials in the system
all monomials of the derivatives.

3 Multiplication of the coefficients with the evaluated monomials.

Distribution of the coefficient vectors of the polynomials may lead
to an uneven work load, therefore a dynamic assignment is better.

Jan Verschelde (UIC) Parallel Polynomial Evaluation SIAM PP 2012 21 / 25

timing for tracking one path, dimension 20
Elapsed real, user, system time, and speedup for tracking one path in
complex quad double arithmetic on a system of dimension 20, once
with quadrics, and once with polynomials of degree 10:

Dim=20, 20 monomials of degree 2 in a polynomial
#threads real user sys speedup

1 0m37.853s 0m37.795s 0m0.037s 1
2 0m21.094s 0m42.011s 0m0.063s 1.794
4 0m12.804s 0m50.812s 0m0.061s 2.956
8 0m 8.721s 1m 8.646s 0m0.097s 4.340

Dim=20, 20 monomials of degree 10 in a polynomial
#threads real user sys speedup

1 7m17.758s 7m17.617s 0m0.123s 1
2 3m42.742s 7m24.813s 0m0.206s 1.965
4 1m53.972s 7m34.386s 0m0.150s 3.841
8 0m59.742s 7m53.469s 0m0.279s 7.327

Jan Verschelde (UIC) Parallel Polynomial Evaluation SIAM PP 2012 22 / 25

timings for tracking one path, dimension 40
Elapsed real, user, system time, and speedup for tracking one path in
complex quad double arithmetic on a system of dimension 40, once
with quadrics, and once with polynomials of degree 20:

Dim=40, 40 monomials of degree 2 in a polynomial
#threads real user sys speedup

1 5m25.509s 5m25.240s 0m0.254s 1
2 2m54.098s 5m47.506s 0m0.186s 1.870
4 1m38.316s 6m31.580s 0m0.206s 3.312
8 1m 2.257s 8m11.130s 0m0.352s 5.226

Dim=40, 40 monomials of degree 20 in a polynomial
#threads real user sys speedup

1 244m55.691s 244m48.501s 0m 6.621s 1
2 123m 1.536s 245m53.987s 0m 3.838s 1.991
4 61m53.447s 247m14.921s 0m 4.181s 3.958
8 32m22.671s 256m27.142s 0m11.541s 7.567

Jan Verschelde (UIC) Parallel Polynomial Evaluation SIAM PP 2012 23 / 25

conclusions

For systems of polynomials with monomials of high degree,
the cost of polynomial evaluation dominates.

For sparse polynomial systems, load balancing monomial evaluation
and their derivative evaluation gives good performance.

For lower degrees, our parallel Gaussian elimination does not speedup
so well and this impacts the entire speedup for tracking one path.

Jan Verschelde (UIC) Parallel Polynomial Evaluation SIAM PP 2012 24 / 25

our papers

Available at our web sites:

J. Verschelde and G. Yoffe: Polynomial Homotopies on
Multicore Workstations. In the Proceedings of the 4th
International Workshop on Parallel Symbolic Computation
(PASCO 2010), pages 131–140, ACM 2010.

J. Verschelde and G. Yoffe: Quality Up in Polynomial Homotopy
Continuation by Multithreaded Path Tracking.
arXiv:1109.0545v1 [cs.DC] 2 Sep 2011.

J. Verschelde and G. Yoffe: Evaluating polynomials in several
variables and their derivatives on a GPU computing
processor. arXiv:1201.0499v1 [cs.MS] 2 Jan 2012.

Jan Verschelde (UIC) Parallel Polynomial Evaluation SIAM PP 2012 25 / 25

