
PHCpack: A Software Platform for

Numerical Algebraic Geometry

Jan Verschelde

Department of Math, Stat & CS
University of Illinois at Chicago
Chicago, IL 60607-7045, USA

email: jan@math.uic.edu

URL: http://www.math.uic.edu/~jan

IMA Workshop Software for Algebraic Geometry

23-27 October 2006, Minneapolis.

PHC = Polynomial Homotopy Continuation

• phc -b released PHCpack 1.0 in August 1997

Algorithm 795 ACM TOMS

• experimental platform to validate the algorithms described

in [Andrew J. Sommese & Charles W. Wampler II, 2005]

• parallel implementations in collaboration

with Yusong Wang, Anton Leykin, Yan Zhuang

• since release 2.3.13 PHCpack contains MixedVol

(ACM TOMS Algorithm 845), developed by Tangan Gao,

Tien-Yien Li, Xing Li, and Mengnien Wu

• deflation for isolated singularities in collaboration

with Anton Leykin and Ailing Zhao

• PHCmaple (Anton Leykin) and PHClab (Yun Guan)

page 0

parallel PHCpack

Numerical Homotopy Continuation Methods

are pleasingly parallel

• one job = track one path

• in manager/worker scenario:

1. manager distributes jobs to idle workers;

2. workers execute jobs and report to manager.

• dynamic load balancing of jobs is needed

Thanks to Linux, MPI, and cluster computers (Rocketcalc),

possible to track many hundreds of thousands of paths.

page 1 of A

parallel PHCpack

Other Parallel Homotopy Solvers

H.-J. Su, J.M. McCarthy, M. Sosonkina, and L.T. Watson:

Algorithm 8xx: POLSYS GLP: A parallel general linear

product homotopy code for solving polynomial systems of

equations. To appear in ACM Trans. Math. Softw.

→ applied to large systems from mechanism design

T. Gunji, S. Kim, K. Fujisawa, and M. Kojima:

PHoMpara – parallel implementation of the Polyhedral

Homotopy continuation Method for polynomial systems.

Computing 77(4):387–411, 2006.

→ Masakazu Kojima’s talk on Wednesday 1:40PM

page 2 of A

parallel PHCpack

a problem from electromagnetics

W. Boege, R. Gebauer, and H. Kredel: “Some examples for

solving systems of algebraic equations by calculating Groebner

bases.” J. Symbolic Computation, 2:83–98, 1986.

an ancient benchmark problem...

posed by Shigetoshi Katsura to PoSSo in 1994:

a family of n − 1 quadrics and one linear equation.

...but relevant to applications

#solutions is 2n−1 (= Bézout bound).

→ we have an optimal homotopy!

page 3 of A

parallel PHCpack

The Total Degree Homotopy

A natural choice of a homotopy to solve is for example h(x, t) =

γ



 x2
1 − 1 = 0

x2
2 − 1 = 0





︸ ︷︷ ︸
start system

(1 − t) +



 x2
1 + x2 − 3 = 0

x1 + 0.125x2
2 − 1.5 = 0





︸ ︷︷ ︸
target system

t = 0,

where t goes from 0 to 1, and γ ∈ C.

For almost all choices of γ ∈ C, every isolated solution

of multiplicity m is reached by exactly m solution paths.

also called “the gamma trick”

(If we take γ = 1, then at t ≈ 0.92 singular solutions occur.)

page 4 of A

parallel PHCpack

Jumpstarting Homotopies

Problem: huge #paths (e.g.: > 100,000),

undesirable to store all start solutions in main memory.

Solution: (assume manager/worker protocol)

1. The manager reads start solution from file “just in time”

whenever a worker needs another path tracking job.

2. For total degree and linear-product start systems,

it is simple to compute the solutions whenever needed.

3. As soon as worker reports the end of a solution path

back to the manager, the solution is written to file.

page 5 of A

parallel PHCpack

Indexing Start Solutions

The start system






x4
1 − 1 = 0

x5
2 − 1 = 0

x3
3 − 1 = 0

has 4 × 5 × 3 = 60 solutions.

Get 25th solution via decomposition: 24 = 1(5 × 3) + 3(3) + 0.

Verify via lexicographic enumeration:

000→001→002→010→011→012→020→021→022→030→031→032→040→041→042

100→101→102→110→111→112→120→121→122→ 130 →131→132→140→141→142

200→201→202→210→211→212→220→221→222→230→231→232→240→241→242

300→301→302→310→311→312→320→321→322→330→331→332→340→341→342

page 6 of A

parallel PHCpack

Using Linear-Product Start Systems Efficiently

• Store start systems in their linear-product product form, e.g.:

g(x) =






(· · ·) · (· · ·) · (· · ·) · (· · ·) = 0

(· · ·) · (· · ·) · (· · ·) · (· · ·) · (· · ·) = 0

(· · ·) · (· · ·) · (· · ·) = 0

• Lexicographic enumeration of start solutions,

→ as many candidates as the total degree.

• Eventually store results of incremental LU factorization.

→ prune in the tree of combinations.

page 7 of A

parallel PHCpack

A first run of 1,048,576 paths

dynamic load balancing

on personal cluster computers built by Rocketcalc

1 manager + 13 workers at 2.4Ghz: 32 hours and 44 minutes

#paths per processor: 64,073 min 90,504 max 80,660 avg @UIC

shared memory machine with 16 computational cores

AMD64 opteron at 1.8Ghz: 31 hours and 31 minutes

#paths per processor: 64,659 min 74,348 max 69,905 avg @IMA

verification of output:

1. parsing 1.3Gb file into memory takes 400Mb and 4 minutes;

2. data compression to quadtree of 58Mb takes 7 seconds.

page 8 of A

using phc

Using the Blackbox solver: phc -b

an input file:

8

z0 + z1 + z2 + z3 + z4 + z5 + z6 + z7;

z0*z1 + z1*z2 + z2*z3 + z3*z4 + z4*z5 + z5*z6 + z6*z7 + z7*z0;

z0*z1*z2 + z1*z2*z3 + z2*z3*z4 + z3*z4*z5 + z4*z5*z6 + z5*z6*z7

+ z6*z7*z0 + z7*z0*z1;

z0*z1*z2*z3 + z1*z2*z3*z4 + z2*z3*z4*z5 + z3*z4*z5*z6

+ z4*z5*z6*z7 + z5*z6*z7*z0 + z6*z7*z0*z1 + z7*z0*z1*z2;

z0*z1*z2*z3*z4 + z1*z2*z3*z4*z5 + z2*z3*z4*z5*z6 + z3*z4*z5*z6*z7

+ z4*z5*z6*z7*z0 + z5*z6*z7*z0*z1 + z6*z7*z0*z1*z2 + z7*z0*z1*z2*z3;

using phc

z0*z1*z2*z3*z4*z5 + z1*z2*z3*z4*z5*z6 + z2*z3*z4*z5*z6*z7

+ z3*z4*z5*z6*z7*z0 + z4*z5*z6*z7*z0*z1 + z5*z6*z7*z0*z1*z2

+ z6*z7*z0*z1*z2*z3 + z7*z0*z1*z2*z3*z4;

z0*z1*z2*z3*z4*z5*z6 + z1*z2*z3*z4*z5*z6*z7 + z2*z3*z4*z5*z6*z7*z0

+ z3*z4*z5*z6*z7*z0*z1 + z4*z5*z6*z7*z0*z1*z2 + z5*z6*z7*z0*z1*z2*z3

+ z6*z7*z0*z1*z2*z3*z4 + z7*z0*z1*z2*z3*z4*z5;

z0*z1*z2*z3*z4*z5*z6*z7 - 1;

TITLE : cyclic 8-roots problem

save as cyclic8 and then type

phc -b cyclic8 cyclic8.out

using phc

After 42 minutes and 11 seconds...

on a (slow) Apple laptop

solution 2560 : start residual : 4.012E-15 #iterations : 1 success

t : 1.00000000000000E+00 0.00000000000000E+00

m : 1

the solution for t :

z0 : -9.10932685974638E-01 4.12555016480266E-01

z1 : -9.50467926146792E-01 -3.10822652595037E-01

z2 : 9.62715731458717E-01 2.70515101984913E-01

z3 : 3.82683432365089E-01 9.23879532511287E-01

z4 : -4.89459759042523E-01 8.72025885096329E-01

z5 : 4.52297510482370E-01 -8.91867121275053E-01

z6 : 9.35847129222866E-01 -3.52406229691418E-01

z7 : -3.82683432365090E-01 -9.23879532511287E-01

== err : 5.017E-15 = rco : 3.132E-02 = res : 3.967E-15 = complex regular ==

page 2 of B

using phc

The Quality of an Approximate Solution

The numbers in

== err : 5.017E-15 = rco : 3.132E-02 = res : 3.967E-15 = complex regular ==

are diagnostics of a Newton iteration:

solve Jf (x)∆x = −f(x) for ∆x

use ∆x to update x, i.e.: x := x + ∆x.

err = ||∆x|| rco = 1/(cond# of Jf (x)) res = ||f(x)||

The err ≈ 10−15 and rco ≈ 10−2 implies that, with input

accurate up to standard double floating precision, we are sure

of all except the last two decimal places in the solution vectors.

page 3 of B

using phc

Frequency Tables of Diagnostics

Frequency tables for correction, residual, condition, and distances :

FreqCorr : 737 42 31 21 1 512 64 0 0 0 0 0 0 57 0 1095 : 2560

FreqResi : 331 78 321 100 2 0 0 0 0 0 0 324 243 306 0 855 : 2560

FreqCond : 128 753 209 62 0 0 0 141 339 78 18 0 0 0 0 832 : 2560

FreqDist : 1984 0 0 0 0 312 264 0 0 0 0 0 0 0 0 0 : 2560

Small correction terms and residuals counted to the right.

Well conditioned and distinct roots counted to the left.

Counting solutions with small ||∆x|| and small condition number:

57 + 1095 = 1152

128 + 753 + 209 + 62 = 1152

The well conditioned roots are well separated from the points on

the 1-dimensional solution curve; #isolated solutions is 1152.

page 4 of B

using phc

Mixed Volumes and Polyhedral Homotopies

input: f(x) = 0 a system of n equations in n unknowns

• Stage 1: compute the mixed volume V

input: Q = (Q1, Q2, . . . , Qn) Newton polytopes of f

output: a regular mixed-cell configuration ∆ω: V =
∑

C∈∆ω

vol(C)

• Stage 2: solve a random coefficient start system g(x) = 0

input: a regular mixed-cell configuration ∆ω

output: g(x) = 0 a random coefficient start system: #g−1(0) = V

• Stage 3: use h(x, t) = g(x)(1 − t) + f(x)t = 0 to solve f

output: approximations to all isolated solutions of f in (C∗)n ≤ V

page 5 of B

using phc

Computing Mixed Volumes with phc -m

getafix:~/PHCv2/Demo jan$ phc -m

Welcome to PHC (Polynomial Homotopy Continuation) V2.3.15 28 Sep 2006

Mixed-Volume Computation by various lifting strategies and MixedVol.

...

MENU with available Lifting Strategies (0 is default) :

0. Static lifting : lift points and prune lower hull.

1. Implicit lifting : based on recursive formula.

2. Dynamic lifting : incrementally add the points.

3. Symmetric lifting : points in same orbit get same lifting.

4. MixedVol Algorithm : a faster mixed volume computation.

Type 0, 1, 2, 3, or 4 to select, eventually preceded by i for info :

page 6 of B

using phc

Why bother?

timings for phc -b cyclic8 cyclic8.out:

compute mixed volume : 27 sec 850 ms

solve start system : 13 min 41 sec 550 ms

solve target system : 27 min 25 sec 680 ms

total cpu time : 42 min 11 sec 160 ms

old version of phc, without MixedVol: 56 sec 560 ms

to compute the mixed volume

7 of B

using phc

Why bother?

timings for phc -b cyclic8 cyclic8.out:

compute mixed volume : 27 sec 850 ms

solve start system : 13 min 41 sec 550 ms

solve target system : 27 min 25 sec 680 ms

total cpu time : 42 min 11 sec 160 ms

old version of phc, without MixedVol: 56 sec 560 ms

to compute 2560 as the mixed volume

However, the “old” phc could not compute the mixed

volume of cyclic 11-roots: 184,756...

...which takes 24 min 22 sec 690 ms on same Apple laptop.

7 of B

irreducible decomposition

Numerical Irreducible Decomposition

input: f(x) = 0 a polynomial system with x ∈ Cn

• Stage 1: represent the k-dimensional solutions Zk, k = 0, 1, . . .

output: sequence [W0, W1, . . . , Wn−1] of witness sets

Wk = (Ek, E−1
k (0) \ Jk), deg Zk = #(E−1

k (0) \ Jk)

Ek = f + k random hyperplanes, Jk = “junk”

• Stage 2: decompose Zk, k = 0, 1, . . . into irreducible factors

output: Wk = {Wk1, Wk2, . . . , Wknk
}, k = 1, 2, . . . , n − 1

nk irreducible components of dimension k

output: a numerical irreducible decomposition of f−1(0)

is a sequence of partitioned witness sets

page 1 of C

irreducible decomposition

Computing Witness Sets for f−1(0)

Witness set Wk = (Ek, E−1
k (0) \ Jk) for Zk ⊂ f−1(0), k = dimZk,

consists of Ek = f + k random hyperplanes

and its solutions, #(E−1
k (0) \ Jk) = deg Zk.

• top down: use a cascade of homotopies

+ benefits from existing blackbox solver

− requires top dimension on input

• bottom up: with an equation-by-equation solver

+ requires no guess for top dimension

− performance depends on order of equations

page 2 of C

irreducible decomposition

Example of a Homotopy in the Cascade

To compute numerical representations of the twisted cubic and the

four isolated points, as given by the solution set of one polynomial

system, we use the following homotopy:

H(x, z1, t) =







(x2
1 − x2)(x1 − 0.5)

(x3
1 − x3)(x2 − 0.5)

(x1x2 − x3)(x3 − 0.5)


 + t




γ1

γ2

γ3


z1

t (c0 + c1x1 + c2x2 + c3x3) + z1




= 0

At t = 1: H(x, z1, t) = E(f)(x, z1) = 0.

At t = 0: H(x, z1, t) = f(x) = 0.

As t goes from 1 to 0, the hyperplane is removed from the system,

and z1 is forced to zero.

page 3 of C

irreducible decomposition

A Cascade of Homotopies

Denote Ei as an embedding of f(x) = 0 with i random hyperplanes

and i slack variables z = (z1, z2, . . . , zi).

Theorem (Sommese - Verschelde): J. Complexity 16(3):572–602, 2000

1. Solutions with (z1, z2, . . . , zi) = 0 contain deg W generic

points on every i-dimensional component W of f(x) = 0.

2. Solutions with (z1, z2, . . . , zi) 6= 0 are regular; and

solution paths defined by

Hi(x, z, t) = tEi(x, z) + (1 − t)



 Ei−1(x, z)

zi



 = 0

starting at t = 1 with all solutions with zi 6= 0

reach at t = 0 all isolated solutions of Ei−1(x, z) = 0.

page 4 of C

irreducible decomposition

#paths in twisted cubic + 4 isolated points example

The flow chart below summarizes the number of solution paths

traced in the cascade of homotopies.

13 paths - 0 paths to infinity

3 solutions with z1 = 0

10 solutions with z1 6= 0

- W1 witness set

?

10 paths - 1 path to infinity

9 converging paths - Ŵ0 witness superset

The set Ŵ0 contains, in addition to the four isolated roots, also

points on the twisted cubic. The points in Ŵ0 which lie on the

twisted cubic are considered junk and must be filtered out.

page 5 of C

irreducible decomposition

Computing Witness Sets in phc

3

(x1^2 - x2)*(x1 - 0.5); save as

(x1^3 - x3)*(x2 - 0.5); "twistp4i"

(x1*x2 - x3)*(x3 - 0.5);

top down:

• phc -c add 1 random hyperplane, save as "twistp4i e1".

• phc -c run cascade, extract from output witness set "twistp4i ws1",

and candidate isolated points "twistp4i sw0".

• phc -f filter "twistp4i sw0" with respect to "twistp4i ws1".
bottom up:

• phc -a runs equation-by-equation solver.

• phc -w witness set intersection using diagonal homotopies.

page 6 of C

irreducible decomposition

Factorization Methods in phc

3 8

x11*x22 - x21*x12; save as

x12*x23 - x22*x13; "minors24"

x13*x24 - x23*x14;

• phc -c add 5 random hyperplanes, save as "minors24e5".

• phc -b solve "minors24e5".

• phc -f factor using monodromy breakup certified by linear traces.

or factor using combinatorial enumeration of linear traces.

page 7 of C

symbolic deflation

Deflation for Isolated Singular Solutions

input: f(x) = 0 a polynomial system;

x∗ an approximate solution: f(x∗) ≈ 0

• Stage 1: recondition the problem

output: G(x, λ) = 0 an extension to f ;

(x∗, λ∗) is a regular solution: G(x∗, λ∗) = 0 ⇒ f(x∗) = 0.

• Stage 2: compute the multiplicity

input: g(x) = 0 a “good” system for x∗

Newton converges quadratically starting from x∗.

Apply algorithms of [Dayton & Zeng, 2005] (in phc -v)

or [Bates, Peterson & Sommese, 2006].

output: a quadratically convergent method to refine x∗

and the multiplicity structure of x∗

page 1 of D

symbolic deflation

Deflation Operator Dfl reduces to Corank One

Consider f(x) = 0, N equations in n unknowns, N ≥ n.

Suppose Rank(A(z0)) = R < n for z0 an isolated zero of f(x) = 0.

Choose h ∈ C
R+1 and B ∈ C

n×(R+1) at random.

Introduce R + 1 new multiplier variables λ = (λ1, λ2, . . . , λR+1).

Dfl(f)(x, λ) :=






f(x) = 0

A(x)Bλ = 0

hλ = 1

Rank(A(x)) = R

⇓

corank(A(x)B) = 1

The operator Dfl is used recursively if necessary, note:

(1) # times bounded by multiplicity

(2) symbolic implementation easy, but leads to expression swell

(3) exploiting the structure for evaluation is efficient

page 2 of D

symbolic deflation

Newton’s Method with Deflation#
"

!

Input: f(x) = 0 polynomial system;

x0 initial approximation for x∗;

ǫ tolerance for numerical rank.

page 3 of D

symbolic deflation

Newton’s Method with Deflation#
"

!

Input: f(x) = 0 polynomial system;

x0 initial approximation for x∗;

ǫ tolerance for numerical rank.

?
[A+, R] := SVD(A(xk), ǫ);

xk+1 := xk − A+f(xk);
Gauss-Newton

page 3 of D

symbolic deflation

Newton’s Method with Deflation#
"

!

Input: f(x) = 0 polynomial system;

x0 initial approximation for x∗;

ǫ tolerance for numerical rank.

?
[A+, R] := SVD(A(xk), ǫ);

xk+1 := xk − A+f(xk);
Gauss-Newton

?PPPPPPP

�������

PPPPPPP

�������R = #columns(A)?
Yes-
�
�
�
�Output: f ;xk+1.

page 3 of D

symbolic deflation

Newton’s Method with Deflation#
"

!

Input: f(x) = 0 polynomial system;

x0 initial approximation for x∗;

ǫ tolerance for numerical rank.

?
[A+, R] := SVD(A(xk), ǫ);

xk+1 := xk − A+f(xk);
Gauss-Newton

?PPPPPPP

�������

PPPPPPP

�������R = #columns(A)?
Yes-
�
�
�
�Output: f ;xk+1.

?No

f := Dfl(f)(x, λ) =

8
<
:

f(x) = 0

G(x, λ) = 0
; Deflation Step

bλ := LeastSquares(G(xk+1, λ));

k := k + 1; xk := (xk, bλ);

-

page 3 of D

efficient deflation

Avoiding Expression Swell

Evaluation of A(x)B: for efficiency we must first replace x by

values before the matrix multiplication.

Triangular block structure of Jacobian matrix: for example:

A2(x, λ1, λ2) =




A 0 0
(

∂A
∂x

)
B1λ1 AB1 0

0 h1 0
(

∂A1

∂x

)
B2λ2

(
∂A1

∂λ1

)
B2λ2 A1B2

0 0 h2




.

Multipliers occur linearly: compute derivatives only with

respect to x, not with respect to λ.

page 4 of D

efficient deflation

Structure of the Deflated Systems

At stage k in the deflation:

fk(x, λ1, . . . , λk−1, λk) =






fk−1(x, λ1, . . . , λk−1) = 0

Ak−1(x, λ1, . . . , λk−1)Bkλk = 0

hkλk = 1,

f0 = f , A0 = A, Rk = rank(Ak−1(z0)), Rk + 1 multipliers in λk.

random vector hk ∈ CRk+1 and nk−1-by-(Rk + 1) matrix Bk

#rows in Ak : Nk = 2Nk−1 + 1, N0 = N,

#columns in Ak : nk = nk−1 + Rk + 1, n0 = n.

Multiplication of the polynomial matrix Ak−1 with the random

matrix Bk and vector of Rk + 1 multiplier variables λk is expensive!

page 5 of D

efficient deflation

Structure of the Jacobian Matrices

At stage k in the deflation:

fk(x, λ1, . . . , λk−1, λk) =






fk−1(x, λ1, . . . , λk−1) = 0

Ak−1(x, λ1, . . . , λk−1)Bkλk = 0

hkλk = 1.

Jacobian matrix at the kth deflation:

Ak(x, λ1, . . . , λk−1, λk) =




Ak−1 0[
∂Ak−1

∂x

∂Ak−1

∂λ1

· · · ∂Ak−1

∂λk−1

]
Bkλk Ak−1Bk

0 hk


 .

The multiplier variables λi, i = 1, 2, . . . , k, occur linearly,

we compute derivatives only with respect to the original variables x.

page 6 of D

efficient deflation

Derivatives of Jacobian matrices

Define ∂A
∂x

=
[

∂A
∂x1

∂A
∂x2

· · · ∂A
∂xn

]
,x = (x1, x2, . . . , xn),

where ∂A
∂xk

=
[

∂aij

∂xk

]
for A = [aij(x)]

i∈{1,2,...,N}
j,k∈{1,2,...,n}.

Natural tree structure:
(to compute ∂2A

∂x2)

A(x1, x2)
����

HHHH
∂A
∂x1

∂A
∂x2

�
�

@
@

�
�

@
@

∂2A
∂x2

1

∂2A
∂x2∂x1

= ∂2A
∂x1∂x2

∂2A
∂x2

2

e.g.: k = 10, n = 3:

310 = 59049 ≫ 66

Complexity of ∂kA
∂xk 6= O(nk),

but O(#monomials of degree k in n variables).

page 7 of D

efficient deflation

Column Format of Jacobian Matrices

Jacobian matrix at the kth deflation:

Ak(x, λ1, . . . , λk−1, λk) =




Ak−1 0[
∂Ak−1

∂x

∂Ak−1

∂λ1

· · · ∂Ak−1

∂λk−1

]
Bkλk Ak−1Bk

0 hk


 .

Tree with k children:

Ak(x, λ1, . . . , λk−1, λk)

�������

�
�

�	 ?

HHHHHHj

Ak−1 ∂Ak−1

∂x

∂Ak−1

∂λ1

· · · ∂Ak−1

∂λk−1

page 8 of D

efficient deflation

Unwinding the Multipliers

A2(x, λ1, λ2) =




A1 0[
∂A1

∂x

∂A1

∂λ1

]
B2λ2 A1B2

0 h2




A2
����������9

A1

?
∂A1

∂x

XXXXXXXXXXz ∂A1

∂λ1




A 0
[

∂A
∂x

]
B1λ1 AB1

0 h1







∂A
∂x

0[
∂2A
∂x2

]
B1λ1

[
∂A
∂x

]
B1

0 0







0 0
[

∂A
∂x

]
∗B1 0

0 0




page 9 of D

efficient deflation

Unwinding the Multipliers

A2(x, λ1, λ2) =




A1 0[
∂A1

∂x

∂A1

∂λ1

]
B2λ2 A1B2

0 h2




Directed Acyclic Graph: A2
����������9

A1

?
∂A1

∂x

XXXXXXXXXXz ∂A1

∂λ1

?

@
@

@
@

@
@R

�

J
J

J
J

J
JĴ

��������������




A 0
[

∂A
∂x

]
B1λ1 AB1

0 h1







∂A
∂x

0[
∂2A
∂x2

]
B1λ1

[
∂A
∂x

]
B1

0 0







0 0
[

∂A
∂x

]
∗B1 0

0 0




A ∂A
∂x

∂2A
∂x2

page 9 of D

efficient deflation

The Operator ∗

For a matrix B:
[

∂A
∂x

]
B =

[
∂A
∂x1

B ∂A
∂x2

B · · · ∂A
∂xn

B
]
.

However, ∂

∂λ

([
∂A
∂x

]
Bλ

)
=




∂A

∂x
b1

︸ ︷︷ ︸
∂λ1

∂A

∂x
b2

︸ ︷︷ ︸
∂λ2

· · ·
∂A

∂x
bm

︸ ︷︷ ︸
∂λm


,

λ = (λ1, λ2, . . . , λm), B = [b1 b2 · · ·bm].

Unlike scalar differentiation: ∂

∂λ

([
∂A
∂x

]
Bλ

)
6=

[
∂A
∂x

]
B.

With the operator ∗ we permute
[

∂A
∂x

]
B into ∂

∂λ

([
∂A
∂x

]
Bλ

)
.

So we have: ∂

∂λ

([
∂A
∂x

]
Bλ

)
=

[
∂A
∂x

]
∗B.

page 10 of D

efficient deflation

A Directed Acyclic Graph of Derivative Operators

A3(x, λ1, λ2, λ3)

�������

�
�

�	 ?

@
@

@R
A2(x, λ1, λ2)

∂A2

∂x

∂A2

∂λ1

∂A2

∂λ2

?

@
@

@R

HHHHHHj

Q
Q

Q
QQs

PPPPPPPPPq?

HHHHHHj

�
�

��	

��������
A1(x, λ1) ∂A1

∂x

∂A1

∂λ1

∂
2
A1

∂x
2

∂
2
A1

∂x∂λ1

�
�

��

@
@

@R ?

@
@

@R

�
�

�	

�
�

�	

A
A
AU

�������
A(x) ∂A

∂x

∂
2
A

∂x
2

∂
3
A

∂x
3

page 11 of D

efficient deflation

Validation module in phc -v

verschel@citrus % /tmp/phc -v

Welcome to PHC (Polynomial Homotopy Continuation) V2.3.15 28 Sep 2006

Validation, refinement and purification of computed solution lists.

MENU with Validation Methods :

0. Scanning (huge) solution files and creating condition tables;

1. Basic Validation : refining and weeding out the solution set;

2. Evaluation of the residuals using multi-precision arithmetic;

3. Newton’s method using multi-precision arithmetic;

4. Winding-Number Computation by homotopy continuation;

5. Polyhedral Validation : frequency table of path directions;

6. Newton’s method with deflation for isolated singularities;

7. Multiplicity structure of isolated singular solutions.

Type 0, 1, 2, 3, 4, 5, 6, or 7 to select, or i for info :

page 12 of D

efficient deflation

Numerical Results (double float)

System n m D corank(A(x)) Inverse Condition# #Digits

baker1 2 2 1 1 → 0 1.7e-08 → 3.8e-01 9 → 24

cbms1 3 11 1 3 → 0 4.2e-05 → 5.0e-01 5 → 20

cbms2 3 8 1 3 → 0 1.2e-08 → 5.0e-01 8 → 18

mth191 3 4 1 2 → 0 1.3e-08 → 3.5e-02 7 → 13

decker1 2 3 2 1 → 1 → 0 3.4e-10 → 2.6e-02 6 → 11

decker2 2 4 3 1 → 1 → 1 → 0 4.5e-13 → 6.9e-03 5 → 16

decker3 2 2 1 1 → 0 4.6e-08 → 2.5e-02 8 → 17

ojika1 2 3 2 1 → 1 → 0 9.3e-12 → 4.3e-02 5 → 12

ojika2 3 2 1 1 → 0 3.3e-08 → 7.4e-02 6 → 14

ojika3 3 2 1 1 → 0 1.7e-08 → 9.2e-03 7 → 15

4 1 2 → 0 6.5e-08 → 8.0e-02 6 → 13

ojika4 3 3 2 1 → 1 → 0 1.9e-13 → 2.4e-04 6 → 11

cyclic9 9 4 1 2 → 0 5.6e-10 → 1.8e-03 5 → 15

page 13 of D

