
Quality Up in Polynomial Homotopy Continuation

Jan Verschelde
joint work with Genady Yoffe

University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science

http://www.math.uic.edu/˜jan
jan@math.uic.edu

Hybrid Methodologies for Symbolic-Numeric Computation
MSRI, 17-19 November 2010.

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 1 / 42

Outline

1 Problem Statement
solving polynomial systems accurately
using quad doubles
path tracking on multicore computers

2 Exploratory Computations
cost overhead of arithmetic
polynomial system evaluation with many threads
multithreaded linear system solving

3 Applications
version 2.3.59 of PHCpack
maximum likelihood degree of Gaussian cycles

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 2 / 42

Quality Up in Polynomial Homotopy Continuation

1 Problem Statement
solving polynomial systems accurately
using quad doubles
path tracking on multicore computers

2 Exploratory Computations
cost overhead of arithmetic
polynomial system evaluation with many threads
multithreaded linear system solving

3 Applications
version 2.3.59 of PHCpack
maximum likelihood degree of Gaussian cycles

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 3 / 42

Solving Polynomial Systems

On input is a polynomial system f (x) = 0.

A homotopy is a family of systems:

h(x, t) = (1 − t)g(x) + t f (x) = 0.

At t = 1, we have the system f (x) = 0 we want to solve.
At t = 0, we have a good system g(x) = 0:

solutions are known or easier to solve; and

all solutions of g(x) = 0 are regular.

Tracking all solution paths is pleasingly parallel,
although not every path requires the same amount of work.

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 4 / 42

Efficiency and Accuracy

We assume we have the “right” homotopy, or we have no choice:
the family of systems is naturally given to us.

We want accurate answers, two opposing situations:

Adaptive refinement: starting with machine arithmetic
leads to meaningful results, e.g.: leading digits, magnitude.

Problem is too ill-conditioned for machine arithmetic
e.g.: huge degrees, condition numbers > 1016.

Runs of millions of solution paths are routine,
but then often some end in failure and spoil the run.

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 5 / 42

Speedup and Quality Up
Selim G. Akl, Journal of Supercomputing, 29, 89-111, 2004

How much faster if we can use p cores?

Let Tp be the time on p cores, then

speedup =
T1

Tp
→ p,

keeping the working precision fixed.

How much better if we can use p cores?

Take quality as the number of correct decimal places.

Let Qp be the quality on p cores, then

quality up =
Qp

Q1
→ p,

keeping the time fixed.

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 6 / 42

accuracy ∼ precision

Taking a narrow view on quality:

quality up =
Qp

Q1
=

decimal places with p cores
decimal places with 1 core

Confusing working precision with accuracy is
okay if running Newton’s method on well conditioned solution.

Can we keep the running time constant?

If we assume optimal (or constant) speedup
and Qp/Q1 is linear in p, then we can rescale.

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 7 / 42

Quality Up in Polynomial Homotopy Continuation

1 Problem Statement
solving polynomial systems accurately
using quad doubles
path tracking on multicore computers

2 Exploratory Computations
cost overhead of arithmetic
polynomial system evaluation with many threads
multithreaded linear system solving

3 Applications
version 2.3.59 of PHCpack
maximum likelihood degree of Gaussian cycles

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 8 / 42

Double Doubles
T.J. Dekker, Numer. Math. 18, 224-242, 1971

Let a and b be two machine doubles.

Denote by ⊕ and � respectively the + and − on doubles.

Then a + b is stored as a pair (x , y) of two doubles:

x = a ⊕ b and y = b � (x � a).

We can interpret y as the error caused by ⊕.

Similarities with other arithmetic in software, e.g.:

accuracy: interval arithmetic

efficiency: complex arithmetic

Important distinction: multiple component �= multiple digit.

Multiple digit arithmetic extend fraction with an integer sequence.

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 9 / 42

the QD library

A quad double is an unevaluated sum of 4 doubles, improves working
precision from 2.2 × 10−16 to 2.4 × 10−63.

Y. Hida, X.S. Li, and D.H. Bailey: Algorithms for quad-double
precision floating point arithmetic. In 15th IEEE Symposium on
Computer Arithmetic pages 155–162. IEEE, 2001. Software at
http://crd.lbl.gov/∼dhbailey/mpdist/qd-2.3.9.tar.gz.

X. Li, J. Demmel, D. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan,
S. Kang, A. Kapur, M. Martin, B. Thompson, T. Tung, and D. Yoo:
Design, implementation and testing of extended and mixed
precision BLAS. ACM Trans. Math. Softw., 28(2):152–205, 2002.

Why QD-2.3.9? + simple memory management

Arbitrary precision takes an arbitrary amount of storage
⇒ dynamic memory allocation
⇒ threads requesting memory block progress of other threads

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 10 / 42

Quality Up in Polynomial Homotopy Continuation

1 Problem Statement
solving polynomial systems accurately
using quad doubles
path tracking on multicore computers

2 Exploratory Computations
cost overhead of arithmetic
polynomial system evaluation with many threads
multithreaded linear system solving

3 Applications
version 2.3.59 of PHCpack
maximum likelihood degree of Gaussian cycles

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 11 / 42

Hardware and Software

Running on a modern workstation (not a supercomputer):

Hardware: Mac Pro with 2 Quad-Core Intel Xeons at 3.2 Ghz
Total Number of Cores: 8 1.6 GHz Bus Speed
12 MB L2 Cache per processor, 8 GB Memory

Standalone code by Genady Yoffe: multithreaded routines in C
for polynomial evaluation and linear algebra, with pthreads.

PHCpack is written in Ada, compiled with gnu-ada compiler
gcc version 4.3.4 20090511 for GNAT GPL 2009 (20090511)
Target: x86_64-apple-darwin9.6.0
Thread model: posix
Also compiled for Linux and Windows (win32 thread model).

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 12 / 42

Starting Worker Tasks
procedure Workers is instantiated with a Job procedure,
executing code based on the id number.

procedure Workers (n : in natural) is
task type Worker (id,n : natural);
task body Worker is
begin

Job(id,n);
end Worker;
procedure Launch_Workers (i,n : in natural) is

w : Worker(i,n);
begin

if i < n
then Launch_Workers(i+1,n);

end if;
end Launch_Workers;

begin
Launch_Workers(1,n);

end Workers;

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 13 / 42

MPI versus Threads

MPI = Message Passing Interface

The manager/worker paradigm:
� worker nodes perform path tracking jobs,
� manager maintains job queue, serves workers.

Manager must be available to serve jobs.

Threads are lightweight processes

Collaborative workers launched by master thread:
� communication overhead replaced by memory sharing,
� job queue updated in critical section using locks.

With MPI, we worry about communication overhead.
With threads, memory (de)allocation must be in critical sections.

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 14 / 42

Quality Up in Polynomial Homotopy Continuation

1 Problem Statement
solving polynomial systems accurately
using quad doubles
path tracking on multicore computers

2 Exploratory Computations
cost overhead of arithmetic
polynomial system evaluation with many threads
multithreaded linear system solving

3 Applications
version 2.3.59 of PHCpack
maximum likelihood degree of Gaussian cycles

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 15 / 42

Cost Overhead of Arithmetic

Solve 100-by-100 system 1000 times with LU factorization:

type of arithmetic user CPU seconds

double real 2.026s
double complex 16.042s

double double real 20.192s
double double complex 140.352s

quad double real 173.769s
quad double complex 1281.934s

Fully optimized Ada code on one core of 3.2 Ghz Intel Xeon.

Overhead of complex arithmetic: 16.042/2.026 = 7.918,
140.352/20.192 = 6.951, 1281.934/173.769 = 7.377.

Overhead of double double complex: 140.352/16.042 = 8.749.

Overhead of quad double complex: 1281.934/140.352 = 9.134.

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 16 / 42

an academic benchmark: cyclic n-roots

The system

f (x) =

fi =
n=1∑
j=0

i∏
k=1

x(k+j)mod n = 0, i = 1,2, . . . ,n − 1

fn = x0x1x2 · · · xn−1 − 1 = 0

appeared in

G. Björck: Functions of modulus one on Zp whose Fourier
transforms have constant modulus. In Proceedings of the Alfred Haar
Memorial Conference, Budapest, pages 193–197, 1985.

J. Backelin and R. Fröberg: How we proved that there are exactly 924
cyclic 7-roots. In ISSAC’91 proceedings, pages 101-111, ACM, 1991.

very sparse, well suited for polyhedral methods

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 17 / 42

Newton’s Method with QD
Refining the 1,747 generating cyclic 10-roots is pleasingly parallel.

double double complex
#workers real user sys speedup

1 4.818s 4.790s 0.015s 1
2 2.493s 4.781s 0.013s 1.933
4 1.338s 4.783s 0.015s 3.601
8 0.764s 4.785s 0.016s 6.306

quad double complex
#workers real user sys speedup

1 58.593s 58.542s 0.037s 1
2 29.709s 58.548s 0.054s 1.972
4 15.249s 58.508s 0.053s 3.842
8 8.076s 58.557s 0.058s 7.255

For quality up: compare 4.818s with 8.076s.
With 8 cores, doubling accuracy in less than double the time.

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 18 / 42

the quality up factor

Compare 4.818s (1 core in dd) with 8.076s (8 cores in qd).
With 8 cores, doubling accuracy in less than double the time.

The speedup is close to optimal: how many cores would we need to
reduce the calculation with quad doubles to 4.818s?

8.076
4.818

× 8 = 13.410 ⇒ 14 cores

Denote y(p) = Qp/Q1 and assume y(p) is linear in p.

We have y(1) = 1 and y(14) = 2, so we interpolate:

y(p)− y(1) =
y(14)− y(1)

14 − 1
(p − 1).

and the quality up factor is y(8) = 1 +
7

13
≈ 1.538.

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 19 / 42

Multitasking Newton’s method

Often one path requires extra precision.

Computations in Newton’s method consists of
1 evaluate the system and the Jacobian matrix;
2 solve a linear system to update the solution.

Questions:
1 how large systems must be to allow speedup?
2 synchronization issues with LU factorization?

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 20 / 42

Quality Up in Polynomial Homotopy Continuation

1 Problem Statement
solving polynomial systems accurately
using quad doubles
path tracking on multicore computers

2 Exploratory Computations
cost overhead of arithmetic
polynomial system evaluation with many threads
multithreaded linear system solving

3 Applications
version 2.3.59 of PHCpack
maximum likelihood degree of Gaussian cycles

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 21 / 42

Polynomial System Evaluation
Need to evaluate system and its Jacobian matrix. Running example:
30 polynomials, each with 30 monomials of degree 30 in 30 variables
leads to 930 polynomials, with 11,540 distinct monomials.
We represent a sparse polynomial

f (x) =
∑
a∈A

caxa, ca ∈ C \ {0}, xa = xa1
1 xa2

2 · · · xan
n ,

collecting the exponents in the support A in a matrix E , as

F (x) =
m∑

i=1

cixE[ki ,:], ci = ca, a = E [ki , :]

where k is an m-vector linking exponents to rows in E : E [ki , :] denotes
all elements on the ki th row of E . Storing all values of the monomials
in a vector V , evaluating F (and f) is equivalent to an inner product:

F (x) =
m∑

i=1

ciVki
, V = xE .

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 22 / 42

Polynomial System Evaluation with Threads

Two jobs:
1 evaluate V = xE , all monomials in the system;
2 use V in inner products with coefficients.

Our running example: evaluating 11,540 monomials of degree 30
requires about 346,200 multiplications.
Since evaluation of monomials dominates inner products,
we do not interlace monomial evaluation with inner products.

Static work assignment: if p threads are labeled as 0,1, . . . ,p − 1,
then i th entry of V is computed by thread t for which i mod p = i .

Synchronization of jobs is done by p boolean flags.
Flag i is true if thread i is busy.
First thread increases job counter only when no busy threads.
Threads go to next job only if job counter is increased.

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 23 / 42

Speedup and Quality Up for Evaluation
930 polynomials of 30 monomials of degree 30 in 30 variables:

double double complex
#tasks real user sys speedup

1 1m 9.536s 1m 9.359s 0.252s 1
2 0m 37.691s 1m 10.126s 0.417s 1.845
4 0m 21.634s 1m 10.466s 0.753s 3.214
8 0m 14.930s 1m 12.120s 1.711s 4.657

quad double complex
#tasks real user sys speedup

1 9m 19.085s 9m 18.552s 0.563s 1
2 4m 43.005s 9m 19.402s 0.679s 1.976
4 2m 24.669s 9m 20.635s 1.023s 3.865
8 1m 21.220s 9m 26.120s 2.809s 6.884

Speedup improves with quad doubles. Quality up: with 8 cores
overhead reduced to 17%, as 81.220/69.536 = 1.168.

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 24 / 42

the quality up factor

8 cores reduced overhead to 17%, as 81.220/69.536 = 1.168.

The speedup is close to optimal: how many cores would we need to
reduce the calculation with quad doubles to 69.536s?

81.220
69.536

× 8 = 9.344 ⇒ 10 cores

Denote y(p) = Qp/Q1 and assume y(p) is linear in p.

We have y(1) = 1 and y(10) = 2, so we interpolate:

y(p)− y(1) =
y(10)− y(1)

10 − 1
(p − 1).

and the quality up factor is y(8) = 1 +
7
9
≈ 1.778.

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 25 / 42

Quality Up in Polynomial Homotopy Continuation

1 Problem Statement
solving polynomial systems accurately
using quad doubles
path tracking on multicore computers

2 Exploratory Computations
cost overhead of arithmetic
polynomial system evaluation with many threads
multithreaded linear system solving

3 Applications
version 2.3.59 of PHCpack
maximum likelihood degree of Gaussian cycles

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 26 / 42

Multithreaded LU factorization

Routines in PHCpack to solve linear systems are based
on ZGEFA and ZGESL of LINPACK.

The multithreaded version of LU factorization does pivoting,
synchronizing jobs with busy flags
and a column counter updated by first thread.

For good computational results for our first multithreaded
implementation, the dimension needs to be around 80.

Because LU is O(n3), backsubstitution is O(n2), and n 	 p,
multithreaded LU still dominates the total cost.

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 27 / 42

Speedup and Quality up for Multithreaded LU
1000 times LU factorization of 80-by-80 matrix:

double double complex
#tasks real user sys speedup

1 1m 8.173s 1m 8.074s 0.131s 1
2 0m 36.712s 1m 13.061s 0.249s 1.857
4 0m 21.565s 1m 25.035s 0.455s 3.161
8 0m 20.986s 1m 42.156s 2.270s 3.248

quad double complex
#tasks real user sys speedup

1 10m 12.216s 10m 11.900s 0.311s 1
2 5m 12.753s 10m 24.774s 0.477s 1.958
4 2m 42.653s 10m 48.795s 0.699s 3.764
8 1m 33.234s 12m 17.653s 1.930s 6.566

Acceptable speedups with quad doubles. Quality up: with 8 cores,
less than twice the time to double accuracy.

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 28 / 42

the quality up factor

Compare 68.173s (1 core in dd) with 93.234s (8 cores in qd).
With 8 cores, less than twice the time to double accuracy.

The speedup is close to optimal: how many cores would we need to
reduce the calculation with quad doubles to 68.173s?

93.234
68.173

× 8 = 10.941 ⇒ 11 cores

Denote y(p) = Qp/Q1 and assume y(p) is linear in p.

We have y(1) = 1 and y(11) = 2, so we interpolate:

y(p)− y(1) =
y(11)− y(1)

11 − 1
(p − 1).

and the quality up factor is y(8) = 1 +
7

10
= 1.7.

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 29 / 42

projected speedup for tracking one path

Running standalone C code by Genady Yoffe.

40 variables;

unified support of 200 monomials;

degree of monomials: 40 on average, 80 is maximum;

1000 Newton iterations.

polynomial row back total
#threads evaluation reduction substitution time speedup

1 35.732s 4.849s 0.197s 40.778s 1
2 17.932s 3.113s 0.100s 21.145s 1.928
4 9.248s 1.824s 0.062s 11.134s 3.662
8 4.775s 1.349s 0.053s 6.177s 6.602

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 30 / 42

what have we learned?

Results published in the PASCO 2010 proceedings.
(PASCO = Parallel Symbolic Computation)

1 Cost overhead of double double ∼ complex arithmetic.

2 Effective for multithreading: we get quality up.

3 On running a multithreaded Newton’s method.
Experimentally we determined threshold dimensions,
i.e. lower bounds on n for which good speedup.

� large degrees: system evaluation dominates
� low degrees: linear algebra becomes more important

Both evaluation and linear solving ought be multithreaded.

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 31 / 42

Quality Up in Polynomial Homotopy Continuation

1 Problem Statement
solving polynomial systems accurately
using quad doubles
path tracking on multicore computers

2 Exploratory Computations
cost overhead of arithmetic
polynomial system evaluation with many threads
multithreaded linear system solving

3 Applications
version 2.3.59 of PHCpack
maximum likelihood degree of Gaussian cycles

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 32 / 42

version 2.3.59 of PHCpack

PHC = Polynomial Homotopy Continuation

Version 1.0 archived as Algorithm 795 by ACM TOMS (1999).

Implements many homotopy algorithms of numerical algebraic
geometry: witness cascades, monodromy loops, diagonal
homotopies.

Since v2.3.13, contains a translation of MixedVol
ACM TOMS Algorithm 846 by T. Gao, T.Y. Li, and M. Wu.

Mixed volumes give a generically sharp bound on the number of
isolated solutions of a polynomial system.

Latest version allows path tracking with quad doubles.

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 33 / 42

option phc -t8

-t#: use # cores (since v2.3.45)
Path tracking on one core:

$ time phc -p < gcn6_input1
...
real 0m5.423s
user 0m5.393s
sys 0m0.010s

Using 8 cores:

$ time phc -p -t8 < gcn6_input8
...
real 0m0.716s
user 0m5.298s
sys 0m0.010s

Speedup: 5.423/0.716 = 7.574.

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 34 / 42

Quality Up in Polynomial Homotopy Continuation

1 Problem Statement
solving polynomial systems accurately
using quad doubles
path tracking on multicore computers

2 Exploratory Computations
cost overhead of arithmetic
polynomial system evaluation with many threads
multithreaded linear system solving

3 Applications
version 2.3.59 of PHCpack
maximum likelihood degree of Gaussian cycles

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 35 / 42

Gaussian Cycles

Joint with Elizabeth Gross and Sonja Petrovic, we test a Macaulay 2
interface to PHCpack on a conjecture of Algebraic Statistics.

In Lectures on Algebraic Statistics by Mathias Dtron, Bernd Sturmfels,
and Seth Sullivant, §7.4, on page 159:
The maximum likelihood degree of Gaussian cycles is conjectured as

D = (m − 3)2m−2 + 1, m ≥ 3.

The D corresponds to the #solutions of a polynomial system.

n N D mv #s
6 21 49 75 67
7 28 129 291 230
8 36 321 1111 791

N = #equations, #s = #solutions found by phc (filtering needed)

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 36 / 42

before root refinement
omitted y_ variables

x_11 : -3.34344129151011E-04 -5.60519385729927E-45
x_12 : 1.70370450926857E-02 -2.22852983315719E-45
x_16 : 1.16954628340704E-01 3.10037285231866E-44
x_23 : 1.28889601144867E-02 -2.67122519761918E-45
x_22 : 4.62658403122844E-04 1.45603668558751E-45
x_33 : 3.64108127933572E-03 1.19110369467609E-44
x_34 : 2.06799476327270E-02 -5.16728808719776E-45
x_44 : 7.51219679287584E-02 -1.46698432984004E-45
x_45 : -1.67825225482329E-01 1.11337542048308E-44
x_55 : 3.58633076643083E-01 -3.69592469965671E-44
x_56 : 1.27092346941179E-01 3.50324616081204E-44
x_66 : 4.21600700695106E-16 -6.41094047428604E-44

== err : 3.642E-13 = rco : 7.255E-06 = res : 4.175E-15 ==

res: residual, rco: estimate for inverse condition number
err: last ||∆x|| of Newton’s method (forward error)

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 37 / 42

after root refinement

x_11 : -3.34344129150907004109281610347907E-04 2.8E-115
x_12 : 1.70370450926856848004641169548577E-02 3.3E-115
x_16 : 1.16954628340704181266851795666307E-01 -3.2E-114
x_23 : 1.28889601144866492235650103332816E-02 2.4E-115
x_22 : 4.62658403122865648261517690437415E-04 -1.7E-115
x_33 : 3.64108127933577558290005805968170E-03 -1.1E-114
x_34 : 2.06799476327269517000997598679482E-02 4.3E-115
x_44 : 7.51219679287583500940686265623687E-02 2.7E-115
x_45 : -1.67825225482328973775281171655915E-01 -1.5E-114
x_55 : 3.58633076643082868856422413323370E-01 4.4E-114
x_56 : 1.27092346941178999440746195262839E-01 -3.7E-114
x_66 : 9.20047233333820784321488685038337E-33 6.4E-114

== err : 8.612E-30 = rco : 7.256E-06 = res : 2.219E-31 ==

So we see x_66 → 0.
Removing zero component solutions leads to 57 > 49.

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 38 / 42

Multiprecision Path Tracking

Preliminary results on tracking 75 paths in C
21:

tolerance cpu time factor

double precision 10−9 5s 1.0
double double precision 10−24 3m 46s 45.2

quad double precision 10−56 5h 25m 54s 3910.8

The tolerance for the Newton corrector is quite severe.

The factor in the last column indicates the number of cores needed
(assuming optimal speedup) for the quality up.

D. J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler:
Adaptive multiprecision path tracking. SIAM J. Numer. Anal.,
46(2):722–746, 2008.

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 39 / 42

what about solutions at ∞?
Ending at t = 9.99999440671979E-01 (instead of at 1.0E+0):

x_11 : 9.99154196066947E+11 -1.79578484575369E+12
x_12 : -3.25398381747128E+11 5.84840142867464E+11
x_16 : -2.33017905464342E-01 -9.38765307623007E-08
x_23 : -1.72599534843489E+10 3.10213955765446E+10
x_22 : 9.91239501799544E+10 -1.78155970975242E+11
x_33 : 4.13682158858258E+11 -7.43512768330724E+11
x_34 : -2.76524505265030E+11 4.96998706004711E+11
x_44 : 1.67257759515064E+11 -3.00613104681477E+11
x_45 : 2.85281580872580E-02 6.03222168261452E-09
x_55 : 2.21326620480882E-02 7.85856608283369E-10
x_56 : 8.97318994140819E-02 1.26871436234461E-08
x_66 : 3.63797800506886E-01 8.99568864764429E-08

== err : 1.196E+11 = rco : 2.552E-29 = res : 1.588E+04 =

Direction of path gives (−1,−1,0,−1,−1,−1,−1,−1,0,0,0,0, . . .)
(omitting y_) as leading powers of Puiseux expansion.

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 40 / 42

running polyhedral endgames

For a nonzero vector v and a system f , the initial form inv(f) consists of
those monomials of f that make the minimal inner product with f .

Bernshteı̌n’s second theorem: solutions at ∞ correspond to solutions
in (C∗)n of inv(f) for some v �= 0.

In a polyhedral endgame (joint with Birk Huber 1998) we compute the
direction v of a diverging path as this direction defines inv(f).

For high winding numbers, the endgame operation range may be zero
if the working precision is not extended.

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 41 / 42

an initial form system, for n = 6
(40883/4050)*x_11 + (175747/5670)*x_12;
x_23*y_13 + (40883/4050)*x_12 + (175747/5670)*x_22;
y_13*x_33 + x_34*y_14 + (175747/5670)*x_23;
y_13*x_34 + y_14*x_44;
y_14*x_45 + y_15*x_55 + (9217/2268)*x_56;
y_15*x_56 + (40883/4050)*x_16 + (9217/2268)*x_66;
(175747/5670)*x_12 + (2293/70)*x_23 + (426491/3969)*x_22;
x_34*y_24 + (426491/3969)*x_23 + (2293/70)*x_33;
x_44*y_24 + x_45*y_25 + (2293/70)*x_34;
x_55*y_25 + x_56*y_26; x_56*y_25 + x_66*y_26;
(2293/70)*x_23 + (7173/400)*x_33 + (9913/400)*x_34;
x_45*y_35 + (7173/400)*x_34 + (9913/400)*x_44;
x_55*y_35 + x_56*y_36; x_56*y_35 + x_66*y_36;
(9913/400)*x_34 + (16389/400)*x_44;
x_56*y_46 + (16389/400)*x_45 + (38897/2520)*x_55;
x_16*y_14 + x_66*y_46 + (38897/2520)*x_56;
(38897/2520)*x_45+(2171425/254016)*x_55+(18727/4536)*x_56-1
x_16*y_15 + (2171425/254016)*x_56 + (18727/4536)*x_66;
(9217/2268)*x_16+(18727/4536)*x_56+(30577/7056)*x_66-1;

Jan Verschelde (UIC) Quality Up in Continuation Hybrid Methodologies 42 / 42

