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adaptive step control in predictor-corrector methods

To solve a polynomial system f (x) = 0, the homotopy
h(x , t) = γ(1− t)g(x) + t f (x) = 0, t ∈ [0,1],

defines solution paths x(t) satisfying h(x(t), t) = 0, starting at the start
solutions of g(x) = 0. Paths x(t) are regular, for a random γ, for t < 1.
An a posteriori step control uses feedback loops:

∆t := β∆t
- predictor - corrector -t

6

‖h(y(∆t),∆t)‖ > α

t
6

‖h(z(∆t),∆t)‖ > ε

Variable step size ∆t control in predictor-corrector methods:
∆t is too large: divergence and/or path jumping.
∆t is too small: inefficient, we care only about x(1).
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schematic of our a priori adaptive step control
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∆t = min(∆t1,∆t2)

Problem: compared to the a posteriori adaptive step control,
the cost overhead factor is O(n), for n-dimensional systems.
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error analysis of a lower triangular block Toeplitz solver
Solving (A0 + A1t + A2t2 + · · ·+ Ai t i)(x0 + x1t + x2t2 + · · ·+ xi t i)

= (b0 + b1t + b2t2 + · · ·+ bi t i)
leads to a lower triangular block system:

A0
A1 A0
A2 A1 A0
...

...
...

. . .
Ai Ai−1 Ai−2 · · · A0




x0
x1
x2
...
xi

 =


b0
b1
b2
...
bi

 .

Let κ be the condition number of A0. Let ‖A0‖ = ‖x0‖ = 1, ‖xi‖ ≈ ρi .
In our context, ρ ≈ 1/R, where R is the convergence radius.

If ‖Ai‖ ≈ ρi , then
‖∆xi‖
‖xi‖

≈ κi+1εmach, and accuracy is lost.

With multiple double precision, a small εmach gives accurate results.
Problem: multiple double precision causes a cost overhead factor.
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parallel algorithms to compute estimates C and R
our a priori adaptive set control algorithm is justified in arXiv:1909.04984v2

C estimates the distance to the nearest different solution path.

C =
2σn(J)√

σ2
1,1 + σ2

2,1 + · · ·+ σ2
n,1

,

where
σn(J) is the smallest singular value of the Jacobian J,
σk ,1 is the largest singular value of the Hessian
of the k -th polynomial, in a system with n equations.

R estimates the radius of convergence of the power series.

Applying the theorem of Fabry, R is computed as the ratio of the moduli
of two consecutive coefficients in the series, truncated at d :

x(t) = c0 + c1t + c2t2 + · · ·+ cd td , z = cd−1/cd , R = |z|,

where z estimates the location of the nearest singular parameter value.
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reverse mode of algorithmic differentiation

To evaluate and differentiate f = x1x2x3x4x5, proceed as follows:

1) forward products: x1x2 = x1?x2
x1x2x3 = x1x2?x3

x1x2x3x4 = x1x2x3?x4 = ∂f/∂x5
x1x2x3x4x5 = x1x2x3x4?x5 = f

2) backward products: x5x4 = x5?x4
x5x4x3 = x5x4?x3

x5x4x3x2 = x5x4x3?x2 = ∂f/∂x1

3) cross products: x1x3x4x5 = x1?x5x4x3 = ∂f/∂x2
x1x2x4x5 = x1x2?x5x4 = ∂f/∂x3
x1x2x3x5 = x1x2x3?x5 = ∂f/∂x4

For a product of n variables, with 3n − 5 multiplications,
we evaluate and compute all partial derivatives.
Hessians can be computed efficiently from the gradients.
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medium grained parallelism

To evaluate and differentiate a system of n polynomial equations,
we consider n jobs:

1 Evaluate each polynomial and its gradient.
2 Compute for each polynomial its Hessian matrix.

These n jobs can be computed independently from each other.

In case the polynomials differ much in size,
then dynamic load balancing improves the speedup.

The same type of job scheduling is applied in the other tasks:
1 Computing the rational approximations for the predictor.
2 Shifting the coefficients in the homotopy to reset to t = 0.
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solving a matrix series

We solve A(t)x(t) = b(t) for series x(t),
given A(t) = A0 + A1t + A2t2 + · · · and b(t) = b0 + b1t + b2t2 + · · · .

For example, for series truncated at degree 4:

A0x0 = b0

A0x1 = b1 − A1x0

A0x2 = b2 − A2x0 − A1x1

A0x3 = b3 − A3x0 − A2x1 − A1x2

A0x4 = b4 − A4x0 − A3x1 − A2x2 − A1x3.

First factor A0, F = Factor(A0) , and compute x0 = Solve(F ,b0).
1 update bk with bk − Akx0 simultaneously, k = 1,2,3,4.
2 x1 = Solve(F ,b1)

3 update bk with bk − Akx1 simultaneously, k = 2,3,4; etc...
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a pipelined algorithm to solve a matrix series

Let A(t)x(t) = b(t) be a series truncated to degree d .
1 F = Factor(A0)

2 x0 = Solve(F ,b0)

3 for k from 1 to d do
1 update b` with b` − A`xk simultaneously, for ` from k to d
2 xk = Solve(F ,bk )

With d threads, the speedup is then

d(d − 1)/2 + 2(d + 1)

2(d + 1)
= 1 +

d(d − 1)

4(d + 1)
.

As d →∞, this ratio equals 1 + d/4.
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one cyclic n-root, n = 64,96,128

Our computational experiments run on two 22-core 2.2 GHz Intel Xeon
E5-2699 processors in a CentOS Linux workstation with 256 GB RAM.

The proceedings paper reports detailed experimental times on
randomly generated problems data for all stages in the algorithm.

Let us focus on the cyclic n-roots problem:
x0 + x1 + · · ·+ xn−1 = 0

i = 2,4, . . . ,n − 1 :
n−1∑
j=0

j+i−1∏
k=j

xk mod n = 0

x0x1x2 · · · xn−1 − 1 = 0.

Problem setup: selected a generic point on a 7-dimensional surface for
n = 64,128, and on a 3-dimensional surface for n = 96.

All reported computations happen in quad double precision.
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estimating the distance to the nearest different path

p is the number of threads, S(p) is the speedup,
E(p) = S(p)/p is the efficiency, shown for p = 2,4,8,16,32,40:

Efficiency decreases for increasing p and increases for increasing n.
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estimating the radius of convergence of the series
p is the number of threads, S(p) is the speedup,
E(p) = S(p)/p is the efficiency, shown for p = 2,4,8,16,32,40,
in three groups, respectively for degrees d = 8,16,24:
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observed convergence of Newton’s method

Newton’s method on a truncated series, truncated to degree d ,
converges if the norm of the update ‖∆xd‖ is sufficiently small.

Let κ denote the estimated inverse of the condition number
of the Jacobian matrix A0.

‖∆xd‖
n κ d = 8 d = 16 d = 24
64 3.9E−05 4.6E−44 1.1E−24 4.1E−05
96 2.0E−04 1.4E−47 9.6E−31 7.3E−14

128 4.6E−06 2.2E−30 † †

†For n = 128, for d = 16 and 24, the largest maximum norm of the
update less than one occurs at the coefficients with t15 and equals
about 1.1E−01. So quad double precision is insufficient.
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conclusions

Parallel algorithms reduce the cost overhead factors caused by
1 our a priori adaptive step size control algorithm, and
2 multiple double precision.

The medium grained parallelism (at the polynomial level) is efficient
for a modest number of threads, and
improves for systems with a larger number of polynomials.

But quad double precision may not suffice
if many terms in the power series are required.
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