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@ numerical representation of an algebraic set
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Representing a Space Curve

Consider the twisted cubic:

y —x2=0
z-x3=0

Important attributes are dimension and degree:
@ dimension: cut with one random plane,
@ degree: #points on the curve and in the plane.
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Witness Set for a Space Curve

Consider the twisted cubic:

, y—-x2=0
{y—x =0 z-x3=0
z-x3=0 Co+C1X + Cpy + €32 =0

Intersect with a random plane ¢cg + ¢1X + Coy + €32 =0

— find three generic points on the curve.
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Generic Points on Algebraic Sets

A polynomial system f(x) = 0 defines an algebraic set f ~1(0) c C".

We assume
@ 11(0) is pure dimensional, k is codimension; and moreover
© f(x) = 0is a complete intersection, k = #polynomials in f.

For example, consider all adjacent minors of a general 2-by-3 matrix:

[ X11 X12 X13 ] F(x) = { X11X22 — X21X12 = 0
X21 X2 X3 X12X23 — X22X13 = 0
n=6, k=2 dim(f10))=n-k =4

To compute deg(f ~%(0)), add n — k general linear equations L(x) = 0
to f(x) = 0 and solve {f(x) = 0,L(x) = 0}.

— 4 generic points for all adjacent minors of a general 2-by-3 matrix.
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Intrinsic Coordinates save Work

Generic points for all adjacent minors of a general 2-by-3 matrix satisfy

(for random coefficients c¢;; € C): .
X11X22 — X21X12 = 0

X12X23 — X22X13 = 0
C10 + C11X11 + C12X12 + C13X13 + C14X21 + C15X22 + C1X23 = 0
C20 + C21X11 + C22X12 + C23X13 + C24X21 + Co5X22 + CoeX23 = 0
C30 + C31X11 + C32X12 + C33X13 + C34X21 + C35X22 + C3eXp3 = 0
C40 + C41X11 + C42X12 + C43X13 + Ca4X21 + Ca5X22 + CaeX23 = 0

L=%(0) is a 2-plane in C®, spanned by

X [ by | [ Va1 | [ Va1 | i '
X11 b1 Vll v21 b is offset point
12 2 12 22 V1,V orthonormal basis
X13 . b3 Vi3 V23
Xo1 | | ba T Vig e Va4 intrinsi
(&1, &2) intrinsic
X22 bs Vis Va5 coordinates
| X23 | _be_ L Vi | | Vo6
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A Commutative Diagram

@ f(x) = 0 a system of k polynomials in n variables x,
@ L(x) = 0 a system of n — k general linear equations in x,
@ b € C"is offset point, V = [vy Vo --- vi], VAV = |.

Intrinsic coordinates & = (£1,&2, ..., &) for x:
X=Db+&V1+8&Va+ - +&Vk =b +VE.
Use f(x = b + V&) = 0 to compute generic points:

IAxX]| k. AL

lL Ke )T( = Ke T
by K IIHAgé"‘H < K Laevl

We observe worsening of the numerical conditioning: K, > Kg.
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Sampling in Intrinsic Coordinates

Represent L via (b, V) and use intrinsic coordinates & € CK.

Moving from (b, V) to (c,W), as t goes from O to 1, homotopy:
i X= (1-t)b+tc + (1-t)V +tw) £ 0
moving offset point moving basis vectors -

Track paths &(t) via predictor-corrector methods.

Binomial expansion destroys sparse monomial structure of f.
For example, evaluate X;1x5? at x; = by + &vq and x; = by + &Vsp!

(Z < ail ) bil(ﬁlVl)al_i> (Z < 8}2 >bjz(§2V2)a2j) :
i=0 =0
In general: f(b + V(£ + Ag)) = f(b + V&) + Af, with very large ||Af]|.
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Local Intrinsic Coordinates

What if we could keep ||| small?

(by + &v1)™ (bp 4 &V2)®
_ (bj‘l +agbd vy + O(gf)) (bgz +ab® v, + 0(55))
= b*b3? + a;b b2 vy + @bty v, + O(E2, 6165, €3)
Now we have: f(b +V¢) = f(b) + Af,
where ||Af|| is O(||VE&]|) = O(||€]]) as V is orthonormal basis.

Use extrinsic coordinates of generic point as offset point for k-plane:
for d = deg(f~1(0)) and d generic points {z1,21,...,24}:

x=2z,+VE (=1,2,...,d.

The local intrinsic coordinates are defined by ({z1,2;,...,24},V).
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Origin and Assumptions

The problem has its origin in the implementation of
an intrinsic homotopy for intersecting algebraic varieties
J. Complexity 21(4):593-608, 2005 (with Sommese & Wampler).

Intrinsic coordinates were introduced to mitigate the doubling of the
number of variables in the diagonal homotopy.

Assumptions:
@ no rewriting of the equations for f(x) = O;
@ the algebraic set we sample is reduced,;
@ coefficients and solutions are well scaled; and
@ our working precision remains fixed.
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a Maple experiment

Via the companion matrix of a polynomial,
we relate the numerical conditioning of a root to that of an eigenvalue.

We use Li near Al gebr a[ Ei genCondi ti onNunber s] of Maple 12,
with default settings of the bal ance parameter, and
UseHar dwar eFl oat s settotrue.

We consider one sparse polynomial f (5 terms) in n = 10 variables, of
increasing degrees d, with coefficients on the complex unit circle.

10: d :=10: t := b5:

() -> exp(l=*stats[randomunifornf0,2+«Pi]](1)):
[seq(x[i],i=1..n)]:

X[ 1] ~d + randpol y( X, coef f s=c, degree=d- 1, t er ns=5)
sum(c()*x[i],i=1..n);

[>
[>
[> X :
[> f

+ 1l II 1 II
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Influence of Offset Point

Consider intrinsic coordinates once with and once without offset b:

x=b+vf and x=V¢,

b,veC",

With f(v&) = 0 all coefficients are on the complex unit circle.
With f(b + v§) = 0, the offset b causes the variation in the condition
numbers. The table displays inverse condition numbers:

d

f(b+vE)=0
largest smallest

f(v§)=0

largest smallest

ratios of ratios of
smallest largest

10
20
30
40

5.9e-01 9.0e-02
2.8e-01 1.8e-03
2.8e-01 6.2e-05
4.5e-01 7.1le-06

8.8e-01 4.0e-01
8.9e-01 3.3e-01
9.5e-01 7.3e-02
9.7e-01 1.9e-01

6. 6e+00 2.2e+00
1.6e+02 2. 7e+00
4.5e+03 1.3e+01
6. 3e+04 5.8e+00

The conditioning for f(b + v&) = 0 worsens for increasing degree d,
whereas for f(v{) = 0, all roots of f(v{) = 0 are well conditioned.

Yun Guan and Jan Verschelde (UIC) Local Intrinsic Coordinates

FoCM 2011 16/44




Global versus Local

To compare the conditioning of global intrinsic with local intrinsic
coordinates, we first solve f(b + v¢) = 0 and take one root, say ¢ = z.

Thenletb; =b + vz sof(b; + v&) = 0 has one solution { =0
corresonding to z.

d f(b+veg)=0 f(b, +v&) =0

largest 2nd largest smallest largest 2nd largest smallest
10 | 5.9e-01 4.7e-01 6.2e-02 |1.0e+00 2.8e-03 2.0e-06
20| 4.0e-01 3.3e-01 6.7e-03 | 1.0e+00 9.9e-06 7.0e-11
30 | 2.5e-01 1.1e-01 8.1e-04 | 1.0e+00 4.0e-08 3.4e-11
40 | 5.6e-01 2.4e-01 1.4e-04 | 1.0e+00 1.5e-08 3.9e-11

For growing degree d, the condition of z of f(b; + v&) = 0is 1. 0e+00,
while the condition of other roots worsens.
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9 Evaluation and Root Finding

@ the numerical condition of polynomial evaluation
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Numerical Polynomial Evaluation

Definition (Demmel 1997, Applied Linear Algebra)

The relative condition number to evaluate a polynomial p of degreed in one

variable x with complex coefficientsis
d .
> leix'| d

= _ i _
cond(p, x) = el for p(x) ;CIX with ¢ € C.

Observe:
® At p(x) = 0: cond(p,x) = oo, anill-posed problem.

@ For bounded cond(p, x), we evaluate at x: |x| ~ 1.
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Global versus Local

We compare evaluating a polynomial p
© atx =b+v¢, forrandomb,v € C, |b| =1, |v| = 1; and
Q@ atx =z +vh,withv € Casaboveand h: 0 < |h| < 1.
With 0 < |h| < 1, we neglect O(h?) terms.
The equation b + v¢ = z 4 vh defines the relation between £ and z.
Lemma (monomial evaluation)
Ford > 1, |b| =1, |v| =1, |z| =1,and 0 < |h| < 1, the ratio

cond(x¢,x = b + v¢) 3d
cond(x4,x =z +vh) — 1—0(h)

compares the condition of evaluating x¢ as a polynomial in &
to x9 as a polynomial in h.

Proof Idea: apply binomial expansion.

Yun Guan and Jan Verschelde (UIC) Local Intrinsic Coordinates FoCM 2011 20/ 44



Polynomials in one Variable

Proposition
d .
Letp=> cx". For|b| =1, |v| =1, |z| =1, [p(z)| > |,

i=0
d .
> leif3!

cond(p,x =b+ve) _ 5

: < )
and0 < |h| < 1 cond(p.x =z 1+ vh) = [pz)]—O(R)

Proof Idea: apply triangle inequalities.

Corollary

cond(p,x = b + v¢) 1 sl g
cond(p,x =z +vh) = 2|p(z)| — O(h)
compares the condition of evaluating p as a polynomial in £

to p as a polynomial in h.

For |cj| = 1in p, the ratio
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Polynomials in several Variables

Definition
The relative condition number to evaluate a sparse polynomial f inn
variables, with support set A € N, #A < oo, is

Z |Cax?!

acA

cond(f,x) = ——+—,
) =01
for

f(x) =) cax?, cCa€C\{0}, x* =x{x52 - x3n.
acA

The degree of f is

deg(f) :=max(a; +az +---+an).
acA
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Global versus Local

We compare evaluating a sparse polynomial f at x = b + v¢
to evaluating f at x = z + vh.

Theorem
Letf = "cax® For|bj| =1, [vi| =1, |z] =1,i =1,2,...,n,
acA

If(z)| > |h|,and 0 < |h| <« 1:

5 fagetec i
cond(f,x = b + v¢) - acA

cond(f,x =z+vh) =  |f(z)| — O(h)

Proof Idea: apply binomial expansion and triangle inequalities.
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Roots as Eigenvalues

We define the condition number of roots of a polynomial in one variable
via the condition numbers of the eigenvalues of the companion matrix.

Definition (Tyrtyshnikov 1997, numerical analysis textbook)

Let C, be the companion matrix of a polynomial p in one variable x and with
complex coefficients.

Solutionsto p(x) = 0 are eigenvalues denoted by z with corresponding right
eigenvectorsr € C": Cpr = zr and left eigenvectors g € C": q"C, = gH'z.
The condition number x(p, z) of a zero z of p with corresponding left and
right eigenvectors g, andr; is

w(p.2) = lad'r,|
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Roots of Unity

We consider polynomials with perfectly conditioned roots.

Lemma

Consider p = x% — 1. For all z, p(z) = 0, we have x(p,z) = 1. J

Proof Idea: eigenvectors are powers of a root.
Notes:

@ With eigenvalues we ignore the sparsity of p.
@ Distances between the roots decrease as d increases.

@ Sparse condition numbers are ¢/d for perturbations .

See Questions of numerical condition related to polynomials
[Gautschi 1984].
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Perturbed Roots of Unity

Lemma

Letv € C, |v| =1,and h, 0 < |h| < 1 consider p = (x +vh)d — 1,
For all z, p(z) = 0 we have x(p,z) = 1+ O(h).

Proof Idea: view companion matrix of p as Cp(h) = Cp, + C1h + O(h?).

Consider p(x) = (b +vx)4 =1 =0
for constants b and v on the complex unit circle.
Our notion of numerical conditioning is algebraic, not geometric.

In the geometric point of view, the roots of p compared
to those of x¢ — 1 are merely translated.

As this translation preserves the distance between the roots
one would not expect a worsening of the condition number.
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Shifted Roots of Unity

Lemma
Letb,v € C, |b| =1, |v| = 1, and consider p = (b + xv)9 — 1.

9 (d
For all z, p(z) = 0 we have x(p,z) < d %_

Proof Idea: apply the theorem of Bauer-Fike and Maple 12 to bound a

d 2
spectral radius via Z < d > _ 4°T(d +1/2)

S\ VaAld+1)”
d
Because log, < %) increases fairly linearly and is
d
bounded by d — 1, we replace 47r(d +1/2) by 2d-1,

Jar(d + 1)
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Comparing Condition Numbers

The lemmas imply

Theorem

Letb,v € C, |b| =1, |v| =1, and h such that 0 < |h| <« 1.
Then, the ratio

£ ((b+wx)! —1,2)

K ((x +vh)d —1,2) S2T e

compares the conditioning of the solutions of (b 4+ vx)4 —1 =0
with the solutions of (x +vh)d —1 = 0.

The upper bound of the theorem is attained for the case of
(-1 +x)¥ — 1 = 0 where 2 is a solution and powers of 2
appear in the companion matrix.
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9 Improving the Numerical Conditioning
@ extrinsic, intrinsic, and local condition numbers
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an isolated Root of a Polynomial System

Definition (Rheinboldt, 1976)

Let f(x) = O be apolynomial system of n equations in n unknowns.
Denote the Jacobian matrix of f by J and let z € C" be an isolated solution.
Then, the relative condition number of the zero z as a solution of f(x) = 0 is

k(f,2) = |3 (2)]2]19 1 (2)]]2.

i.e.: k(f,z) isthe condition number of the Jacobian matrix of the polynomials
in the system evaluated at z.

v

Notes:
@ In Newton’s method we solve J¢(x)Ax = —f(x).

@ We have ||C||, = v/p(CHC) where p(-) is the spectral radius.
For univariate f, we use the companion matrix for C.

@ «(f,z) is local: for one solution z and particular: it depends on the
coefficients of f, determined by a coordinate system.
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Numerical Condition of generic Points

Definition (extrinsic, intrinsic, local condition number)

Let z € C" beageneric point on an (n — k)-dimensional component of
f~1(0), satisfying k linear equations L(z) = 0. Then, the relative extrinsic
condition number of z, as a generic point on f~1(0) N L is

ke(f,L,2) = w(f = (f,L),2).

Writing the solutions to the linear equationsL(x) =0 asx = b + V&,
for some offset point b and orthonormal matrix V.e C"*¥, we have

z =Db+ VE,, where &, aretheintrinsic coordinates of z. Then, the relative
intrinsic condition number of z, as a generic point of f~1(0) is

KI(fa bvvﬂz) = K’(f = f(b +V£Z)7£Z)
Therelative local intrinsic condition number of z as a generic point on

f~1(0)is
ke(f,V,2) = w(f =f(z 4+ VE), € = 0).

~
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the Test Equation in extrinsic Coordinates

Similar to x4 — 1 = 0, we consider the multivariable version

as test equationx®* —1 =0, a= (az,az,...,an).

Lemma

Letf =x2 —1=0,x%=x{'x3?---x3", denoted = a; +ap + -+ + an.

There is a choice for the coefficients of L defining a generic point z,
f(z) =0, L(z) = 0 so xg(f,L,z) <d?.

Our proof considers the Jacobian matrix of f(x) =0
with the coefficients of L(x) = 0 as indeterminates.

Note that z is not considered as given (and thus fixed), because
otherwise we could still obtain a badly scaled Jacobian matrix.
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the Test Equation in intrinsic Coordinates

We consider the condition of intrinsic coordinates of our test equation.

Lemma

Let z € C" be a generic point of f(Xx) = x® — 1 = 0, x® = x7*x5% - - - X",
d=a;+ay+---+an.

Let z = b + v&; for some offset point b and a vector v.

Then rz(f,b,v, &) < 24-1,

Apply repeated substitution to reduced to the univariate case

d-1 - 491 (d+1/2)
and use 2%~ for the expression NGCECESIE

The bound is pessimistic but is attained in bad cases.
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the Test Equation in local intrinsic Coordinates

Lemma

Consider x = z + v¢ for some vector v, ||v||; = 1, and z € C" a generic
point for f(x) = x® — 1. Then, x.(f,v,z) = 1.

To summarize:

Theorem
For a generic point z for the equation f(x) = x? — 1 = 0, with
d = deg(f), we have:

I{l:(f,V,Z) < Hg(f, L,Z) < HI(f7b7VaZ) < 2d_1a

where z lies on some generic line with offset b, direction v, and linear
equations L(x) = 0.
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9 Improving the Numerical Conditioning

@ arecentering algorithm and the numerical stability
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Sampling in Local Intrinsic Coordinates

Generic points {z;,2;,...,2q} are offset points for k-plane L
with directions in the orthonormal matrix V.

Moving from (z,,V) to (b, W), as t goes from 0 to 1, homotopy:

fx=1-t)z,+th+W¢g)=0
— only the offset point moves!

Instead of moving to b, let ¢ be the orthogonal projection of z,
onto the k-plane L.

For some step size h, consider:
f(x=2z,+h(c—2) +W¢g)=0

and apply Newton’s method to find the correction AE.
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Schematic of the new Sampling Algorithm

one predictor-corrector step
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pseudocode for one predictor-corrector step
Input: b € C", W = [wy Wy --- wy] € CK, W*W = |,
ze(C",f(z)=0,K(z)=0,h>0,¢>0,somelL.

Output: Z, f(Z) = 0: Z closer to L.

k
vi=z—b;  vi=v-) Wv)w; o vi=v/|v]];
i—1

Zi=z+hv, 2:=2, £:=0;
while ||f(Z + W¢)|| > e do

AE =F(Z+WE)/f(Z+WE);
£ =6+ AL
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Numerical Stability

For some step size h, we evaluate
f(x =z,4+h(c —zp)) =f(z;) + O(h) = O(h).
If step size h is too large, then Newton is unlikely to converge.
If step size h is too large, then f(x =z, + h(c — z;)) > h.
If f(x = z; + h(c — z¢)) > h, then reduce h immediately.

Do not wait for (costly) Newton corrector to fail.

We can control size of residual ||f(¢)|| to be always O(h).
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9 Improving the Numerical Conditioning

@ computational results on benchmark systems
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Implementation and Benchmark Systems

Available since version 2.3.53 of PHCpack

Algorithm 795: PHCpack: A general-purpose solver for polynomial systems
by homotopy continuation. ACM Trans. Math. Softw., 25(2):251-276, 1999.
http://ww. mat h. ui c. edu/ ~j an/ downl oad. ht m

Three classes, families of systems:

© all adjacent minors of a general 2-by-n matrix, n = 3,4,...,13
@ cyclic n-roots, n = 4, 8,9 (an academic benchmark)
© Griffis-Duffy platforms and other systems from mechanical design

Computational experimental setup:
@ given one set of generic points, generate another random k-plane
@ move the given set of generic points to the new random k-plane
@ check results for accuracy, #predictor-corrector steps, timings
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Computational Results

Characteristics of three families of polynomial systems:

\ polynomial system | n|n-k]| d |
1 Griffis-Duffy platform 8 1 40
2 cyclic 8-roots system 8 1 144
3 all adjacent minors of 2-by-11 matrix || 22 12 1,024

n: number of variables, k: codimension, d: degree

Sampling in global intrinsic/local intrinsic coordinates:

| system | #iterations | timings |
1 207/164 | 550/535 usec
2 319/174 5.3/3.2 sec
3 285/219 | 44.6/40.3 sec

Done on a Mac OS X 3.2 Ghz Intel Xeon, using 1 core.
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Conclusions

Advantages of using local intrinsic coordinates:

@ only offset point moves during sampling
@ keep sparse structure of the polynomials
@ control step size by evaluation

Applications to numerical algebraic geometry:
@ implicitization via interpolation
@ monodromy breakup algorithm
@ diagonal homotopies to intersect solution sets
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