
Programming Shared Memory Computers
part 1: introduction

Jan Verschelde†

University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science

http://www.math.uic.edu/˜jan
janv@uic.edu

https://pascal.math.uic.edu

Ada Europe 2021 Tutorial, 7 June 2021, online

†Supported by the National Science Foundation, grant DMS 1854513.

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 1 / 29

Outline

1 Overview
parallel shared memory computing
processes, threads, and memories

2 Ideal Parallel Computations
no synchronization and no communication
hello tasks!
a package to estimate ⇡

3 Exercises
compile, run, and evaluate
explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 2 / 29

Programming Shared Memory Computers

1 Overview
parallel shared memory computing
processes, threads, and memories

2 Ideal Parallel Computations
no synchronization and no communication
hello tasks!
a package to estimate ⇡

3 Exercises
compile, run, and evaluate
explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 3 / 29

parallel shared memory computing

Three main paradigms for parallel computing:
1 Distributed memory, e.g.: message passing.
2 Shared memory uses multithreading.
3 Accelerated, mainly with Graphics Processing Units.

This tutorial concerns multithreading. Our point of view is

parallel = concurrent + speedup

where

speedup =
sequential execution time

parallel execution time
.

Examples will run in a couple of seconds on one single thread.
Our goal: make the examples run faster.

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 4 / 29

computational setup

The GNAT Community compiler is our main tool.

A collection of compact code is posted on github:

https://github.com/janverschelde/AdaEuropeTutorial

A 44-core computer is available at
https://pascal.math.uic.edu

after a sign up process which requires a valid email address.

Launch a Terminal from the new pull down menu.

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 5 / 29

overview of the tutorial

The tutorial takes four hours:
1 ideal parallel computation,
2 load balancing with the work crew model,
3 pipelined computation,
4 synchronization with a shared data structure.

There are four folders, one for each part, at

https://github.com/janverschelde/AdaEuropeTutorial

and browsing through the code is needed to complete the slides.

Every hour has two parts:
1 a lecture on the main concepts;
2 suggested experimentation and exercises.

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 6 / 29

recommended reading

Alan Burns and Andy Wellings:
Concurrent and Real-Time Programming in Ada 2005.
Cambridge University Press, 2007.

John W. McCormick, Frank Singhoff, and Jerome Hugues:
Building Parallel, Embedded, and Real-Time Applications with
Ada. Cambridge University Press, 2011.

John Barnes: Ada 2012 Rationale.
The Language. The Standard Libraries.
LNCS 8338, Springer, 2013.

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 7 / 29

Programming Shared Memory Computers

1 Overview
parallel shared memory computing
processes, threads, and memories

2 Ideal Parallel Computations
no synchronization and no communication
hello tasks!
a package to estimate ⇡

3 Exercises
compile, run, and evaluate
explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 8 / 29

processes and threads

A thread is a single sequential flow within a process.

Multiple threads within one process share heap storage,
static storage, and code.
Each thread has its own registers and stack.

Threads share the same single address space and synchronization is
needed when threads access same memory locations.

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 9 / 29

single threaded process

process

memory

code

static

heap

registers

stack

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 10 / 29

multithreaded process

process thread

memory

code

static

heap

registers

stack

thread

registers

stack

thread

registers

stack

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 11 / 29

processes and threads

A thread is a single sequential flow within a process.

Multiple threads within one process share
heap storage, for dynamic allocation and deallocation,
static storage, fixed space,
code.

Each thread has its own registers and stack.

Difference between the stack and the heap:
stack: Memory is allocated by reserving a block of fixed size on
top of the stack. Deallocation is adjusting the pointer to the top.
heap: Memory can be allocated at any time and of any size.

Threads share the same single address space and synchronization is
needed when threads access same memory locations.

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 12 / 29

Programming Shared Memory Computers

1 Overview
parallel shared memory computing
processes, threads, and memories

2 Ideal Parallel Computations
no synchronization and no communication
hello tasks!
a package to estimate ⇡

3 Exercises
compile, run, and evaluate
explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 13 / 29

ideal parallel computations

Suppose we have a disconnected computation graph for 4 tasks.

0

in

out

1

in

out

2

in

out

3

in

out

The main thread launches four tasks.

If the work load is well balanced so all tasks end at the same time,
then we hope for an optimal speedup.

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 14 / 29

Monte Carlo simulations

We simulate by
repeatedly drawing samples along a distribution;
counting the number of successful samples.

By the law of large numbers,
the average of the observed successes converges to the expected
value or mean, as the number of experiments increases.

Estimating ⇡, the area of the unit disk:Z 1

0

p
1 � x2 dx =

⇡

4 -

6

&%
'$

Generate random uniformly distributed points with coordinates
(x , y) 2 [0, 1]⇥ [0, 1].

We count a success when x2 + y2  1.

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 15 / 29

Programming Shared Memory Computers

1 Overview
parallel shared memory computing
processes, threads, and memories

2 Ideal Parallel Computations
no synchronization and no communication
hello tasks!
a package to estimate ⇡

3 Exercises
compile, run, and evaluate
explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 16 / 29

hello tasks! specification

In a Terminal window, at the command prompt, type ./main.
$./main
Number of CPUs : 88
Launching tasks ...
Task 1 says hello.
Task 2 says hello.
Task 3 says hello.
Task 4 says hello.
Launched 4 tasks.
$

The package estimate_pi exports hello_tasks:

with number_types; use number_types;

package estimate_pi is

procedure hello_tasks (p : in integer64 := 4);

-- DESCRIPTION :
-- A "Hello world!" version for launching p tasks.

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 17 / 29

hello tasks! implementation in estimate_pi.adb
procedure hello_tasks (p : in integer64 := 4) is

task type worker (idnbr : integer64);

task body worker is
begin

Text_IO.Put_Line ("Task" & integer64’image (idnbr)
& " says hello.");

end worker;

procedure launch (i : in integer64) is

w : worker (i);

begin
if i < p then

launch (i + 1);
end if;

end launch;

begin
launch (1);

end hello_tasks;

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 18 / 29

the life cycle of a task
When do tasks start executing? When do tasks finish?
The life cycle of a task: ◆

✓
⇣
⌘born

?◆
✓

⇣
⌘ready

?◆
✓

⇣
⌘running

6

⇣⇣⇣⇣⇣⇣⇣⇣⇣)◆
✓

⇣
⌘waiting

�
�

� ◆
✓

⇣
⌘sleeping

@
@
@R◆

✓
⇣
⌘dead

PPPPPPPPPq◆
✓

⇣
⌘blocked

-

⇢
⇢
⇢
⇢
⇢
⇢
⇢
⇢
⇢
⇢⇢>

Z
Z

Z
Z

Z
Z
Z

Z
Z
ZZ}

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 19 / 29

Why does hello_tasks work?

We consider three stages:
1 Creation: task type worker (idnbr : integer64);

where the identification number idnbr is the task discrimant.

The i-th task is created when the variable w in
w : worker (i);

is elaborated.

2 Tasks activate after the elaboration of the declarative part.

3 Tasks execute immediate after a successful activation,
where execute means entering the ready state.

The parallelism happens because only the declarative part
needs to be elaborated for a task to execute.

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 20 / 29

hello tasks! in a main procedure

The file main.adb contains the call to the procedure:

with estimate_pi;

procedure main is
begin

estimate_pi.hello_tasks;
end main;

To obtain the code, type

git clone https://github.com/janverschelde/AdaEuropeTutorial

to make the executable main, at the command prompt, type
gnatmake main

to remove all generate files generated, type gnatclean main

and these statements are also in a makefile.

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 21 / 29

Programming Shared Memory Computers

1 Overview
parallel shared memory computing
processes, threads, and memories

2 Ideal Parallel Computations
no synchronization and no communication
hello tasks!
a package to estimate ⇡

3 Exercises
compile, run, and evaluate
explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 22 / 29

a package to estimate ⇡
package estimate_pi is

-- DESCRIPTION :
-- Exports a parallel estimator for pi.

freq1second : constant integer64 := 116_000_000;
-- constant frequency so the wall clock time equals one second

function incircle (x, y : float64) return Boolean;

-- DESCRIPTION :
-- Returns the outcome of (x*x + y*y <= 1.0).

procedure count
(seed : in out integer64; sum : in out integer64;
frequency : in integer64 := freq1second);

-- DESCRIPTION :
-- Counts the number of times a pair of two random numbers (x,y)
-- made incircle(x,y) true, for i in range 1..frequency.

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 23 / 29

the parallel count procedure
procedure parallel_count

(p : in integer64;
seeds : in out vector; sums : in out vector;
frequency : in integer64 := freq1second) is

task type worker (idnbr : integer64);

task body worker is
begin

count (seeds (idnbr), sums (idnbr), frequency);
end worker;

procedure launch (i : in integer64) is

w : worker (i);

begin
if i < p then

launch (i + 1);
end if;

end launch;

begin
launch (1);

end parallel_count;

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 24 / 29

the command line arguments

To experience parallelism, we have two parameters:
1 a multiple of the frequency number 116_000_000, and
2 the number of tasks,

passed at the command line, to measure the wall clock time.

$ time ./main 2 8
estimating 3.14159265358979E+00
estimate : 3.14157451293103E+00 error : 1.814E-05
frequency : 232000000 number of workers : 8

real 0m2.346s
user 0m17.892s
sys 0m0.004s
$

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 25 / 29

Programming Shared Memory Computers

1 Overview
parallel shared memory computing
processes, threads, and memories

2 Ideal Parallel Computations
no synchronization and no communication
hello tasks!
a package to estimate ⇡

3 Exercises
compile, run, and evaluate
explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 26 / 29

compile, run, and evaluate

Compile the code as gnatmake -O3 -gnatp main

with full optimization, suppressing all checks.

Compute the speedups with wall clock times.

Are the speedups as expected?

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 27 / 29

Programming Shared Memory Computers

1 Overview
parallel shared memory computing
processes, threads, and memories

2 Ideal Parallel Computations
no synchronization and no communication
hello tasks!
a package to estimate ⇡

3 Exercises
compile, run, and evaluate
explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 28 / 29

explorations and excursions

1 Consider applying a better random number generator.

2 Consider the estimation of the volume of the unit ball

⇡

6
=

Z 1

0

Z 1

0

q
1 � x2 � y2 dx dy

by generating random uniformly distributed points
(x , y , z) 2 [0, 1]⇥ [0, 1]⇥ [0, 1].

Jan Verschelde (UIC) Programming Shared Memory Computers Introduction 7 June 2021 29 / 29

Programming Shared Memory Computers

part 2: the work crew model

Jan Verschelde†

University of Illinois at Chicago

Department of Mathematics, Statistics, and Computer Science

http://www.math.uic.edu/˜jan

janv@uic.edu

https://pascal.math.uic.edu

Ada Europe 2021 Tutorial, 7 June 2021, online

†Supported by the National Science Foundation, grant DMS 1854513.

Jan Verschelde (UIC) Programming Shared Memory Computers Work Crew 7 June 2021 1 / 27

Outline

1 The Work Crew

collaborating tasks

an array of workers

2 Work Assignment

static: fix assignment before computations

dynamic: assign during the computations

semaphores to implement a critical section

3 Exercises

compile, run, and evaluate

explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Work Crew 7 June 2021 2 / 27

Programming Shared Memory Computers

1 The Work Crew

collaborating tasks

an array of workers

2 Work Assignment

static: fix assignment before computations

dynamic: assign during the computations

semaphores to implement a critical section

3 Exercises

compile, run, and evaluate

explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Work Crew 7 June 2021 3 / 27

the work crew model

Instead of the manager/worker model,

with threads we can apply a more collaborative model.

A computation performed by three threads in a work crew model:

-
time

set up

thread 0

thread 1

thread 2

clean up

If the computation is divided into many jobs stored in a queue,

then the threads grab the next job, compute the job,

and push the result onto another queue or data structure.

Important for memory management:

set up: all memory allocations, before the run,

clean up: all memory deallocations, after the run.

Jan Verschelde (UIC) Programming Shared Memory Computers Work Crew 7 June 2021 4 / 27

Programming Shared Memory Computers

1 The Work Crew

collaborating tasks

an array of workers

2 Work Assignment

static: fix assignment before computations

dynamic: assign during the computations

semaphores to implement a critical section

3 Exercises

compile, run, and evaluate

explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Work Crew 7 June 2021 5 / 27

an array of workers

Running a Hello tasks! on an array of workers:

$./main

Task 1 says hello with id workers(4)_0000000000F8B0E0.

Task 3 says hello with id workers(3)_0000000000F87AA0.

Task 2 says hello with id workers(1)_0000000000F80E20.

Task 4 says hello with id workers(2)_0000000000F84460.

$

The last output is obtained via

taskid : constant Ada.Task_Identification.Task_Id

:= Ada.Task_Identification.Current_Task;

which returns the identity of the task.

Jan Verschelde (UIC) Programming Shared Memory Computers Work Crew 7 June 2021 6 / 27

code for the Hello tasks!

procedure hello_tasks (p : in integer64 := 4) is

task type worker;

task body worker is

idnbr : integer64;

taskid : constant Ada.Task_Identification.Task_Id

:= Ada.Task_Identification.Current_Task;

begin

id_generator.get(idnbr);

Text_IO.Put_Line ("Task" & integer64’image (idnbr)

& " says hello with id "

& Ada.Task_Identification.Image(taskid) & ".");

end worker;

workers : array(1..p) of worker;

begin

null;

end hello_tasks;

Jan Verschelde (UIC) Programming Shared Memory Computers Work Crew 7 June 2021 7 / 27

the id_generator assigns unique numbers

protected id_generator is

procedure get (id : out integer64);

-- returns a unique identification number

private

next_id : integer64 := 1;

end id_generator;

protected body id_generator is

procedure get (id : out integer64) is

begin

id := next_id;

next_id := next_id + 1;

end get;

end id_generator;

Operations on data encapsulated by a protected object

are executed with mutually exclusive access.

Jan Verschelde (UIC) Programming Shared Memory Computers Work Crew 7 June 2021 8 / 27

Programming Shared Memory Computers

1 The Work Crew

collaborating tasks

an array of workers

2 Work Assignment

static: fix assignment before computations

dynamic: assign during the computations

semaphores to implement a critical section

3 Exercises

compile, run, and evaluate

explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Work Crew 7 June 2021 9 / 27

static work assignment

In a static work assignment, what a task computes is fixed in advance.

For example, to evaluate a definite integral, by four tasks:

Z
1

0

f (x)dx =

Z
1/4

0

f (x)dx

| {z }
task 1

+

Z
1/2

1/4

f (x)dx

| {z }
task 2

+

Z
3/4

1/2

f (x)dx

| {z }
task 3

+

Z
1

3/4

f (x)dx .

| {z }
task 4

Definite integrals are approximated by the composite trapezoidal rule:

Z
b

a

f (x)dx =
h

2

✓
f (a) + f (b)

◆
+ h

n�1X

i=1

f (a + i h), h =
b � a

n
.

As our running example, we use
⇡

4
=

Z
1

0

p
1 � x2 dx .

Jan Verschelde (UIC) Programming Shared Memory Computers Work Crew 7 June 2021 10 / 27

a recursive computation is more accurate

function recursive_rule

(f : access function (x : float64) return float64;

a,b : float64; n : integer64) return float64 is

result,middle : float64;

begin

if n = 1 then

result := (b-a)*(f(a) + f(b))/2.0;

else

middle := a + (b-a)/2.0;

result := recursive_rule(f,a,middle,n/2)

+ recursive_rule(f,middle,b,n/2);

end if;

return result;

end recursive_rule;

Jan Verschelde (UIC) Programming Shared Memory Computers Work Crew 7 June 2021 11 / 27

computing an approximation for ⇡

package Double_Elementary_Functions is

new Ada.Numerics.Generic_Elementary_Functions(float64);

function circle (x : float64) return float64 is

begin

return Double_Elementary_Functions.SQRT(1.0 - x**2);

end circle;

procedure run (nsteps : in integer64) is

approx : constant float64

:= recursive_rule(circle’access,0.0,1.0,nsteps);

est4pi : constant float64 := 4.0*approx;

With nsteps equal to 228 = 268, 435, 456,

the approximation has an error of 2.673E-13,

in about four seconds, 3.908 seconds wall clock time.

Jan Verschelde (UIC) Programming Shared Memory Computers Work Crew 7 June 2021 12 / 27

static work assignment

Typically, the granularity is coarse: #jobs = #tasks.

What every task does can be hard coded.

For the approximation of ⇡, task i approximates

Z
i h

(i�1)h

p
1 � x2 dx , h =

1

n
,

for i from 1 to p, where p is the number of tasks.

The i-th task writes its approximation in the i-th location

in a shared array.

Jan Verschelde (UIC) Programming Shared Memory Computers Work Crew 7 June 2021 13 / 27

encapsulation in a procedure

procedure run_workers (p : in integer64; results : out vector) is

step : constant Float64 := 1.0/Float64(p);

nsteps : constant integer64 := (2**28/p);

task type worker;

task body worker is

myid : integer64;

start,stop : float64;

begin

id_generator.get(myid);

start := float64(myid-1)*step;

stop := float64(myid)*step;

results(myid) := recursive_rule(circle’access,start,stop,nsteps);

end worker;

workers : array(1..p) of worker;

begin

null;

end run_workers;

Jan Verschelde (UIC) Programming Shared Memory Computers Work Crew 7 June 2021 14 / 27

Programming Shared Memory Computers

1 The Work Crew

collaborating tasks

an array of workers

2 Work Assignment

static: fix assignment before computations

dynamic: assign during the computations

semaphores to implement a critical section

3 Exercises

compile, run, and evaluate

explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Work Crew 7 June 2021 15 / 27

dynamic work assignment

Consider the scheduling of 8 jobs on 2 tasks:

serial

static

p = 2

dynamic

p = 2

Jan Verschelde (UIC) Programming Shared Memory Computers Work Crew 7 June 2021 16 / 27

a job queue

The state of the job queue is defined by

1 the number of jobs: nb,

2 the index to the next job to be executed: nextjob,

3 the work to be done by every job: work.

Variables in a program can be values or references to values.

work

1 2 3 4 5 6 7 8

nextjob 3

nb 8

Each task grabs the index to the next job.

The update of nextjob happens in a critical section.

Jan Verschelde (UIC) Programming Shared Memory Computers Work Crew 7 June 2021 17 / 27

Programming Shared Memory Computers

1 The Work Crew

collaborating tasks

an array of workers

2 Work Assignment

static: fix assignment before computations

dynamic: assign during the computations

semaphores to implement a critical section

3 Exercises

compile, run, and evaluate

explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Work Crew 7 June 2021 18 / 27

using a semaphore

procedure test_job_queue (p : in integer64 := 4; n : in integer64 := 17) is

nextjob : integer64 := 0;

sem : Semaphore.Lock;

task type worker;

task body worker is

idnbr,myjob : integer64;

begin

id_generator.get(idnbr);

loop

Semaphore.Request(sem);

nextjob := nextjob + 1; myjob := nextjob;

Semaphore.Release(sem);

exit when (myjob > n);

Text_IO.Put_Line ("Task" & integer64’image (idnbr) & " does job"

& integer64’image (myjob) & ".");

end loop;

end worker;

workers : array(1..p) of worker;

begin

null;

end test_job_queue;

Jan Verschelde (UIC) Programming Shared Memory Computers Work Crew 7 June 2021 19 / 27

a binary semaphore to define a critical section

Following AdaCore Gem #81 (www.adacore.com/gems/gem-81),

by Pat Rogers.

The GNAT.Semaphores package defines semaphore

abstractions, in terms of protected types.

A binary semaphore is an abstraction for a flag.

sem : Semaphore.Lock;

The flag indicates whether or not the semaphore is available.

Semaphore.Request(sem);

nextjob := nextjob + 1; myjob := nextjob;

Semaphore.Release(sem);

Jan Verschelde (UIC) Programming Shared Memory Computers Work Crew 7 June 2021 20 / 27

finer granularity of the jobs

Consider n = 17 jobs with p = 4 tasks.

Instead of 228/p for the job size in the static work assignment,

the job size is 228/n in the dynamic assignment.

The j-th job is to approximate

Z
j h

(j�1)h

p
1 � x2dx ,

for j = 1, 2, . . . , n, using 228/n for the number of steps.

We use the index i for a task and the index j for a job.

Jan Verschelde (UIC) Programming Shared Memory Computers Work Crew 7 June 2021 21 / 27

code for the worker task

task body worker is

myid,myjob : integer64;

start,stop : float64;

begin

id_generator.get(myid);

loop

Semaphore.Request(sem);

nextjob := nextjob + 1; myjob := nextjob;

Semaphore.Release(sem);

exit when (myjob > n);

start := float64(myjob-1)*step;

stop := float64(myjob)*step;

results(myid) := results(myid)

+ recursive_rule(circle’access,start,stop,nsteps);

end loop;

end worker;

Jan Verschelde (UIC) Programming Shared Memory Computers Work Crew 7 June 2021 22 / 27

a run with 17 jobs by 4 tasks

$ time ./main

The results :

1 : 1.97612345702311E-01

2 : 2.19402708891253E-01

3 : 1.90715989259139E-01

4 : 1.77667119544572E-01

Estimate for pi : 3.14159265358910E+00 error : 6.901E-13

real 0m0.681s

user 0m2.353s

sys 0m0.002s

$

Jan Verschelde (UIC) Programming Shared Memory Computers Work Crew 7 June 2021 23 / 27

Programming Shared Memory Computers

1 The Work Crew

collaborating tasks

an array of workers

2 Work Assignment

static: fix assignment before computations

dynamic: assign during the computations

semaphores to implement a critical section

3 Exercises

compile, run, and evaluate

explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Work Crew 7 June 2021 24 / 27

compile, run, and evaluate

Compile the code as gnatmake -O3 -gnatp main

with full optimization, suppressing all checks.

Compute the speedups with wall clock times.

Are the speedups as expected?

Jan Verschelde (UIC) Programming Shared Memory Computers Work Crew 7 June 2021 25 / 27

Programming Shared Memory Computers

1 The Work Crew

collaborating tasks

an array of workers

2 Work Assignment

static: fix assignment before computations

dynamic: assign during the computations

semaphores to implement a critical section

3 Exercises

compile, run, and evaluate

explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Work Crew 7 June 2021 26 / 27

explorations and excursions

In both the static and dynamic work assignments,

replace the computations with delay x statements,

where x is a random number, between 1 and 6.

Compare the wall clock time for the runs

with the static and dynamic work assignments.

Is the dynamic work assignment faster than the static one?

Jan Verschelde (UIC) Programming Shared Memory Computers Work Crew 7 June 2021 27 / 27

Programming Shared Memory Computers

part 3: pipelining

Jan Verschelde†

University of Illinois at Chicago

Department of Mathematics, Statistics, and Computer Science

http://www.math.uic.edu/˜jan
janv@uic.edu

https://pascal.math.uic.edu

Ada Europe 2021 Tutorial, 7 June 2021, online

†Supported by the National Science Foundation, grant DMS 1854513.

Jan Verschelde (UIC) Programming Shared Memory Computers Pipelining 7 June 2021 1 / 25

Outline

1 Pipelining

the producer/consumer model

a pyramid of workers

allocating tasks to processors

2 Pipelined Computations

linear pipelines

pyramid pipelines

3 Exercises

compile, run, and evaluate

explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Pipelining 7 June 2021 2 / 25

Programming Shared Memory Computers

1 Pipelining

the producer/consumer model

a pyramid of workers

allocating tasks to processors

2 Pipelined Computations

linear pipelines

pyramid pipelines

3 Exercises

compile, run, and evaluate

explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Pipelining 7 June 2021 3 / 25

the producer/consumer model

A schematic of a 2-stage pipeline is shown below:

input output- P - C -

The output of P is the input for C:

P is the producer,

C is the consumer.

The producer/consumer pipeline is a model for heterogeneous

parallelism, as P and C can do different types of computations.

It is also a model of synchronized computations:

the consumer must wait if its input is empty,

the producer must wait if its output if full.

Jan Verschelde (UIC) Programming Shared Memory Computers Pipelining 7 June 2021 4 / 25

the method of delegation

Keep some of the work, pass the rest to others in the pipeline.

A linear pipeline:

P0
- P1

- P2
- P3

- P4
- P5

- P6

A pyramid pipeline:

P0

�
�

�
�⇡

H
H
H
Hj

P1

�

�

@

@R

P2

�

�

@

@R

P3 P4 P5 P6

Jan Verschelde (UIC) Programming Shared Memory Computers Pipelining 7 June 2021 5 / 25

Programming Shared Memory Computers

1 Pipelining

the producer/consumer model

a pyramid of workers

allocating tasks to processors

2 Pipelined Computations

linear pipelines

pyramid pipelines

3 Exercises

compile, run, and evaluate

explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Pipelining 7 June 2021 6 / 25

a pyramid of workers

Running a fan out launch of tasks.

$./main
Launching tasks ...
Hello from worker 1 at level 0 with number 1.
Hello from worker 1 at level 1 with number 2.
Hello from worker 2 at level 1 with number 3.
Hello from worker 1 at level 2 with number 4.
Hello from worker 2 at level 2 with number 5.
Hello from worker 3 at level 2 with number 6.
Hello from worker 4 at level 2 with number 7.
Launched 7 workers.
$

Every worker has a first name and a last name:

1 the last name is the level in the pyramid,

2 the first name is the rank at the level.

Jan Verschelde (UIC) Programming Shared Memory Computers Pipelining 7 June 2021 7 / 25

a leveled id generator

protected leveled_id_generator is

procedure get (lvl : in integer64; id : out integer64);
-- returns a unique identification number,
-- within the current level lvl

private
next_id : integer64 := 1;
current_lvl : integer64 := -1;

end leveled_id_generator;

protected body leveled_id_generator is
procedure get (lvl : in integer64; id : out integer64) is
begin

if lvl /= current_lvl then -- reset the id counter
current_lvl := lvl;
next_id := 1;

end if;
id := next_id;
next_id := next_id + 1;

end get;
end leveled_id_generator;

Jan Verschelde (UIC) Programming Shared Memory Computers Pipelining 7 June 2021 8 / 25

code for a fan out launch

procedure launch (level : integer64) is

task type worker;

task body worker is ...

nbrtasks : constant integer64 := 2**integer(level);
workers : array(1..nbrtasks) of worker;

begin
if level < pwr-1 then

launch(level+1);
end if;

end launch;

The launch combines

1 the recursion to activate a sequence of tasks, and

2 an array of increasing number of workers.

Jan Verschelde (UIC) Programming Shared Memory Computers Pipelining 7 June 2021 9 / 25

the body of the worker

task body worker is

i,n : integer64;

begin
leveled_id_generator.get(level,i);
n := i;
for j in 0..level-1 loop

n := n + 2**integer(j);
end loop;
text_io.put_line("Hello from worker" & integer64’image(i)

& " at level" & integer64’image(level)
& " with number" & integer64’image(n)
& ".");

end worker;

Worker i at level ` is uniquely identified by the number n = i +
X̀

j=0

2
j
.

Jan Verschelde (UIC) Programming Shared Memory Computers Pipelining 7 June 2021 10 / 25

how it works

The workers in the pyramid pipeline are in k arrays:

P0

�
�

�
�⇡

H
H
H
Hj

P1

�

�

@

@R

P2

�

�

@

@R

P3 P4 P5 P6

P0

P1 P2

P3 P4 P5 P6

In this way, all 2k � 1 workers can compute in parallel.

Jan Verschelde (UIC) Programming Shared Memory Computers Pipelining 7 June 2021 11 / 25

Programming Shared Memory Computers

1 Pipelining

the producer/consumer model

a pyramid of workers

allocating tasks to processors

2 Pipelined Computations

linear pipelines

pyramid pipelines

3 Exercises

compile, run, and evaluate

explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Pipelining 7 June 2021 12 / 25

allocating tasks to processors

We can allocate all tasks at the same level

to the same processor:

procedure launch (level : integer64) is

task type worker
with CPU => System.Multiprocessors.CPU_Range(level);

As the number of workers increases with the level,

workers down the pyramid have to share the processors more.

Or equivalently, workers towards the top of the pyramid have more

available processing power.

Jan Verschelde (UIC) Programming Shared Memory Computers Pipelining 7 June 2021 13 / 25

Programming Shared Memory Computers

1 Pipelining

the producer/consumer model

a pyramid of workers

allocating tasks to processors

2 Pipelined Computations

linear pipelines

pyramid pipelines

3 Exercises

compile, run, and evaluate

explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Pipelining 7 June 2021 14 / 25

a linear pipeline

Consider
⇡

4
=

Z
1

0

p
1 � x2 dx .

What every task does is determined by its identification number:

1 For the approximation of ⇡, task i approximates

Z i h

(i�1)h

p
1 � x2 dx , h =

1

n
,

for i from 1 to p, where p is the number of tasks.

2 The i-th task writes its approximation in the i-th location

in a shared array.

Jan Verschelde (UIC) Programming Shared Memory Computers Pipelining 7 June 2021 15 / 25

code for the worker

Let p be the total number of tasks:

step : constant float64 := 1.0/float64(p);
nsteps : constant integer64 := (2**28/p);

use estimate_pi;
use trapezoidal_pi;

task type worker (i:integer64);

task body worker is

a : constant float64 := float64(i-1)*step;
b : constant float64 := float64(i)*step;

begin
results(i) := recursive_rule(circle’access,a,b,nsteps);

end worker;

Jan Verschelde (UIC) Programming Shared Memory Computers Pipelining 7 June 2021 16 / 25

running a pipe of 64 workers

$ time ./main
Launching tasks ...
Launched 64 workers.
The results :
1 : 1.56243641938373E-02
2 : 1.56205487978238E-02
...
64 : 1.83710203264093E-03
Estimate for pi : 3.14159265358953E+00 error : 2.660E-13

real 0m0.219s
user 0m10.645s
sys 0m0.012s
$

Jan Verschelde (UIC) Programming Shared Memory Computers Pipelining 7 June 2021 17 / 25

Programming Shared Memory Computers

1 Pipelining

the producer/consumer model

a pyramid of workers

allocating tasks to processors

2 Pipelined Computations

linear pipelines

pyramid pipelines

3 Exercises

compile, run, and evaluate

explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Pipelining 7 June 2021 18 / 25

pyramid pipelines

In the pyramid pipeline:

1 worker i at level ` is uniquely identified by the number

n = i +
X̀

j=0

2
j

2 therefore, this worker with number n approximates

Z n h

(n�1)h

p
1 � x2 dx .

But there is a better way to organize the workers. . .

Jan Verschelde (UIC) Programming Shared Memory Computers Pipelining 7 June 2021 19 / 25

computing new function evaluations

We can consider the composite trapezoidal rule as a sequence of rules

which use more function evaluations in each step.

a bt ttt tt t t tt t t t t t t tt t t t t t t t t t t t t t t t
The number of new function evaluations is 1, 2, 4, 8, 16.

At each level we compute more function evaluations.

T2n =
1

2
Tn +

b � a
2n

n�1X

i=1

f
✓

a +
b � a

2n
+ i

b � a
n

◆

Jan Verschelde (UIC) Programming Shared Memory Computers Pipelining 7 June 2021 20 / 25

error estimates with parallel computations

There is parallelism in the reformulated trapezoidal rule:

T2n =
1

2
Tn|{z}

task 1

+
b � a

2n

n�1X

i=1

f
✓

a +
b � a

2n
+ i

b � a
n

◆

| {z }
task 2

Application: |T2n � Tn| is an estimate for the error.

The reorganization of the composite trapezoidal rule into a pyramid

pipeline provides information on the quality of the computations.

Jan Verschelde (UIC) Programming Shared Memory Computers Pipelining 7 June 2021 21 / 25

Programming Shared Memory Computers

1 Pipelining

the producer/consumer model

a pyramid of workers

allocating tasks to processors

2 Pipelined Computations

linear pipelines

pyramid pipelines

3 Exercises

compile, run, and evaluate

explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Pipelining 7 June 2021 22 / 25

compile, run, and evaluate

Compile the code as gnatmake -O3 -gnatp main
with full optimization, suppressing all checks.

Compute the speedups with wall clock times.

Are the speedups as expected?

Jan Verschelde (UIC) Programming Shared Memory Computers Pipelining 7 June 2021 23 / 25

Programming Shared Memory Computers

1 Pipelining

the producer/consumer model

a pyramid of workers

allocating tasks to processors

2 Pipelined Computations

linear pipelines

pyramid pipelines

3 Exercises

compile, run, and evaluate

explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Pipelining 7 June 2021 24 / 25

explorations and excursions

Using pragma priority, one can give priority to tasks.

In pyramid pipeline,

consider giving tasks on separate levels different priority values,

or, alternatively, give different priorities to tasks at the same level.

Jan Verschelde (UIC) Programming Shared Memory Computers Pipelining 7 June 2021 25 / 25

Programming Shared Memory Computers

part 4: synchronization

Jan Verschelde†

University of Illinois at Chicago

Department of Mathematics, Statistics, and Computer Science

http://www.math.uic.edu/˜jan

janv@uic.edu

https://pascal.math.uic.edu

Ada Europe 2021 Tutorial, 7 June 2021, online

†Supported by the National Science Foundation, grant DMS 1854513.

Jan Verschelde (UIC) Programming Shared Memory Computers Synchronization 7 June 2021 1 / 25

Outline

1 Synchronization

the buffered producer/consumer model

running a producer/consumer simulation

2 Adding Buffered Function Values

a 2-stage pipeline for ⇡
arrays of evaluators and adders

3 Exercises

compile, run, and evaluate

explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Synchronization 7 June 2021 2 / 25

Programming Shared Memory Computers

1 Synchronization

the buffered producer/consumer model

running a producer/consumer simulation

2 Adding Buffered Function Values

a 2-stage pipeline for ⇡
arrays of evaluators and adders

3 Exercises

compile, run, and evaluate

explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Synchronization 7 June 2021 3 / 25

the buffered producer/consumer model

A schematic of a 2-stage pipeline, with a buffer, is shown below:

input

output

-
P

-

Q

••
••
• -

C
-

The output of P is the input for C:

P is the producer, C is the consumer,

Q is the queue, acts as buffer between P and C.

The producer/consumer pipeline is a model for heterogeneous

parallelism, as P and C can do different types of computations,

at a different pace.

The consumer must wait if its input is empty,

the producer must wait if its output if full.

The buffer Q helps to synchronize the computations:

Jan Verschelde (UIC) Programming Shared Memory Computers Synchronization 7 June 2021 4 / 25

a circular buffer of fixed size

Consider an array to represent a circular buffer.

1

2

3

4

5

6

7

?

1.0

2.0

3.0

4.0

-

-

front

back

1

2

3

4

5

6

7

?
6.0

7.0

4.0

5.0

-

-

back

front

Three important numbers define the state of the queue:

The index front points to the front of the queue.

The back points to the end of the queue.

The index calculation happens modulo the size of the queue.

The queue may become empty or may become full.

Jan Verschelde (UIC) Programming Shared Memory Computers Synchronization 7 June 2021 5 / 25

operations and exceptions

The Float64_Queue defines four operations and two exceptions:

1 Initialize the queue with the size, allocating space.

2 Push a number to the back of the queue, with push_back.

The exception queue_full will be raised is the queue is full.

3 Pop a number from the front of the queue, with pop_front.

The exception queue_empty will be raised if the queue is empty.

4 Deallocate the space occupied by the queue.

In the body of the package, the update of the front and back

happens in a critical section, using a semaphore.

Producers push to the back of the queue.

Consumers pop from the front of the queue.

Jan Verschelde (UIC) Programming Shared Memory Computers Synchronization 7 June 2021 6 / 25

definition of the pop_front function

function pop_front return Float64 is

result : Float64 := 0.0;

begin

if front = 0 then -- zero front means empty queue

raise queue_empty;

else

Semaphore.Request(sem); -- enter the critical section

result := data(front);

if front = back then -- we popped the last item

front := 0; -- set the front to zero

else

front := front + 1;

if front > data’last -- circular update of front

then front := 1;

end if;

if full_queue -- the queue is no longer full

then full_queue := false;

end if;

end if;

Semaphore.Release(sem); -- leave the critical section

end if;

return result;

end pop_front;

Jan Verschelde (UIC) Programming Shared Memory Computers Synchronization 7 June 2021 7 / 25

Programming Shared Memory Computers

1 Synchronization

the buffered producer/consumer model

running a producer/consumer simulation

2 Adding Buffered Function Values

a 2-stage pipeline for ⇡
arrays of evaluators and adders

3 Exercises

compile, run, and evaluate

explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Synchronization 7 June 2021 8 / 25

running a producer/consumer simulation

Consider a simulation of n pipeline cycles.

1 The producer pushes the numbers 1, 2, . . . , n to the queue.

2 The consumer adds the popped numbers.

After a correct run, the total sum should be n(n + 1)/2.

procedure test_producer_consumer

(cycles_number : in integer64 := 5;

queue_size : in integer64 := 2;

producer_pace : in duration := 1.0;

consumer_pace : in duration := 1.0);

1 cycles_number is the number of producer/consumer steps,

2 queue_size is the size of the buffer queue,

3 producer_pace is the time needed to produce a new number,

4 consumer_pace is the time needed to consume a new number.

Jan Verschelde (UIC) Programming Shared Memory Computers Synchronization 7 June 2021 9 / 25

algorithms for the producer and consumer

The give and take interaction is symmetrical:

The producer and consumer do the same number of steps.

A busy-wait loop is executed when pushing or popping fails.

The interaction is correct because of the critical sections

in the pop_front and push_back operations.

Jan Verschelde (UIC) Programming Shared Memory Computers Synchronization 7 June 2021 10 / 25

the producer code

task body producer is

nbr : float64 := 0.0;

fail : boolean;

begin

for k in 1..cycles_number loop

delay producer_pace;

nbr := nbr + 1.0;

loop

fail := false;

declare

begin

float64_queue.push_back(nbr);

exception

when float64_queue.queue_full => fail := true;

end;

exit when not fail;

delay producer_pace/2.0;

end loop;

end loop;

end producer;

Jan Verschelde (UIC) Programming Shared Memory Computers Synchronization 7 June 2021 11 / 25

the consumer code

task body consumer is

nbr : float64;

fail : boolean;

begin

for k in 1..cycles_number loop

loop

fail := false;

declare

begin

nbr := float64_queue.pop_front;

exception

when float64_queue.queue_empty => fail := true;

end;

exit when not fail;

delay consumer_pace/2.0;

end loop;

delay consumer_pace;

result := result + nbr;

end loop;

end consumer;

Jan Verschelde (UIC) Programming Shared Memory Computers Synchronization 7 June 2021 12 / 25

many producers and consumers

Modifications to run with p producers and c consumers:

Two arrays of tasks, one array of producers,

and another array of consumers.

Two separate identification number generators,

one to identify producers, the other for the consumers.

For n cycles and p producers, the i-th producer pushes

i , i + p, i + 2p, . . . , i + (n � 1)p,

so the entire sequence is 1, 2, . . . , np.

The i-th consumer accumulates the sum of popped numbers

at the i-th spot in an array of numbers.

How to stop the consumers?

Jan Verschelde (UIC) Programming Shared Memory Computers Synchronization 7 June 2021 13 / 25

Programming Shared Memory Computers

1 Synchronization

the buffered producer/consumer model

running a producer/consumer simulation

2 Adding Buffered Function Values

a 2-stage pipeline for ⇡
arrays of evaluators and adders

3 Exercises

compile, run, and evaluate

explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Synchronization 7 June 2021 14 / 25

a 2-stage pipeline for ⇡

To approximate
⇡

4
=

Z
1

0

p
1 � x2 dx with the composite trapezoidal

rule, we apply:

input

output

- p -

Q

••
••
• - ⌃ -

The two stages in this pipeline are

1
p

is the evaluation of
p

1 � x2 at many points; and

2 ⌃ is the summation of the function values.

Jan Verschelde (UIC) Programming Shared Memory Computers Synchronization 7 June 2021 15 / 25

a space-time diagram

In the 2-stage pipeline schematic

input

output

- p -

Q

••
••
• - ⌃ -

each • represent a stored sequence of function values.

Each sequence is defined by an input range and output integral.

The space-time diagram for five instances is below:

-
time

6
space

p
⌃

i1

i1

i2

i2

i3

i3

i4

i4

i5

i5

Jan Verschelde (UIC) Programming Shared Memory Computers Synchronization 7 June 2021 16 / 25

definition of the inputs and outputs

The five instances in the space-time diagram

-
time

6
space

p
⌃

i1

i1

i2

i2

i3

i3

i4

i4

i5

i5

are for
⇡

4
=

Z
1

0

p
1 � x2 dx the five subintervals of [0, 1]:

i1 =


0,

1

5

�
, i2 =


1

5
,
2

5

�
, i3 =


2

5
,
3

5

�
, i4 =


3

5
,
4

5

�
, i5 =


4

5
, 1

�
.

and the outputs are the integrals over those intervals.

Assuming evaluation and summation take the same amount of time,

the theoretical speedup is 10/6 ⇡ 1.67.

Jan Verschelde (UIC) Programming Shared Memory Computers Synchronization 7 June 2021 17 / 25

shared data structures

The queue Q stores data represented by • in

input

output

- p -

Q

••
••
• - ⌃ -

Each • represents a sequence of function values.

Instead of copying arrays of 64-bit floats,

1 pushing an index to the queue means: values are ready, and

2 each index popped from the queue is the input for a summation.

In the data structure for Q,

each • is an index to an array of 64-bit float arrays.

Jan Verschelde (UIC) Programming Shared Memory Computers Synchronization 7 June 2021 18 / 25

Programming Shared Memory Computers

1 Synchronization

the buffered producer/consumer model

running a producer/consumer simulation

2 Adding Buffered Function Values

a 2-stage pipeline for ⇡
arrays of evaluators and adders

3 Exercises

compile, run, and evaluate

explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Synchronization 7 June 2021 19 / 25

two evaluators and one adder

As the addition is likely to be much faster than evaluation,

the space-time diagram may look as follows:

-
time

6
space

p
⌃

i1

i1

i2

i2

i3

i3

i4

i4

i5

i5

i6

i6

With two evaluators:

-
time

6
space

p

p
⌃

i1

i2

i3

i4

i5

i6

i1 i2 i3 i4 i5 i6

Jan Verschelde (UIC) Programming Shared Memory Computers Synchronization 7 June 2021 20 / 25

arrays of evaluators and adders

If the adders are twice as fast than the evaluators:

-
time

6
space

p

p
⌃

i1

i2

i3

i4

i5

i6

i1 i2 i3 i4 i5 i6

Alternatively, two adders work as fast as one evaluator.

If p adders are as fast as q evaluators,

then use an array of q adders and an array of p evaluators.

Jan Verschelde (UIC) Programming Shared Memory Computers Synchronization 7 June 2021 21 / 25

Programming Shared Memory Computers

1 Synchronization

the buffered producer/consumer model

running a producer/consumer simulation

2 Adding Buffered Function Values

a 2-stage pipeline for ⇡
arrays of evaluators and adders

3 Exercises

compile, run, and evaluate

explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Synchronization 7 June 2021 22 / 25

compile, run, and evaluate

Compile the code as gnatmake -O3 -gnatp main

with full optimization, suppressing all checks.

Compute the speedups with wall clock times.

Are the speedups as expected?

Jan Verschelde (UIC) Programming Shared Memory Computers Synchronization 7 June 2021 23 / 25

Programming Shared Memory Computers

1 Synchronization

the buffered producer/consumer model

running a producer/consumer simulation

2 Adding Buffered Function Values

a 2-stage pipeline for ⇡
arrays of evaluators and adders

3 Exercises

compile, run, and evaluate

explorations and excursions

Jan Verschelde (UIC) Programming Shared Memory Computers Synchronization 7 June 2021 24 / 25

explorations and excursions

Instead of the synchronization with a queue,

consider the direct synchronization with Ada’s rendezvous.

Jan Verschelde (UIC) Programming Shared Memory Computers Synchronization 7 June 2021 25 / 25

