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path tracking on a GPU

Tracking one path requires several thousands of Newton corrections.

Two computational tasks in Newton’s method for f (x) = 0:
1 evaluate the system f and its Jacobian matrix Jf at z;
2 solve the linear system Jf (z)∆z = −f (z), and do z := z + ∆z.

Problem: high degrees lead to extremal values in Jf .

Double precision is insufficient to obtain accurate results.

Data parallelism in system evaluation and differentiation is achieved
through many products of variables in the monomials.

Solving linear systems with least squares using a QR decomposition

is more accurate than a LU factorization, and

applies to overdetermined problems (Gauss-Newton).

Quality up: compensate cost of multiprecision with parallel algorithms.
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quad double precision

A quad double is an unevaluated sum of 4 doubles,
improves working precision from 2.2 × 10−16 to 2.4 × 10−63.

Y. Hida, X.S. Li, and D.H. Bailey: Algorithms for quad-double
precision floating point arithmetic. In the 15th IEEE Symposium on
Computer Arithmetic, pages 155–162. IEEE, 2001. Software at
http://crd.lbl.gov/ ∼dhbailey/mpdist/qd-2.3.9.tar.gz .

Predictable overhead: working with double double is of the same
cost as working with complex numbers. Simple memory management.

The QD library has been ported to the GPU by

M. Lu, B. He, and Q. Luo: Supporting extended precision on
graphics processors. In the Proceedings of the Sixth International
Workshop on Data Management on New Hardware (DaMoN 2010),
pages 19–26, 2010.
Software at http://code.google.com/p/gpuprec/ .
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personal supercomputers
Computer with NVDIA Tesla C2050:

HP Z800 workstation running Red Hat Enterprise Linux 6.4
The CPU is an Intel Xeon X5690 at 3.47 Ghz.

The processor clock of the NVIDIA Tesla C2050 Computing
Processor runs at 1147 Mhz. The graphics card has 14
multiprocessors, each with 32 cores, for a total of 448 cores.

As the clock speed of the GPU is a third of the clock speed of the CPU,
we hope to achieve a double digit speedup.

Computer with NVIDIA Tesla K20C:

Microway RHEL workstation with Intel Xeon E5-2670 at 2.6 Ghz.

The NVIDIA Tesla K20C has 2,496 cores (13 × 192) at a clock
speed of 706 Mhz. The peak double precision performance of
1.17 teraflops is twice of that of the C2050.

Massively parallel means: launch ten thousands threads.
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CUDA device memory types

registers

?6

thread(0,0)

registers

?6

thread(1,0)

6 6

? ?

shared memory

? ?
6 6

block (0,0)

registers

?6

thread(0,0)

registers

?6

thread(1,0)

6 6

? ?

shared memory

? ?
6 6

? ?
6 6

block (1,0)

global
memory

constant
memory

6 66 6

grid

-�

-�
host

J. Verschelde, G. Yoffe, and X. Yu (UIC) on Path Tracking on a GPU SIAM AG 2013 7 / 31



preliminary results

papers with Genady Yoffe:

Evaluating polynomials in several variables and their derivatives
on a GPU computing processor.
In the Proceedings of the 2012 IEEE 26th International Parallel
and Distributed Processing Symposium Workshops (PDSEC
2012), pages 1391-1399. IEEE Computer Society, 2012.

Orthogonalization on a General Purpose Graphics Processing
Unit with Double Double and Quad Double Arithmetic.
In the Proceedings of the 2013 IEEE 27th International Parallel
and Distributed Processing Symposium Workshops (PDSEC
2013), pages 1373-1380. IEEE Computer Society, 2013.

With regularity assumptions on the input and for large enough
dimensions, GPU acceleration can compensate for the overhead of
one extra level of precision.
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monomial evaluation and differentiation

Polynomials are linear combinations of monomials xa = xa1
1 xa2

2 · · · xan
n .

Separating the product of variables from the monomial:

xa =
(

x
ai1

−1
i1

x
ai2

−1
i2

· · · x
aik

−1
ik

)

⋆
(

xj1xj2 · · · xjℓ

)

,

for aim ≥ 1, m = 1, 2, . . . , k , 1 ≤ i1 < i2 < · · · < ik ≤ n,
and 1 ≤ j1 < j2 < · · · < jℓ ≤ n, with ℓ ≥ k .

Evaluating and differentiating xa in three steps:

1 compute the common factor x
ai1

−1
i1

x
ai2

−1
i2

· · · x
aik

−1
ik

2 compute xj1xj2 · · · xjℓ and its gradient
3 multiply the evaluated xj1xj2 · · · xjℓ and its gradient

with the evaluated common factor
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computing common factors x
ai1

−1
i1

x
ai2

−1
i2

· · · x
aik

−1
ik

To evaluate x3
1 x7

2 x2
3 and its derivatives, we first evaluate the factor

x2
1 x6

2 x3 and then multiply this factor with all derivatives of x1x2x3.

Because x2
1 x6

2 x3 is common to the evaluated monomial and all its
derivatives, we call x2

1 x6
2 x3 a common factor.

The kernel to compute common factors operates in two stages:
1 Each of the first n threads of a thread block computes sequentially

powers from the 2nd to the (d − 1)th of one of the n variables.
2 Each of the threads of a block computes a common factor for one

of the monomials of the system, as a product of k quantities
computed at the first stage of the kernel.

The precomputed powers of variables are stored in shared memory:
the (i , j)th element stores x i

j , minimizing bank conflicts.

The positions and exponents of variables in monomials are stored in
two one dimensional arrays in constant memory.
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common factor calculation

thread computes:
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memory locations
we illustrate the work done by one thread

To compute the derivatives of s = x1x2x3x4,

Q stores the backward product, and

the i th partial derivative of S is stored in memory location Li .

L1 L2 L3 L4 Q
x1

x1 x1 ⋆ x2

x1 x1x2 (x1x2) ⋆ x3

x1 (x1x2) ⋆ x4 x1x2x3 x4

x1 ⋆ (x3x4) x1x2x4 x1x2x3 x4 ⋆ x3

x2x3x4 x1x3x4 x1x2x4 x1x2x3 (x4x3) ⋆ x2

∂s
∂x1

∂s
∂x2

∂s
∂x3

∂s
∂x4

Only explicitly performed multiplications are marked by a star ⋆.
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the example continued

Given s = x1x2x3x4 and its gradient, with α = x2
1 x6

2 x3
3 x4

4 we evaluate
β = c x3

1 x7
2 x4

3 x5
4 and its derivatives, denoting γ = 1

c β = x3
1 x7

2 x4
3 x5

4 .
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3

∂γ
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⋆ (3c) 1
7

∂γ
∂x2

⋆ (7c) 1
4

∂γ
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⋆ (4c) 1
5

∂γ
∂x4

⋆ (5c) γ ⋆ c

∂β
∂x1

∂β
∂x2

∂β
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∂β
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β

Note that the coefficients (3c), (7c), (4c), (5c) are precomputed.
Only explicitly performed multiplications are marked by a star ⋆.
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relaxing regularity assumptions
Separate threads evaluate and differentiate products of variables:

f0
︷ ︸︸ ︷
x0x1x2x3 ·

f1
︷ ︸︸ ︷
x4x5x6x7 ·

f2
︷ ︸︸ ︷
x8x9xAxB ·

f3
︷ ︸︸ ︷
xCxDxExF

x1x2x3 x5x6x7 x9xAxB xDxExF

x0x2x3 x4x6x7 x8xAxB xCxExF

x0x1x3 x4x5x7 x8x9xB xCxDxF

x0x1x2 x4x5x6 x8x9xA xCxDxE

A variable occurs in at most one factor, e.g.:
∂

∂x0
(f0f1f2f3) =

∂f0
∂x0

f1f2f3.

Multiply all derivatives
of f0 by f1f2f3
of f1 by f0f2f3
of f2 by f0f1f3
of f3 by f0f1f2







⇒
Run same algorithm with variables

x0 = f0, x1 = f1, x2 = f2, and x3 = f3.
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the modified Gram-Schmidt method

Input: A ∈ C
m×n.

Output: Q ∈ C
m×n, R ∈ C

n×n: QHQ = I,
R is upper triangular, and A = QR.

let ak be column k of A
for k from 1 to n do

rkk :=
√

aH
k ak

qk := ak/rkk , qk is column k of Q
for j from k + 1 to n do

rkj := qH
k aj

aj := aj − rkjqk

Number of arithmetical operations: 2mn2.
With A = QR, we solve Ax = b as Rx = QHb, minimizing ||b − Ax||22.
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the cost of multiprecision arithmetic

User CPU times for 10,000 QR decompositions with n = m = 32:

precision CPU time factor
double 3.7 sec 1.0

complex double 26.8 sec 7.2
complex double double 291.5 sec 78.8

complex quad double 2916.8 sec 788.3

Taking the cubed roots of the factors 7.21/3 ≈ 1.931, 78.81/3 ≈ 4.287,
788.31/3 ≈ 9.238, the cost of using multiprecision is equivalent to
using double arithmetic, after multiplying the dimension 32
of the problem respectively by the factors 1.931, 4.287, and 9.238,
which then yields respectively 62, 134, and 296.

Orthogonalizing 32 vectors in C
32 in quad double arithmetic has the

same cost as orthogonalizing 296 vectors in R
296 with doubles.
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measuring the accuracy

Consider e = ||A − QR||1 = max
i=1,2,...,m
j=1,2,...,n

∣
∣
∣
∣
∣
aij −

n∑

ℓ=1

qiℓrℓj

∣
∣
∣
∣
∣
.

For numbers in [10−g, 10+g], let me = min(log10(e)), Me = max(log10(e)),
and De = me − Me.

complex double complex double double
g me Me De me Me De

1 -14.5 -14.0 0.5 -30.6 -30.1 0.5
4 -11.7 -11.0 0.7 -27.8 -27.1 0.7
8 -7.8 -7.0 0.8 -24.0 -23.1 1.0

12 -3.9 -3.1 0.8 -20.1 -19.2 0.9
16 -0.2 1.0 1.2 -16.4 -15.1 1.3

complex double double complex quad double
g me Me De me Me De

17 -15.5 -14.1 1.3 -48.1 -47.1 1.0
20 -12.6 -11.1 1.5 -45.1 -44.2 0.9
24 -8.8 -7.2 1.6 -41.3 -40.2 1.2
28 -4.7 -3.2 1.5 -37.7 -36.1 1.6
32 -1.0 0.8 1.9 -33.9 -32.2 1.8
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parallel modified Gram-Schmidt orthogonalization

Input: A ∈ C
m×n, A = [a1 a2 . . . an],

ak ∈ C
m, k = 1, 2, . . . , n.

Output: A ∈ C
m×n, AHA = I (i.e.: A = Q),

R ∈ C
n×n: R = [rij ], rij ∈ C,

i = 1, 2, . . . , n, j = 1, 2, . . . , n.
for k from 1 to n − 1 do

launch kernel Normalize_Remove (k)
with (n − k) blocks of threads,
as the j th block (for all j : k < j ≤ n)

normalizes ak as qk := ak/
√

aH
k ak

and removes the component of aj as aj := aj − (qH
k aj)qk

launch kernel Normalize (n) with one
thread block to normalize an.
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occupancy of the multiprocessors

The Tesla C2050 has 448 cores, with 448 = 14 × 32:
14 multiprocessors with each 32 cores.

For dimension 32, the orthogonalization launches the kernel
Normalize_Remove() 31 times:

while first 7 of these launches employ 4 multiprocessors,

launches from 8 to 15 employ 3 multiprocessors,

launches 16 to 23 employ 2 multiprocessors,

and finally launches 24 to 31 employ only one multiprocessor.

Earlier stages of the algorithm are responsible for the speedups.
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computing inner products

In computing xHy the products xℓ ⋆ yℓ are independent of each other.

The inner product xHy is computed in two stages:

1 All threads work independently in parallel: thread ℓ calculates
xℓ ⋆ yℓ where the operation ⋆ is a complex double, a complex
double double, or a complex quad double multiplication.

Afterwards, all threads in the block are synchronized.

2 The application of a reduction to sum the elements in
(x1y1, x2y2, . . . , xmym) and compute x1y1 + x2y2 + · · · + xmym.

The + in the sum above corresponds to the ⋆ in the item above
and is a complex double, a complex double double, or a complex
quad double addition. There are log2(m) steps but if m equals the
warp size, there is thread divergence in every step.
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shared memory locations

Shared memory is fast memory shared by all threads in one block.

rkj := qH
k aj is inner product of two m-vectors:

qk






qk1

qk2
...

qkm








aj






aj1

aj2
...

ajm















q̄k1 ⋆ aj1

q̄k2 ⋆ aj2
...

q̄km ⋆ ajm








Thread t computes q̄kt ⋆ ajt .

If we may override qk , then 2m shared memory locations suffice,
but we still need qk for aj := aj − rkjqk .

We need 3m shared memory locations to perform the reductions.
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the orthonormalization stage

After computing aH
k ak , the orthonormalization stage consists of

one square root computation,

followed by m division operations.

The first thread of a block performs rkk :=
√

aH
k ak .

After a synchronization, the m threads independently perform in-place
divisions akℓ := akℓ/rkk , for ℓ = 1, 2, . . . , m to compute qk .

Increasing the precision,

we expect an increased parallelism as the cost for the arithmetic
increased and each thread does more work independently.

Unfortunately, also the cost for the square root calculation
— executed in isolation by the first thread in each block —
also increases.
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parallel back substitution

Solving Rx = QHb:

Input: R ∈ C
n×n, an upper triangular matrix,

y ∈ C
n, the right hand side vector.

Output: x is the solution of Rx = y.
for k from n down to 1 do

thread k does xk := yk/rkk

for j from 1 to k − 1 do
thread j does yj := yj − rjk ⋆ xk

Only one block of threads executes this code.
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running at different precisions
Wall clock times and speedups for 10,000 orthogonalizations,
on 32 random complex vectors of dimension 32, times in seconds:

3.47GHz CPU & C2050
p CPU C2050 speedup
D 14.43 5.34 2.70

DD 122.34 14.29 8.56
QD 799.75 125.95 6.35

2.60GHz CPU & K20C
p CPU K20C speedup
D 16.19 5.75 2.82

DD 149.69 17.10 8.75
QD 850.55 119.10 7.14 CPU GPU

orthogonalization with modified Gram-Schmidt on CPU and GPU
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700
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nd
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wall clock times on 10,000 runs with n = 32

double
double double
quad double

For quality up, compare

the 122.34 seconds with complex double doubles on CPU;

the 125.95 seconds with complex quad doubles on C2050.
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running with double doubles and quad doubles
Wall clock times for 10,000 runs of the modified Gram-Schmidt method
(each followed by one backsubstitution), on 3.47GHz CPU and C2050:

complex double double
n CPU GPU speedup

16 17.17 11.85 1.45
32 125.06 22.44 5.57
48 408.20 35.88 11.38
64 952.35 55.18 17.26
80 1841.07 79.11 23.27

complex quad double
n CPU GPU speedup

16 113.51 143.07 0.79
32 813.65 155.32 5.24
48 2556.36 266.55 9.59
64 6216.06 409.57 15.18
80 12000.15 597.47 20.08

n = 16 n = 32 n = 48 n = 64 n = 80
least squares with modified Gram-Schmidt on CPU and GPU
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wall clock times on 10,000 runs with complex double doubles
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Double digit speedups
for n ≥ 48.
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Comparing C2050 and K20C
Real, user, and system times (in seconds) for 10,000
orthogonalizations on dimensions n = 256, n = 128, and n = 85.

D DD QD
n 256 128 85

real C2050 227.1 133.0 551.5
real K20C 155.4 123.2 475.4

speedup 1.461 1.079 1.160

user C2050 102.0 59.2 238.7
user K20C 101.1 76.5 287.8

sys C2050 124.5 71.1 311.9
sys K20C 53.6 46.1 186.4
speedup 2.323 1.542 1.673

Because the host of the K20C runs at 2.60GHz, the frequency of the
host of the C2050 was set to range between 2.60GHz and 2.66GHz.

D DD QD D DD QD D DD QD
real times                    user times                     system times
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C2050
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simulating the tracking of one path
Consider 10,000 Newton corrections in dimension 32 on a system
with 32 monomials per polynomial, 5 variables per monomial,
degrees uniformly taken from {1, 2, 3, 4, 5}, for precision p.

CPU GPU speed
p PE PE up
D 11.0 1.3 8.5

DD 66.0 2.1 31.4
QD 396.0 14.2 27.9
p MGS MGS
D 13.4 5.3 2.5

DD 115.6 16.5 7.0
QD 785.0 108.0 7.0
p SUM SUM
D 24.4 6.6 3.7

DD 181.6 18.6 9.8
QD 1181.0 122.2 9.7

CPU PE CPU MGS CPU PE+MGS GPU PE GPU MGS GPU PE+MGS
PE = polynomial evaluation and differentiation, MGS = modified Gram-Schmidt
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Quality up: GPU acceleration
compensates for extra precision.
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Summary

Some conclusions:

While GPUs offer a theoretical teraflop peak performance, the
problems must contain enough data parallelism to perform well.

The fine granularity in algorithms to
◮ evaluate and differentiate poynomials; and
◮ orthogonalize and solve in the least squares sense

leads to a massively parallel Gauss-Newton method.

Already for modest dimensions we achieve quality up:
GPU acceleration compensates for one level of extra precision.

J. Verschelde, G. Yoffe, and X. Yu (UIC) on Path Tracking on a GPU SIAM AG 2013 31 / 31


	Problem Statement
	path tracking on a Graphics Processing Unit (GPU)

	Massively Parallel Polynomial Evaluation and Differentiation
	stages in the evaluation of a system and its Jacobian matrix
	computing the common factor of a monomial and its gradient
	evaluating and differentiating products of variables

	Massively Parallel Modified Gram-Schmidt Orthogonalization
	cost and accuracy of the modified Gram-Schmidt method
	defining the kernels
	occupancy of multiprocessors and resource usage

	Computational Results
	comparing speedup and quality up
	simulating the tracking of one path


