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A. introduction

Summary

• many polynomial systems in practical applications are sparse;

the sparser a system is, the fewer its number of solutions

• the number of solutions paths in a polyhedral homotopy is

determined by the mixed volume of the Newton polytopes of

the polynomials in the system

• mixed volumes give a sharp root count for generic systems;

with stable mixed volumes we count roots in affine space

• to solve for large applications we use parallel implementations
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A. introduction

Solving Polynomial Systems

• algebraic geometry studies solutions of polynomial systems

• applications in science and engineering lead to systems with

approximate input coefficients

• most systems occur with parameters,

often easier to solve first for a generic choice of the parameters

• although the complexity of the problem is intractable,

homotopy continuation methods are pleasingly parallel

goal: turn applications into benchmark problems
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A. introduction

Some Introductions and Surveys

I.M. Gel’fand, M.M. Kapranov, and A.V. Zelevinsky: Discriminants,

Resultants and Multidimensional Determinants. Birkhäuser, 1994.

L. Blum, F. Cucker, M. Shub, and S. Smale: Complexity and Real

Computation. Springer-Verlag, 1998.

B. Sturmfels: Solving Systems of Polynomial Equations. AMS, 2002.

T.Y. Li.: Numerical solution of polynomial systems by homotopy

continuation methods. In F. Cucker, editor, Handbook of Numerical

Analysis. Volume XI. Special Volume: Foundations of Computational

Mathematics, pages 209–304. North-Holland, 2003.

A.J. Sommese and C.W. Wampler: The Numerical Solution of Systems

of Polynomials Arising in Engineering and Science.

World Scientific, 2005.
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A. introduction

Homotopy Continuation Methods

Solve f(x) = 0 in two stages:

1. The homotopy h(x, t) = γ(1− t)g(x) + tf(x) = 0, γ ∈ C,
defines solution paths x(t), for t going from 0 to 1.

g(x) = 0 is a start system with the same structure as f .

All solutions of g(x) = 0 are isolated and regular.

2. Continuation methods apply predictor-corrector techniques to

track the solution paths defined by the homotopy h(x, t) = 0.

Singularities do not occur for t < 1 for a generic choice of γ.

Knowing the right #paths is critical to the performance!
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A. introduction

The Gamma Trick

Consider the homotopy h(x, t) = γ(1− t)g(x) + tf(x) = 0, γ ∈ C.
All solutions of g(x) = 0 are isolated and regular.

1. Singular solutions of h(x, t) = 0 satisfy

H(x, t) =







h(x, t) = 0

det(Jh(x, t)) = 0
Jh is the Jacobian of h.

2. Embed (x, t) ∈ Cn × C into projective space: (z, t) ∈ Pn × C.
Apply the main theorem of elimination theory to H−1(0),

eliminating z, i.e.: apply π : Pn × C → C : (z, t) 7→ t.

Then π(H−1(0)) is an algebraic set, defined by p(t) = 0.

3. Because all solutions of g(x) = 0 are isolated and regular,

p(0) 6= 0. So there are only finitely many singularities.

For a generic choice of γ, H(x, t) = 0 has no solutions for t ∈ [0, 1).
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A. introduction

Design of an RPS robot

robot = serial chain in which each joint is actuated

type of joint diagram symbol DOF

Revolute R 1

Prismatic P 1

Spherical S 3

H.J. Su. Computer-Aided Constrained Robot Design Using Mechanism

Synthesis Theory. PhD thesis, University of California, Irvine, 2004.
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A. introduction

Reachable Surfaces: Circular Hyperboloid

H.J. Su. Computer-Aided Constrained Robot Design Using Mechanism

Synthesis Theory. PhD thesis, University of California, Irvine, 2004.
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A. introduction

The Equations for RPS10

Ten unknowns: g = (g1, g2, g3) is the axis of the R-joint,

p = (p1, p2, p3) is the center of the S-joint, and k0, k = (k1, k2, k3)

are derived from g and the center of the hyperboloid.

Ten parameters: pi = [Ti]p, i = 1, 2, . . . , 10, goal positions defined

by transformations [Ti].







































k0(p2 · p2 − p1 · p1) + 2k · (p2 − p1)− (p2 · g)
2 + (p1 · g)

2 = 0

k0(p3 · p3 − p1 · p1) + 2k · (p3 − p1)− (p3 · g)
2 + (p1 · g)

2 = 0
...

k0(p10 · p10 − p1 · p1) + 2k · (p10 − p1)− (p10 · g)
2 + (p1 · g)

2 = 0

c1g1 + c2g2 + c3g3 − 1 = 0

The coefficients c1, c2, c3 are random numbers to scale g.
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A. introduction

Expected Number of Solutions

A system of nine quartics and one linear equation ...

total degree: 49 × 1 = 262, 144

linear-product Bézout bound: 9,216

H.J. Su and J.M. McCarthy: Kinematic synthesis of RPS serial

chains for a given Set of task positions.

Mechanism and Machine Theory, 40(7):757-775, 2005.

mixed volume: 1,204 is sharp in this case.

For generic choices of the parameters, there will always be 1,024

complex solutions.

For a specific choice of the parameters, we find 128 real solutions.

On a (slow) Mac OS X laptop, solving takes about 40 minutes,

less than two seconds are spent on computing the mixed volume.
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B. polytopes

Newton Polytopes

f(x1, x2) =







f1 : 0 = c1,(0,0) + c1,(0,1)x2 + c1,(1,0)x1

f2 : 0 = c2,(0,0) + c2,(0,1)x2 + c2,(1,0)x1 + c2,(2,2)x
2
1x

2
2

coefficients ci,a ∈ C∗ = C \ {0} exponents a = (a1, a2) ∈ Z2

supports A1 = {(0, 0), (1, 0), (0, 1)} and A2 = {(0, 0), (1, 0), (0, 1), (2, 2)}

span Newton polytopes P1 and P2:

t
(0,0)

t
(1,0)

t(0,1) P1
@
@ t

(0,0)

t
(1,0)

t(0,1)

t(2,2)

P2

¢
¢
¢
¢

©©
©©

notation:

f(x) =
∑

a∈Ai

ci,ax
a, xa = xa1

1 xa2
2 · · ·xan

n
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B. polytopes

Puiseux Series

Let g(x) = 0 be a generic system with same supports as f .

Consider the homotopy h(x, t) = γ(1− t)g(x) + tf(x) = 0.

Then, for t→ 1 :







xi(s) = bis
vi(1 +O(s)) bi ∈ C∗, vi ∈ Z,

t(s) = 1− sm s→ 0,m ∈ N+,

where m is the common denominator in the fractional power series.

As t→ 1, observe the sign of vi:

vi















> 0 ⇒ xi → 0 6∈ C∗,

= 0 ⇒ xi → bi ∈ C∗,

< 0 ⇒ xi →∞ 6∈ C∗.

Whether xi converges to bi ∈ C∗ depends on vi = 0, vi ∈ Z.
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B. polytopes

Extrapolation

Assume m = 1:

¾
s

0

b

s1

xi(s1)

s2

xi(s2)
To compute vi in

xi(s1) = bis
vi
1 (1 +O(s1))

xi(s2) = bis
vi
2 (1 +O(s2))

we take logarithms:

log |xi(s1)| = log |bi|+ vi log |s1|+ log |1 +O(s1)|

− ( log |xi(s2)| = log |bi|+ vi log |s2|+ log |1 +O(s2)| )

and eliminate log |bi| : vi =
log |xi(s1)| − log |xi(s2)|

log |s1| − log |s2|
∈ Z.

For m > 1, higher order extrapolation is needed.

If vi = 0, xi(s)→ b. If vi < 0, xi(s)→∞. If vi > 0, xi(s)→ 0.
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B. polytopes

Diverging Paths

Substitute x(s) = bsv(1 +O(s)) and t(s) = 1− sm, s→ 0,

in the homotopy h(x, t) = γ(1− t)g(x) + tf(x) = 0, t→ 1:

Only f matters: h(x(s), s) = f(x(s)) + sm(f(x(s))− γg(x(s))).

Then, fi(x(s)) =
∑

a∈Ai

ci,ax(s)
a =

∑

a∈Ai

ci,a(bs
v(1 +O(s)))a.

Ignore O(s) : (bsv)a = b1s
v1a1b2s

v2a2 · · · bns
vnan =





n
∏

j=1

bj



 s〈v,a〉.

Collect exponents of dominant terms as s→ 0 in

∂vAi = { a ∈ A | 〈v, a〉 = min
a′∈A

〈v, a′〉 }.

The set ∂vAi spans the face ∂vPi of the Newton polytope Pi of fi.
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B. polytopes

Bernshtěın’s second theorem

• Face ∂vf = (∂vf1, ∂vf2, . . . , ∂vfn) of system

f = (f1, f2, . . . , fn) with Newton polytopes

P = (P1, P2, . . . , Pn) and mixed volume V (P).

∂vfi(x) =
∑

a∈∂vAi

ci,ax
a

∂vPi = conv(∂vAi)

face of Newton polytope

Theorem: If ∀v 6= 0, ∂vf(x) = 0 has no solutions in (C∗)n,

then V (P) is exact and all solutions are isolated.

Otherwise, for V (P) 6= 0: V (P) > #isolated solutions.

• Newton polytopes in general position: V (P) is

exact for every nonzero choice of the coefficients.
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B. polytopes

Newton polytopes in general position

Consider

f(x) =







c1,(1,1)x1x2 + c1,(1,0)x1 + c1,(0,1)x2 + c1,(0,0) = 0

c2,(2,2)x
2
1x

2
2 + c2,(1,0)x1 + c2,(0,1)x2 = 0

The Newton polytopes:

t
tt
t
P1

t¢¢
¢
¢t

@
@

t
©©

©©
P2

A1 = {(1, 1), (1, 0), (0, 1), (0, 0)} A2 = {(2, 2), (1, 0), (0, 1)}

P1 = conv(A1) P2 = conv(A2)
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B. polytopes

Newton polytopes in general position

Consider

f(x) =







c1,(1,1)x1x2 + c1,(1,0)x1 + c1,(0,1)x2 + c1,(0,0) = 0

c2,(2,2)x
2
1x

2
2 + c2,(1,0)x1 + c2,(0,1)x2 = 0

Look at the inner normals of P2:

t
tt
t
HHY

P1

t¢¢
¢
¢t

@
@

t
©©

©©
P2

HHY
(−2, 1)

→ the corresponding face system







c1,(1,0)x1 = 0

c2,(2,2)x
2
1x

2
2 + c2,(1,0)x1 = 0

does not have a solution in (C∗)2.
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B. polytopes

Newton polytopes in general position

Consider

f(x) =







c1,(1,1)x1x2 + c1,(1,0)x1 + c1,(0,1)x2 + c1,(0,0) = 0

c2,(2,2)x
2
1x

2
2 + c2,(1,0)x1 + c2,(0,1)x2 = 0

Look at the inner normals of P2:

t
tt
t

AAU P1

t¢¢
¢
¢t

@
@

t
©©

©©
P2

AAU
(1,−2)

→ the corresponding face system







c1,(1,0)x2 = 0

c2,(2,2)x
2
1x

2
2 + c2,(1,0)x2 = 0

does not have a solution in (C∗)2.
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B. polytopes

Newton polytopes in general position

Consider

f(x) =







c1,(1,1)x1x2 + c1,(1,0)x1 + c1,(0,1)x2 + c1,(0,0) = 0

c2,(2,2)x
2
1x

2
2 + c2,(1,0)x1 + c2,(0,1)x2 = 0

Look at the inner normals of P2:

t
tt
t

¡¡µ

P1

t¢¢
¢
¢t

@
@

t
©©

©©
P2

(1, 1)¡¡µ

→ the corresponding face system







c1,(0,0) = 0

c2,(1,0)x1 + c2,(0,1)x2 = 0

does not have a solution in (C∗)2.
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B. polytopes

Newton polytopes in general position

Consider

f(x) =







c1,(1,1)x1x2 + c1,(1,0)x1 + c1,(0,1)x2 + c1,(0,0) = 0

c2,(2,2)x
2
1x

2
2 + c2,(1,0)x1 + c2,(0,1)x2 = 0

Look at the inner normals of P2:

t
tt
t
P1

t¢¢
¢
¢t

@
@

t
©©

©©
P2

HHY

¡¡µ

AAU

∀v 6= 0 : ∂vA1 + ∂vA2 ≤ 3 ⇒ V (P1, P2) = 4 always exact

for all nonzero coefficients
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B. polytopes

Richardson Extrapolation for v and m

�
�

�

xi(s) = bis
vi(1 + O(s))

t(s) = 1− sm

xi(sk) = bih
kvi/ms0(1 + O(hk/ms0))

Geometric sampling 0 < h < 1

1−tk=h(1−tk)=···=hk(1−t0)

sk=h1/msk−1=···=hk/ms0

Input: (x(s), t(s)) solutions along a path, h(x(s), t(s)) = 0.

Output: approximations for v and m.
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B. polytopes

Richardson Extrapolation for v and m
�

�
�

xi(s) = bis
vi(1 + O(s))

t(s) = 1− sm

xi(sk) = bih
kvi/ms0(1 + O(hk/ms0))

Geometric sampling 0 < h < 1

1−tk=h(1−tk)=···=hk(1−t0)

sk=h1/msk−1=···=hk/ms0

Take logarithms to find exponents of power series:

• log |xi(sk)| = log |bi|+
kvi
m

log(h) + vi log(s0) Extrapolation on samples

+ log(1 + �

∞

j=0 b′j(h
k/ms0)j)

wk..l=wk..l−1+
wk+1..l−wk..l−1

1−h

wkk+1 := log |xi(sk + 1)| − log |xi(sk)| vi = m
w0..r
log(h)

+ O(sr
0)

→ first-order approximation for v

... is okay for m = 1
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B. polytopes

Richardson Extrapolation for v and m
�

�
�

xi(s) = bis
vi(1 + O(s))

t(s) = 1− sm

xi(sk) = bih
kvi/ms0(1 + O(hk/ms0))

Geometric sampling 0 < h < 1

1−tk=h(1−tk)=···=hk(1−t0)

sk=h1/msk−1=···=hk/ms0

• log |xi(sk)| = log |bi|+
kvi
m

log(h) + vi log(s0) Extrapolation on samples

+ log(1 + �

∞

j=0 b′j(h
k/ms0)j)

wk..l=wk..l−1+
wk+1..l−wk..l−1

1−h

wkk+1 := log |xi(sk + 1)| − log |xi(sk)| vi = m w0..r
log(h)

+ O(sr
0)

• e
(k)
i = (log |xi(sk)| − log |xi(sk+1)|) Extrapolation on errors

−(log |xi(sk+1)| − log |xi(sk+2)|)
e
(k..l)
i =e

(k+1..l)
i +

e
(k..l−1)
i

−e
(k+1..l)
i

1−hk..l

= c1hk/ms0(1 + 0(hk/m)) hk..l = h(l−k−1)/mk..l

e
(kk+1)
i := log(e

(k+1)
i )− log(e

(k)
i ) mk..l =

log(h)

e
(k..l)
i

+ O(h(l−k)k/m)
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B. polytopes

the system of Cassou-Noguès

f(b, c, d, e) =

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

15b4cd2 + 6b4c3 + 21b4c2d− 144b2c− 8b2c2e

−28b2cde− 648b2d + 36b2d2e + 9b4d3 − 120 = 0

30c3b4d− 32de2c− 720db2c− 24c3b2e− 432c2b2 + 576ec

−576de + 16cb2d2e + 16d2e2 + 16e2c2 + 9c4b4 + 5184

+39d2b4c2 + 18d3b4c− 432d2b2 + 24d3b2e− 16c2b2de− 240c = 0

216db2c− 162d2b2 − 81c2b2 + 5184 + 1008ec− 1008de

+15c2b2de− 15c3b2e− 80de2c + 40d2e2 + 40e2c2 = 0

261 + 4db2c− 3d2b2 − 4c2b2 + 22ec− 22de = 0

Root counts: D = 1344, B = 312, V (P) = 24 > 16 finite roots.

∂(0,0,0,−1)f(b, c, d, e) =

m = 2

�
�

�
�

�
�

�
�

�
�

�
�

�

−8b2c2e− 28b2cde + 36b2d2e = 0 = − 2c2 − 7cd + 9d2

−32de2c + 16d2e2 + 16e2c2 = 0 = − 2dc + d2 + c2

−80de2c + 40d2e2 + 40e2c2 = 0 = − 2dc + d2 + c2

22ec− 22de = 0 = c− d
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C. volumes

Geometric Root Counting

fi(x) =
a∈Ai

ciax
a

ci,a ∈ �

∗ = � \ {0}

f = (f1, f2, . . . , fn)

Pi = conv(Ai)

Newton polytope

P = (P1, P2, . . . , Pn)

L(f) root count in ( �

∗)n desired properties

L(f) = L(f2, f1, . . . , fn) invariant under permutations

L(f) = L(f1x
a, . . . , fn) shift invariant

L(f) ≤ L(f1 + xa, . . . , fn) monotone increasing

L(f) = L(f1(xUa), . . . , fn(xUa)) unimodular invariant

L(f11f12, . . . , fn) root count of product

= L(f11, . . . , fn) + L(f12, . . . , fn) is sum of root counts
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C. volumes

Geometric Root Counting

fi(x) =
a∈Ai

ciax
a

ci,a ∈ �

∗ = � \ {0}

f = (f1, f2, . . . , fn)

Pi = conv(Ai)

Newton polytope

P = (P1, P2, . . . , Pn)

properties of L(f) V (P) mixed volume

invariant under permutations V (P2, P1, . . . , Pn) = V (P)

shift invariant V (P1 + a, . . . , Pn) = V (P)

monotone increasing V (conv(P1 + a), . . . , Pn) ≥ V (P)

unimodular invariant V (UP1, . . . , UPn) = V (P)

root count of product V (P11 + P12, . . . , Pn)

is sum of root counts = V (P11, . . . , Pn) + V (P12, . . . , Pn)
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C. volumes

Geometric Root Counting

fi(x) =
a∈Ai

ciax
a

ci,a ∈ �

∗ = � \ {0}

f = (f1, f2, . . . , fn)

Pi = conv(Ai)

Newton polytope

P = (P1, P2, . . . , Pn)

L(f) root count in ( �

∗)n V (P) mixed volume

L(f) = L(f2, f1, . . . , fn) V (P2, P1, . . . , Pn) = V (P)

L(f) = L(f1x
a, . . . , fn) V (P1 + a, . . . , Pn) = V (P)

L(f) ≤ L(f1 + xa, . . . , fn) V (conv(P1 + a), . . . , Pn) ≥ V (P)

L(f) = L(f1(xUa), . . . , fn(xUa)) V (UP1, . . . , UPn) = V (P)

L(f11f12, . . . , fn) V (P11 + P12, . . . , Pn)

= L(f11, . . . , fn) + L(f12, . . . , fn) = V (P11, . . . , Pn) + V (P12, . . . , Pn)

exploit sparsity L(f) = V (P) 1st theorem of Bernshtěın
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C. volumes

The Theorems of Bernshtěın

Theorem A: The number of roots of a generic system equals the

mixed volume of its Newton polytopes.

Theorem B: Solutions at infinity are solutions of systems

supported on faces of the Newton polytopes.

D.N. Bernshtěın: The number of roots of a system of equations.

Functional Anal. Appl., 9(3):183–185, 1975.

Structure of proofs: First show Theorem B, looking at power series

expansions of diverging paths defined by a linear homotopy

starting at a generic system. Then show Theorem A, using

Theorem B with a homotopy defined by lifting the polytopes.
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C. volumes

Some References

J. Canny and J.M. Rojas: An optimal condition for determining the

exact number of roots of a polynomial system.

In Proceedings of ISSAC 1991, pages 96–101. ACM, 1991.

J. Verschelde, P. Verlinden, and R. Cools: Homotopies exploiting Newton

polytopes for solving sparse polynomial systems.

SIAM J. Numer. Anal. 31(3):915–930, 1994.

B. Huber and B. Sturmfels: A polyhedral method for solving sparse

polynomial systems. Math. Comp. 64(212):1541–1555, 1995.

I.Z. Emiris and J.F. Canny: Efficient incremental algorithms for the

sparse resultant and the mixed volume.

J. Symbolic Computation 20(2):117–149, 1995.
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C. volumes

Bernshtěın’s first theorem

Let g(x) = 0 have the same Newton polytopes P as f(x) = 0,

but with randomly choosen complex coefficients.

I. Compute Vn(P): II. Solve g(x) = 0:

I.1 lift polytopes ⇔ II.1 introduce parameter t

I.2 mixed cells ⇔ II.2 start systems

I.3 volume of mixed cell ⇔ II.3 path following

III. Coefficient-parameter continuation to solve f(x) = 0:

h(x, t) = γ(1− t)g(x) + tf(x) = 0, for t from 0 to 1.

#isolated solutions in (C∗)n, C∗ = C \ {0}, of f(x) = 0 is

bounded by the mixed volume of the Newton polytopes of f .
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C. volumes

Finding Mixed Cells

g(x1, x2, t) =







c1,(1,1)x1x2t
2 + c1,(1,0)x1t

7 + c1,(0,1)x2t
3 + c1,(0,0)t

3 = 0

c2,(2,2)x
2
1x

2
2t

5 + c2,(1,0)x1t
3 + c2,(0,1)x2t

2 = 0

• At t = 1: the system g(x, 1) = g(x) = 0 we want to solve.

• Where to start?

→ look for inner normals v ∈ Z3, v3 > 0, such that after

x1 = y1s
v1 , x2 = y2s

v2 , t = sv3 ,

the system g(y, s) = 0 has solutions in (C∗)2 at s = 0.
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C. volumes

Coordinate Transformations give Homotopies

g(x1 = y1, x2 = y2s, t = s)

=







c1,(1,1)y1(y2s)s
2 + c1,(1,0)y1s

7 + c1,(0,1)(y2s)s
3 + c1,(0,0)s

3 = 0

c2,(2,2)y
2
1(y2s)

2s5 + c2,(1,0)y1s
3 + c2,(0,1)(y2s)s

2 = 0

=







c1,(1,1)y1y2s
3 + c1,(1,0)y1s

7 + c1,(0,1)y2s
4 + c1,(0,0)s

3 = 0

c2,(2,2)y
2
1y

2
2s

7 + c2,(1,0)y1s
3 + c2,(0,1)y2s

3 = 0

=







c1,(1,1)y1y2 + c1,(1,0)y1s
4 + c1,(0,1)y2s+ c1,(0,0) = 0

c2,(2,2)y
2
1y

2
2s

4 + c2,(1,0)y1 + c2,(0,1)y2 = 0

At s = 0 we find a binomial system which has two solutions.

The two solutions extend to solutions of g(x) = g(x, s = 1) = 0.
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C. volumes

Coordinate Transformations and Inner Normals

Applying the transformation (x1 = y1s
v1 , x2 = y2s

v2 , t = sv3),

to a lifted monomial xatl(a) yields

xa1
1 xa2

2 tl(a) = (y1s
v1)a1(y2s

v2)a2(sv3)l(a)

= ya1
1 ya2

2 sa1v1+a2v2+l(a)v3

= ya1
1 ya2

2 s〈(a,l(a)),v〉.

A binomial system contains xatl(a) and xbtl(b)

if there exists an inner normal v ∈ Z3, v3 > 0, such that







〈(a, l(a)),v〉 = 〈(b, l(b)),v〉

〈(a, l(a)),v〉 < 〈(e, l(e)),v〉, ∀e ∈ A \ {a,b}.

page 7 of C



C. volumes

A Regular Mixed Subdivision

t
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@
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@
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©©

©©
©©

¢
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¢
¢

¢
¢
¢
¢

¡
¡

¡
¡

Three mixed cells:

({(1, 1, 2), (1, 0, 7)}, {(2, 2, 5), (1, 0, 3)}) v = (−12, 5, 1) V = 1

({(1, 1, 2), (0, 1, 3)}, {(2, 2, 5), (0, 1, 2)}) v = (1,−5, 1) V = 1

({(1, 1, 2), (0, 0, 3)}, {(1, 0, 3), (0, 1, 2)}) v = (0, 1, 1) V = 2

mixed volume = sum of volumes of mixed cells : V = 4
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C. volumes

More References on Polyhedral Methods

J.M. Rojas: Toric Laminations, Sparse Generalized Characteristic

Polynomials, and a Refinement of Hilbert’s Tenth Problem.

In F. Cucker and M. Shub, editors, Foundations of Computational

Mathematics, pages 369–381, Springer-Verlag 1997.

B. Huber and B. Sturmfels: Bernstein’s theorem in affine space.

Discrete Comput. Geom. 17(2):137-141, 1997.

B. Huber and J. Verschelde: Polyhedral end games for polynomial

continuation. Numerical Algorithms 18(1):91–108, 1998.

J.M. Rojas: Toric intersection theory for affine root counting.

Journal of Pure and Applied Algebra 136(1):67–100, 1999.

T. Gao, T.Y. Li., and X. Wang: Finding isolated zeros of polynomial

systems in Cn with stable mixed volumes.

J. of Symbolic Computation 28(1-2):187–211, 1999.
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C. volumes

Affine Roots

Mixed volumes count roots in (C∗)n, what about Cn?

Consider

f(x, y) =







x+ x2 + x3y = 0

y + y2 + y3x = 0
V = 3 ignores (0, a), (b, 0), (0, 0).

An idea: add artificial origins to the polytopes and first solve

g(x, y) =







c1 + x+ x2 + x3y = 0

c2 + y + y2 + y3x = 0
where c1, c2 are random.

Then remove added constants with a homotopy.

Drawback: too many diverging paths; V = 8 for g(x, y) = 0.
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C. volumes

Stable Mixed Volumes

Lift artificial origins to height one, the rest remains at zero.

g(x, y) =







c1 + x+ x2 + x3y = 0

c2 + y + y2 + y3x = 0

A1 = {(0, 0), (1, 0), (2, 0), (3, 1)}

A2 = {(0, 0), (0, 1), (0, 2), (1, 3)}

Observe a mixed subdivision:

t t t
t
t

t t
t t

t
t

¡
¡

©©
©©

¡
¡

¢
¢
¢
¢t

¡
¡
³³

³³
³³

t
¡
¡
££

££

££
artificial origins

introduced five new

mixed cells, but only

three are stable

i.e.: converge to affine roots

A mixed cell is stable if all components of its inner normal v

are ≥ 0. Recall: xi = yis
vi . For vi < 0: xi →∞ as s→ 0.
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C. volumes

One Single Lifting

Lift the original points in the supports to heights in [0, 1]

and the artificial origins sufficiently heigh.

One single lifting computes a stable mixed volume:

t t t
t
t

t t
t t

t
t

©©
©©
¡
¡

©©
©©

¢
¢
¢
¢

¡
¡

¢
¢
¢
¢t

¡
¡
³³

³³
³³

t
¡
¡
£
£
£
£
£
££

1 1

1

3x

x

spurious cells marked with x

one cell with volume 3

3 extra stable mixed cells

each contributes one root

with zero components

Height of artificial origins: n(n+ 1)dn, d =
n
max
i=1

deg(fi).
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D. developments

Software for Polyhedral Homotopies

J. Verschelde: Algorithm 795: PHCpack: A general-purpose solver

for polynomial systems by homotopy continuation. ACM Trans.

Math. Softw., 25(2):251–276, 1999.

Version 2.3.31 is available via http://www.math.uic.edu/~jan.

T. Gao, T.Y. Li, and M. Wu: Algorithm 846: MixedVol: a software

package for mixed-volume computation.

ACM Trans. Math. Softw., 31(4):555–560, 2005.

HOM4PS is available via http://www.math.msu.edu/~li.

T. Gunji, S. Kim, M. Kojima, A. Takeda, K. Fujisawa, and T. Mizutani:

PHoM – a polyhedral homotopy continuation method for

polynomial systems. Computing, 73(4):55–77, 2004.

Available via http://www.is.titech.ac.jp/~kojima.

T. Gunji, S. Kim, K. Fujisawa, and M. Kojima: PHoMpara –

parallel implementation of the Polyhedral Homotopy

continuation Method for polynomial systems.

Computing 77(4):387–411, 2006.
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D. developments

Parallel Polyhedral Methods

joint with Yan Zhuang

• large systems from mechanical design

• dynamic load balancing achieves good speedup

• quality up still an issue...
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D. developments

Dynamic Load Balancing
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D. developments

An academic Benchmark: cyclic n-roots

The system

f(x) =















fi =

n=1
∑

j=0

i
∏

k=1

x(k+j)mod n = 0, i = 1, 2, . . . , n− 1

fn = x0x1x2 · · ·xn−1 − 1 = 0

appeared in

G. Björck: Functions of modulus one on Zp whose Fourier

transforms have constant modulus In Proceedings of the Alfred

Haar Memorial Conference, Budapest, pages 193–197, 1985.

very sparse, well suited for polyhedral methods
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D. developments

Results on the cyclic n-roots problem

Problem #Paths CPU Time

cyclic 5-roots 70 0.13m

cyclic 6-roots 156 0.19m

cyclic 7-roots 924 0.30m

cyclic 8-roots 2,560 0.78m

cyclic 9-roots 11,016 3.64m

cyclic 10-roots 35,940 21.33m

cyclic 11-roots 184,756 2h 39m

cyclic 12-roots 500,352 24h 36m

Wall time for start systems to solve the cyclic n-roots problems,

using 13 workers at 2.4Ghz, with static load distribution.
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D. developments

Dynamic versus Static Workload Distribution

Static versus Dynamic on our cluster Dynamic on argo

#workers Static Speedup Dynamic Speedup Dynamic Speedup

1 50.7021 – 53.0707 – 29.2389 –

2 24.5172 2.1 25.3852 2.1 15.5455 1.9

3 18.3850 2.8 17.6367 3.0 10.8063 2.7

4 14.6994 3.4 12.4157 4.2 7.9660 3.7

5 11.6913 4.3 10.3054 5.1 6.2054 4.7

6 10.3779 4.9 9.3411 5.7 5.0996 5.7

7 9.6877 5.2 8.4180 6.3 4.2603 6.9

8 7.8157 6.5 7.4337 7.1 3.8528 7.6

9 7.5133 6.8 6.8029 7.8 3.6010 8.1

10 6.9154 7.3 5.7883 9.2 3.2075 9.1

11 6.5668 7.7 5.3014 10.0 2.8427 10.3

12 6.4407 7.9 4.8232 11.0 2.5873 11.3

13 5.1462 9.8 4.6894 11.3 2.3224 12.6

Wall time in seconds to solve a start system for the cyclic 7-roots problem.
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serial chains

Design of Serial Chains I

H.J. Su. Computer-Aided Constrained Robot Design Using Mechanism

Synthesis Theory. PhD thesis, University of California, Irvine, 2004.
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serial chains

Design of Serial Chains II

H.J. Su. Computer-Aided Constrained Robot Design Using Mechanism

Synthesis Theory. PhD thesis, University of California, Irvine, 2004.
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serial chains

Design of Serial Chains III

H.J. Su. Computer-Aided Constrained Robot Design Using Mechanism

Synthesis Theory. PhD thesis, University of California, Irvine, 2004.
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serial chains

For more about these problems:

H.-J. Su and J.M. McCarthy: Kinematic synthesis of RPS serial chains.

In the Proceedings of the ASME Design Engineering Technical

Conferences (CDROM), Chicago, IL, Sep 2-6, 2003.

H.-J. Su, C.W. Wampler, and J.M. McCarthy: Geometric design of

cylindric PRS serial chains.

ASME Journal of Mechanical Design 126(2):269–277, 2004.

H.-J. Su, J.M. McCarthy, and L.T. Watson: Generalized linear product

homotopy algorithms and the computation of reachable surfaces.

ASME Journal of Information and Computer Sciences in

Engineering 4(3):226–234, 2004.

H.-J. Su, J.M. McCarthy, M. Sosonkina, and L.T. Watson: POLSYS GLP:

A parallel general linear product homotopy code for solving

polynomial systems of equations.

ACM Trans. Math. Softw. 32(4):561-597, 2006.
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serial chains

Results on Mechanical Design Problems

Bézout vs Bernshtěın

Bounds on #Solutions Wall Time

Surface D B V our cluster on argo

elliptic cylinder 2,097,152 247,968 125,888 11h 33m 6h 12m

circular torus 2,097,152 868,352 474,112 7h 17m 4h 3m

general torus 4,194,304 448,702 226,512 14h 15m 6h 36m

D = total degree; B = generalized Bézout bound; V = mixed volume

Wall time for mechanism design problems on our cluster and argo.

• Compared to the linear-product bound, polyhedral homotopies

cut the #paths about in half.

• The second example is easier (despite the larger #paths)

because of increased sparsity, and thus lower evaluation cost.
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