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1. INTRODUCTION

The presented software package PHC implements homotopy continuation
methods to compute numerically approximations to all isolated solutions of
a system of n polynomial equations in n unknowns.

The name Polynomial Homotopy Continuation unites the three key
concepts of the method. Since we solve polynomial systems we exploit the
algebraic structure to count the roots and to construct a start system. By
continuation methods, the known solutions of the start system are ex-
tended to the desired solutions of the target system. This deformation is
defined by the homotopy, i.e., a family of systems connecting start and
target system.

The following intuitive reasoning might shed light on the hardness of the
problem. Not surprisingly, evaluating a multivariate polynomial can be
done in polynomial time, i.e., in time proportional to a polynomial function
in the dimension, degrees, and number of terms. Computing one solution is
NP-hard, because we may apply the following nondeterministic algorithm:
guess a root by some oracle and verify whether it satisfies the equations.
This verification runs in polynomial time. Computing all solutions is
harder, because there exists no polynomial-time algorithm to verify
whether a guessed number of solutions gives the right number of solutions.
This counting problem is said to be #P-hard. Hence, our problem is
intractable [Garey and Johnson 1979] for growing dimension and increas-
ing degrees. Consequently, the computations are restricted to a fixed
dimension n, and the complexity is measured in terms of the output size,
i.e., the number of solutions. See Blum et al. [1997] for the complexity of
Bézout’s theorem.

The central concept in polynomial homotopy continuation is the root
count,1 because it determines the number of solution paths that need to be
traced. Recent research has striven to develop sharp root counts that lead
to homotopies with an optimal number of paths. The root count is also a
vital instrument in validating numerical results. This term encompasses
Bézout numbers, mixed volumes, and combinatorial counts from the Schu-
bert calculus in enumerative geometry.

The history of homotopy continuation for polynomial systems can be
roughly divided into two eras, each spanning about one decade. The first
decade was focussed on applying Bézout’s theorem for counting the solu-
tions. Milestone publications are the introductory paper by Li [1987], the
book by Morgan [1987], and the survey by Watson [1986]. Publicly avail-
able software packages are CONSOL [Morgan 1987] and HOMPACK
[Watson et al. 1987], recently upgraded to Fortran 90 [Watson et al. 1997].
During the last 10 years, root-counting methods have been developed to
exploit the structure of a polynomial system. The novel methods are of a
symbolic-numeric nature [Emiris 1998]. Progress in homotopy continuation

1The term root count was coined by Canny and Rojas [1991], who presented the mixed volume
as being of important practical significance for solving polynomial systems.
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for polynomial systems [Li 1997] benefited from the interaction between
combinatorics, algebraic geometry, and applied mathematics [Sturmfels
1998]. The polyhedral methods have brought homotopy continuation into
the literature on computational algebraic geometry [Cox et al. 1998]. New,
publicly available software packages are Pelican [Huber 1995] and PHC.
Recently, optimal homotopies were presented for computing linear sub-
space intersections in enumerative geometry; see Sottile [1997], Huber et
al. [1998], and Verschelde [1998].

The aim of this article is to give an overview on how the algorithms in
PHC are used in practice to solve polynomial systems. In the next section
related software packages are mentioned. PHC offers a great variety of
root-counting methods, as explained in Section 3. The fourth section
contains some basics about polynomial continuation. Sections 5–7 describe
the general flow, the operation modes of the main program, and the
internal structure of the package. The software is portable, and computer-
compiler experiences are given in Section 8. In Sections 9 and 10 the
outline of the black-box solver is presented, along with its practical perfor-
mance on a large collection of applications. Before the conclusions, informa-
tion on how to obtain and install the software is listed.

2. RELATED SOFTWARE

To indicate related software dedicated to solving polynomial systems by
homotopy continuation, four different packages that are publicly available
are briefly mentioned. We also refer to a program for computing mixed
volumes. In closing this section we indicate some large-scale related
software projects.

HOMPACK [Morgan et al. 1989; Watson et al. 1987] and CONSOL
[Morgan 1987] are written in Fortran 77. HOMPACK is a general package
for homotopy continuation with a polynomial driver. It has been parallel-
ized [Allison et al. 1989; Harimoto and Watson 1989] and extended with an
end game [Sosonkina et al. 1996]. A Fortran 90 version appeared recently
[Watson et al. 1997]. The package POLSYS PLP [Wise et al. 1998] for
constructing partitioned linear-product start systems is intended to be used
in conjunction with HOMPACK90. The code for CONSOL is contained in
Morgan [1987]. Morgan et al. [1991; 1992a; 1992b] developed techniques to
handle end-point singularities.

Malajovitch created pss to apply homotopy continuation with verification
by a-theory. The program contains facilities for parallel continuation.
Originally written in C, the newest version [Malajovich 1996] is pro-
grammed in C11. Pelican [Huber 1995; 1996] implements in C the
polyhedral methods of Huber and Sturmfels [1995]. Gao has created
Fortran software for polyhedral continuation, with facilities to compute the
affine roots [Gao et al. 1997].

The computation of mixed volumes is a crucial step in the resolution of
sparse polynomial systems. The C program mvlp [Emiris 1994; Emiris and
Canny 1995] computes mixed volumes; see Giordano [1996] for a distrib-
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uted version. For a general resultant-based polynomial-system solver, we
refer to Wallack et al. [1998].

In recent years, the attention to software for solving polynomial systems
increased largely. FRISCO [The FRISCO Consortium 1996] is a three-year
project funded by the European Commission under the Esprit Reactive LTR
Scheme (project no. 21.024). A demo of the software produced by the
predecessor project PoSSo is available at The Pisa Team of PoSSo [1993].

3. ROOT COUNTS AND START SYSTEMS

The computation of a root count is identified with the resolution of a
generic system. In this sense, we call root-counting a symbolic computation
mirroring this resolution. The basic root-counting principles for dense,
sparse, and determinantal systems are exemplified next.

The use of multihomogenization was proposed in Morgan and Sommese
[1987a; 1987b]. Li et al. [1987a; 1987b] introduced random product homo-
topies, see also Li and Wang [1991].

Example 3.1 Consider a two-dimensional generalized eigenvalue prob-
lem, represented by a polynomial in l with 2-by-2 matrices as coefficients.
A linear equation is added to scale the eigenvectors.

F~x! 5 5 SF a11 a12

a21 a22
Gl2 1 F b11 b12

b21 b22
Gl 1 F c11 c12

c21 c22
GDF x1

x2
G 5 F 0

0 G
a1x1 1 a2x2 1 a3 5 0

(1)

The total degree D equals 3 3 3 3 1 and overshoots the number of roots.
For this problem we see that the components of the eigenvector occur
linearly, whereas the degree of the eigenvalue equals two. By separating
the unknowns in a partition Z, a 2-homogeneous Bézout number is ob-
tained as follows

Z 5 $$l%, $x1, x2%% 3
$l%

2È
$x1, x2%

1È

2 1
0 1

4 BZ 5 2 3 1 1 2 3 1 1 0 3 1 5 4 (2)

The matrix contains the degrees of the polynomials with respect to the sets
in Z. The Bézout number BZ is computed as the generalized permanent of
this matrix. This computation models the resolution of the following
linear-product system:
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F~0!~x! 5 5
$l%

~a11l 1 a12!~a13l 1 a14!
È

$x1, x2%

~a15x1 1 a16x2 1 a17!
È 5 0

~a21l 1 a22!~a23l 1 a24!~a25x1 1 a26x2 1 a27! 5 0
a1x1 1 a2x2 1 a3 5 0

(3)

Any random-number generator will yield a-coefficients of the linear-prod-
uct system F ~0!~x! 5 0 so that it has exactly four regular solutions. This
leads to a homotopy with an optimal number of solution paths.

A heuristic method developed for constructing a good partition Z of the
set of unknowns is outlined in Verschelde [1996]. Besides that, an exhaus-
tive enumeration as in Wampler [1992] of all partitions is available in
PHC. In case the number of independent roots equals BZ, interpolation can
be used to construct a start system [Verschelde et al. 1991].

The idea of Verschelde and Haegemans [1993] is that not every polyno-
mial should be modeled by the same partition. This leads to partitioned
linear-product start systems. General linear-product start systems were
constructed in Verschelde and Cools [1993b] and applied to symmetric
polynomial systems in Verschelde and Cools [1994]. The key condition is
that a linear-product start system must contain all monomials of the target
system. Theoretically, these homotopy methods can be considered as a
special case of the polyhedral homotopy methods. In practice, we sometimes
prefer product start systems, for solving a random linear-product system
can be performed much more efficiently than solving a random coefficient
system. PHC supports the construction of both partitioned and general
linear-product start systems.

Efficient algorithms to construct general linear-product start systems are
elaborated by Li et al. [1996]. Morgan et al. [1995] treated general product
decompositions that do not restrict to linear factors. Recent coding efforts
on partitioned linear-product start systems are reported by Wise et al.
[1998].

The start solutions in linear-product homotopies are obtained by solving
linear systems. In polyhedral homotopy methods [Huber and Sturmfels
1995; Verschelde et al. 1994], the start solutions are solutions to binomial
systems.

Example 3.2 To solve a system that has two terms in any of its
equations, unimodular transformations are applied to transform the sys-
tem into a triangular structure. For the example below, x 5 yU abbreviates
the substitution ~x1, x2! 4 ~y1y2

21, y1
21y2

2!.

F~x! 5 H x1
2x2

1 2 1 5 0
x1

4x2
3 2 1 5 0

U 5 F 1 21
21 2 G

F~x 5 yU! 5 H y2 2 1 5 0
y1y2

2 2 1 5 0
(4)
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We see that F~x! 5 0 has two regular solutions. Geometrically, we have
computed the area of a parallelogram spanned by the origin, the points
~2,1! and ~4,3!, and their sum. This area equals the determinant of the
matrix that has in its columns the spanning vectors of the parallelogram.
Multiplying by U triangulates this matrix:

F 1 21
21 2 GF 2 4

1 3 G 5 F 1 1
0 2 G (5)

As det~U! 5 1, U is called unimodular and preserves volume. Conse-
quently, the transformation x 5 yU does not change the number of solu-
tions. Note that the total degree and 2-homogeneous Bézout number equal
respectively 21 and 10.

The above example is the sparsest case. The fewer monomials the fewer
roots we expect [Khovanskii 1991]. In general, we apply Bernshtein’s
theorem [Bernshtein 1975] and count the number of roots by the mixed
volume of the Newton polytopes. By means of a regular subdivision,
polyhedral homotopies are constructed that start at systems corresponding
to the cells in the subdivision. Figure 1 illustrates the case where all
Newton polytopes are the same, which is the case of Kushnirenko’s theorem
[Kushnirenko 1976]. The root count is obtained as the volume of the
Newton polytope shared by all polynomials in the system.

The program features four different lifting methods: implicit, static,
dynamic, and symmetric lifting. Implicit lifting refers to the algorithms
used in the proof of Bernshtein [1975]. The method in Huber and Sturmfels
[1995] is called static, to make the distinction with dynamic lifting, an
algorithm that has been developed in Verschelde et al. [1996] to construct
regular triangulations of polytopes incrementally with low lifting values.
Symmetric lifting was presented in Verschelde and Gatermann [1995]. To
construct regular subdivisions, both integer and floating-point lifting func-

Fig. 1. A regular triangulation of the Newton polytope of F with polyhedral homotopy F̂.
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tions are available in PHC and elaborated with recursion. The Cayley trick
[Gel’fand et al. 1994] defines in its polyhedral version [Sturmfels 1994] a
polytope whose volume equals the mixed volume of the considered configu-
ration of polytopes. In PHC, this trick is implemented by means of dynamic
lifting. When many polynomials share the same exponents, this method is
more efficient than static lifting.

With mixed volumes we restrict the counting to solutions that have all
their components different from zero. Extensions to count and compute all
isolated affine roots are described in Rojas [1994; 1999], Huber and
Sturmfels [1997], Li and Wang [1996], Rojas and Wang [1996], Gao et al.
[1997], and in Emiris and Verschelde [1999].

A new class of homotopy methods solves geometric problems whose
intersection conditions are modeled by polynomial equations that arise
from expanding determinants. Gröbner and SAGBI bases translate ques-
tions concerning ideals and subalgebras to monomial equations. The mono-
mial orderings induced by weight vectors provide recipes to set up homo-
topies that are flat deformations, i.e., preserve the structure of the solution
set. These are the key ideas for the Gröbner and SAGBI homotopies
introduced in Huber et al. [1998] to enumerate all p-planes that intersect
mp given m-planes in general position in Cm1p. See Ravi et al. [1996] and
Rosenthal and Willems [1998] for the relevance to the pole placement
problem in control theory, and for related computational experiments see
Rosenthal and Sottile [1998], Sottile [1998], and Verschelde [1998]. A third
type of homotopies presented in Sottile [1997] and Huber et al. [1998] has
an intrinsic geometric meaning and is briefly described next.

Example 3.3 A classical problem in enumerative geometry [Kleiman
and Laksov 1972] deals with finding the two lines in projective 3-space that
meet four given lines in general position. For the configurations as in
Figure 2 we have to solve the following system:

det~X ? Li! 5 0, N det1
x11 0
x21 0
0 x32

0 x42

*
c11

~i! c12
~i!

c21
~i! c22

~i!

c31
~i! c32

~i!

c41
~i! c42

~i!
2 i 5 1, 2, 3, 4 (6)

The special choice of coordinates so that L2 is spanned by the first two and
L1 by the last two basis vectors admits the choice of local coordinates for
the solution X. The best Bézout number for this system equals 6, and the
mixed volume equals 4, whereas there are only two solutions. The so-called
Pieri homotopy starts at the special configuration, displayed at the left of
Figure 2, and moves the third input line in general position. To reach the
two solutions of this problem, it suffices to follow the solution paths defined
by this homotopy.

The start systems and root counts presented here are optimal for three
different classes of polynomial systems. This classification is only a sample
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and by no means exhaustive. We expect that future research developments
will extend this list of root counters and homotopies.

4. POLYNOMIAL CONTINUATION AND END GAMES

Solution paths of polynomial homotopies do not turn back as the continua-
tion parameter t increases, due to the regularity of the paths, as discussed
in Li and Sauer [1987]. Therefore an increment-and-fix predictor-corrector
method is appropriate: after each increase of t, t remains fixed while
correcting the solution x by Newton’s method. Figure 3 sketches two
possible predictor schemes in the path tracker.

The clustering of solution paths is avoided by tightening the tolerances of
the corrector to enforce quadratic convergence of Newton’s method in every
step.

Fig. 2. In P3 two thick lines meet four given lines L1, L2, L3, and L4 in a point. At the left we
see a special configuration, and the general configuration is at the right.

Fig. 3. The secant and tangent predictor with l as step length.
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Only as t 3 1, we may have to deal with paths converging to singular
solutions and with paths diverging to infinity. To this end, several end
games were proposed by Morgan et al. [1991; 1992a; 1992b] and by
Sosonkina et al. [1996]. Polyhedral end games [Huber and Verschelde 1998]
provide a certificate of divergence that allows us to separate diverging
paths from the rest, without first having to compute the actual values of
the diverging paths accurately. Next we summarize the idea of Huber and
Verschelde [1998].

A solution path is represented by the following power series expansion:

H xi~s! 5 aisvi~1 1 O~s!!

t~s! 5 1 2 sm t ' 1, s ' 0. (7)

The winding number m is lower than or equal to the multiplicity of the
solution. We see that for a solution diverging to infinity or to a zero-
component solution we have v i Þ 0. According to David Bernshtein’s
second theorem [Bernshtein 1975], this solution corresponds to a solution of
the face system defined by the direction v. This face certifies the diver-
gence.

To check whether a solution path really diverges is equivalent to the test
on the value for v i. A first-order approximation of v i can be computed by

log?xi~s1!? 2 log?xi~s0!?

log~s1! 2 log~s0!
5 vi 1 O~s0!, (8)

with 0 , s1 , s0. The above formula assumes the correct value of the
winding number m. To compute m, solution paths are sampled geometri-
cally with ratio h as sk 5 hk/ms0. The errors on the estimates for v i are

ei
~k! 5 ~log?xi~sk!? 2 log?xi~sk11!?! 2 ~log?xi~sk11!? 2 log?xi~sk12!?! (9)

5 c1hk/ms0~1 1 O~hk/m!!. (10)

An estimate for m is derived from two consecutive errors ei
~k!. Extrapolation

improves this estimate.
A parallel development to make resultants deal with situations when the

mixed volume overshoots the number of roots is described in Rojas [1997].

5. THE FOUR STAGES OF THE SOLVER

The root count provides important information about the amount of compu-
tational work that is required to solve the problem. It suffices to multiply
the root count with the estimated time needed to follow one solution path.

In Figure 4, the four stages of the solver are displayed.
The aim of preconditioning is to bring the system in a form more suitable

to homotopy continuation. In the second stage, a root-counting method is
applied to construct a start system. The tuning of continuation parameters
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and path following by means of predictor-corrector methods is performed in
the third stage. The postprocessing stage consists in the validation of the
computed results. Basic validation includes for instance the computation of
local condition numbers, whereas more elaborate validation procedures
eventually require continuation.

6. EXECUTION MODES AND TOOLS

Since we have to respect a strict processing order and may expect compu-
tationally lengthy jobs, PHC is organized as a menu-driven and file-
oriented program.

The simplest way to solve systems by PHC is to type

phc -b input output

when input is the name of the input file that contains the system. This
mode is the so-called black-box mode and requires no other input than the
polynomial system. Results can be found in the file output . One particular
choice for a black-box solver is outlined in Section 9.

The second mode is the full mode, where PHC runs through all stages of
the solver and asks the user to confirm the default settings while giving the
opportunity to modify the settings interactively. This mode is invoked by
default, just by typing phc after the prompt.

Some stages may be skipped, whereas more than one root-counting
method can be invoked before the construction of a homotopy. Therefore,
the tool mode has been created; see Figure 5. Another advantage of working
with tools is that intermediate results, such as a mixed subdivision and a
random coefficient start system, can be valuable stepping stones in the
resolution of a large and difficult system.

Table I gives an overview of the tools and the options of PHC to invoke
them.

The need for a separate tool for mvc comes from the amount of computa-
tional work that is not negligible for computing mixed volumes and

Fig. 4. The four stages in the solver.

260 • J. Verschelde

ACM Transactions on Mathematical Software, Vol. 25, No. 2, June 1999.



performing polyhedral continuation. The reduction redu tool applies
S-polynomials as described in Verschelde and Cools [1992]. This technique
generalizes the linear reduction on the coefficient matrix of the system
[Morgan 1987].

7. THE INTERNAL DESIGN: THE LIBRARIES OF PHCPACK

There are four large components of the software system: the mathematical
library, the homotopy continuation routines, the root-counting methods,
and the interface packages.

The sources of PHCpack are organized in the tree shown in Figure 6. The
structure reflects the discrete and continuous nature of the program.

The concept of information hiding has been applied more deeply than just
separating the four stages of the solver. Next are some examples on how
PHC deals with polynomials.

(1) The continuation is not only separated from the choice of the homotopy,
but also from the way polynomials are evaluated. This is done by
providing the evaluation and differentiation of the homotopy as param-
eters of the path trackers.

(2) For the evaluation of polynomials, a multivariate Horner scheme is
implemented at the level of the polynomial package. The precise
definition is hidden to the client procedures that create and evaluate
these polynomials.

Fig. 5. Schematic overview of the tools offered by the package PHC.

Table I. Overview of Tools, Acronyms, and Options of PHC

Stage Acronym Description of the Tool Option

1 scal coefficient scaling phc -s
redu reduction of degrees phc -d

2 roco root counts and start systems phc -r
mvc mixed-volume computation phc -m

3 poco polynomial continuation phc -p
4 vali validation of results phc -v
x enum enumerative geometry phc -e
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(3) A polynomial homotopy can be evaluated more efficiently when the
coefficients are parameters to the evaluation routines. The combination
with multivariate Horner yields a powerful and flexible coefficient
homotopy.

Without using this third data structure, the construction of a random
coefficient start system for the cyclic 7-roots problem (924 paths to follow,
about 100 cells) by means of polyhedral homotopy continuation took 4h 38m
55s 354ms CPU time. The current version takes only about 15m 49s 391ms
CPU time! Polyhedral homotopies are nonlinear in the continuation param-
eter t, and treating tv as just one monomial or as a polynomial of degree v
makes the difference in evaluation. This third data structure was created
to deal with floating-point lifting values v implementing a suggestion of
T.Y. Li.

Note that coefficient-parameter polynomial continuation [Morgan and
Sommese 1989] or cheater’s homotopy [Li et al. 1989; Li and Wang 1992] is
a very useful and natural concept.

The computational bottleneck in polynomial continuation is the evalua-
tion of polynomials. The efficiency could improve a lot if the polynomials
would be known at compile time, so that optimized in-line evaluators can
be used. However, to keep the program user-friendly, compilation of the
program must not be required each time a new system has to be solved.

8. ON PORTABILITY: COMPUTERS AND COMPILERS

PHC is written in Ada. Since the gnu-ada compiler (also called GNAT [Ada
Core Technologies 1997]) is available for a large number of platforms, the
software is portable. The myth that Ada is “big and slow” is disproved in
Syiek [1995]: Ada versions even have a slight edge over their C counter-
parts.

Fig. 6. Tree organization showing structure of PHCpack sources.
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Initially, the VADS (Verdix Ada Development System) compiler was used
on three different machine architectures. The implementation started
[Verschelde 1990] on a SUN3/280 and moved [Verschelde and Cools 1993a]
to a DECStation 5240. A version for an IBM RS/6000 workstation was
made available [Verschelde 1995]. Thirdly, SUN-SPARC machines were
used [Verschelde and Cools 1996], along with the gnu-ada compiler version
3.03 in Verschelde [1996].

Next a report is given on compiler experiences. Because runtime effi-
ciency is crucial, compilation is done with full optimization and with a
suppression of runtime checks. Table II contains experimental data com-
paring VADS 6.2.3b against gnu-ada 3.09.

In Table III the performance of the generated code is illustrated on one of
the benchmark examples.

Although this comparison is by no means thorough, the gnu-ada compiler
seems to be the winner, both in compiling and runtime efficiency. Cur-
rently, the gnu-ada compiler is maintained by a privately held company
Ada Core Technologies (ACT), founded by the creators of the gnu-ada
compiler. ACT is committed to provide publicly free releases of their
compiler. The most recent public version is numbered 3.11p.

The fourth platform used to develop PHC is a Pentium PC running
Linux. The mathematical kernel of PHC has been rewritten using concepts
of Ada 95 to incorporate multiprecision facilities. The other major change in
the new version is the availability of SAGBI [Verschelde 1998] and Pieri
homotopies.

9. PUTTING IT ALL TOGETHER: ONE BLACK-BOX SOLVER

Here the key ingredients are presented to build an overall, general-purpose
solver that is reliable and efficient. This allows to solve polynomial systems
simply by typing

phc -b input output

after the prompt.

Table II. Compiler Efficiency (on SPARCserver-1000): Compilation Timings and Sizes of
Auxiliary Files and Executable

Compiler Options User Time System Time Total Time
Auxiliary

Files Executable

VADS: -O -S 40m 9s 5m 8s 45m 17s 42.1MB 4.0MB
GNAT: -O3 -gnatp 45m 46s 2m 59s 48m 47s 4.1MB 2.9MB

Table III. Performance of Generated Code, on the Cyclic 7-Roots Problem with the Black-
Box Solver Compiled with VADS and GNAT. Timings are listed for root-counting,

construction of start system, the continuation to the target system, and the total time.

phc Root Counts Start System Continuation Total Time

VADS 1m 26s 866 ms 24m 20s 589ms 38m 17s 667ms 1h 4m 42s 129ms
GNAT 1m 15s 74 ms 15m 49s 391ms 27m 50s 521ms 45m 21s 434ms
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The outline of the black-box solver is as follows:

1. Homotopy Construction:
1.1. Computation of root counts:

D: total degree;
BZ: multihomogeneous Bézout number, based on a heuristically gen-

erated partition;
BS: general linear-product Bézout number, based on a heuristically

generated set structure;
V: mixed volume, by dynamic lifting, when the number of different

supports is less than or equal to n/2, by static lifting otherwise.
1.2. Construction of start system, corresponding to the minimal and
least expensive root count.

2. Polynomial Continuation:
2.1. Coefficient and variable scaling.
2.2. Tracking of the solution paths.
2.3. Root refinement on the descaled solutions.

The computation of root counts by four different methods provides
already important information about the problem class. Even though the
mixed volume always yields the lowest bound, the construction of the
corresponding start system requires continuation and is computationally
much more expensive to solve than a linear-product start system. The
latter start system is preferred when any of the Bézout numbers equals the
mixed volume.

Practical experiments show that scaling the coefficients really helps to
smoothen the continuation. For a discussion of scaling see Morgan et al.
[1989] or Morgan [1987].

The output file contains the following:

(1) The root counts D, BZ, BS, and V.

(2) Start system with start solutions.

(3) Settings of the path tracker.

(4) Results of polynomial continuation on the scaled system.

(5) Solutions of original system as output of the root refiner.

(6) Timings for the stages and timing summary at the end.

End games are not invoked in the black-box solver, because the determi-
nation of the end game operation range tends to be problem dependent. The
idea behind this black-box solver is to get quickly an idea of the complexity
of the system while providing many root counts. To examine singularities
and other degeneracies we recommend switching to the tool mode of PHC.
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10. THE TEST DATABASE OF POLYNOMIAL SYSTEMS

The progress on solving polynomial systems has always been motivated by
the poor performance of the existing technology on practical examples. To
make the benchmarking more meaningful and relevant, most systems are
taken from practical applications, cited in the literature. We refer to
Traverso [1993] and Bini and Mourrain [1998] for similar collections.

In Tables IV and V an overview of the application database is given. To
save space, the algebraic description is omitted. Either the reference or the
PHC distribution file can be consulted. Some systems appear in different
guises, such as the cyclic n-roots and the economics problem. It allows us to
see how the particular formulation of a problem can influence the solution
process.

Some important characteristics of the systems are listed in Tables VI and
VII. Most systems arising from practical applications are deficient, i.e.,
have fewer roots than the root count. The improvement of the mixed
volume compared to the Bézout bounds is in many cases really significant.
The black-box solver of PHC does not contain facilities to treat affine roots
properly; therefore it may miss some isolated solutions with zero compo-
nents.

The parameters of the black-box solver have been set to handle all
examples of the database. In Tables VIII and IX timings are listed for a
SPARCserver-1000. We count 33 little examples that require less than one
minute to solve. There are 38 larger examples, for which PHC needs
between one minute and an hour. Five big examples require more than one
hour to solve.

Timings only have a temporary value. They are only good to measure the
difficulty of solving one system compared to another one. The exponential
gains from selecting a sharp root count are more important. The black-box
solver is certainly not the optimal way to solve a particular system,
although the timings give a good impression of the general performance of
the package.

The demonstration database of polynomial systems is still growing in
order to increase the awareness of the importance and relevance of solving
polynomial systems to applied mathematics and scientific computing.

In closing, some user applications of PHC are mentioned. PHC was used
actively by Charles Wampler [Wampler 1996] to count the roots of various
systems in mechanical design. Frank Sottile applied PHC to compute root
counts for linear subspace intersections of the Schubert calculus; see Sottile
[1998] for various tables. A third example comes from computer graphics.
To show that the 12 lines tangent to four given spheres can all be real,
Thorsten Theobald used PHC, choosing appropriate parameters in the
algebraic formulation set up by Cassiano Durand.

11. OBTAINING AND INSTALLING PHC

The current second release of PHC is available at the Web pages of the
author. The distribution contains the Ada sources with makefiles to install
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with the gnu-ada compiler, the database of test examples, and executable
versions for Unix workstations SUN, SGI, and PCs running Linux and
Solaris. For other platforms the gnu-ada compiler is needed.

The affiliations of the author will change. In case the current Web
addresses are obsolete, or to report other (installation) problems, please

Table IV. An Overview of the Test Database, Part I. Besides the name of the polynomial
system, a reference to the literature and a short description is mentioned.

Name Reference Title with Description of the Application

boon Boon [1992] neurophysiology, posted by Sjirk Boon
butcher Traverso [1993] Butcher’s problem, from PoSSo test suite
butcher8 Boege et al. [1986] 8-variable version of Butcher’s problem
camera1s Emiris [1997] camera displacement between 2 positions, frame 1
caprasse Traverso [1993] the system Caprasse of the PoSSo test suite
cassou Li et al. [1996] the system of Pierrette Cassou-Noguès
chemequ Meintjes and Morgan [1990] chemical equilibrium of hydrocarbon combustion
cohn2 Cohn and Deutch [1988] modular equations for algebraic number fields
cohn3 Galligo and Traverso [1989] modular equations for algebraic number fields
comb3000 Morgan [1987] Model A combustion chemistry example
conform1 Emiris [1997] conformal analysis of cyclic molecules, instance 1
cpdm5 Gatermann [1990] 5-dimensional system of Caprasse and Demaret
cyclic5 Björk and Fröberg [1991] cyclic 5-roots problem
cyclic6 Björk and Fröberg [1991] cyclic 6-roots problem
cyclic7 Backelin and Fröberg [1991] cyclic 7-roots problem
cyclic8 Björk and Fröberg [1994] cyclic 8-roots problem
d1 Van Hentenryck et al. [1997] a sparse system, known as benchmark D1
des18_3 Nauheim [1998] a “dessin d’enfant,” called des18_3
des22_24 Nauheim [1998] a “dessin d’enfant,” called des22_24
discret3s Traverso [1993] system discret3, scaled by average coefficients
eco5 Morgan [1987] 5-dimensional economics problem
eco6 Morgan [1987] 6-dimensional economics problem
eco7 Morgan [1987] 7-dimensional economics problem
eco8 Morgan [1987] 8-dimensional economics problem
extcyc5 Verschelde and Gatermann

[1995]
extended cyclic 5-roots to exploit symmetry

extcyc6 Verschelde and Gatermann
[1995]

extended cyclic 6-roots to exploit symmetry

extcyc7 Verschelde and Gatermann
[1995]

extended cyclic 7-roots to exploit symmetry

extcyc8 Verschelde and Gatermann
[1995]

extended cyclic 8-roots to exploit symmetry

fourbar Morgan and Wampler [1990] four-bar design problem, so-called 5-point problem
fbrfive4 Wampler [1996] four-bar linkage through 5 points, n54 version
fbrfive12 Wampler [1996] four-bar linkage, coupler curve through 5 points
gaukwa2 Stroud and Secrest [1966] Gaussian quadrature formula 2 knots, 2 weights
gaukwa3 Stroud and Secrest [1966] Gaussian quadrature formula 3 knots, 3 weights
gaukwa4 Stroud and Secrest [1966] Gaussian quadrature formula 4 knots, 4 weights
geneig Chu et al. [1988] generalized eigenvalue problem
heart Nelsen and Hodgkin [1981] heart-dipole problem
i1 Van Hentenryck et al. [1997] benchmark i1 from Interval Arithmetic

Benchmarks
ipp Morgan and Sommese [1987b] six-revolute-joint problem of mechanics
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feel free to contact the author sending an email message to
jan.verschelde@na-net.ornl.gov .

12. CONCLUSIONS AND FUTURE DEVELOPMENTS

PHC offers a general-purpose solver for polynomial systems that features
recent research advances in root-counting methods. The software package

Table V. An Overview of the Test Database, Part II. Besides the name of the polynomial
system, a reference to the literature and a short description is mentioned.

Name Reference Title with Description of the Application

ipp2 Wampler and Morgan [1991] 6R inverse position problem
katsura5 Boege et al. [1986] a problem of magnetism in physics
kinema Bellido [1992] robot kinematics problem
kin1 Van Hentenryck et al. [1997] kinematics problem
ku10 Steenkamp [1982] 10-dimensional system of Ku
lorentz Li [1987] equilibrium of 4-dimensional Lorentz attractor
lumped Li and Wang [1991] lumped-parameter chemically reacting system
mickey Verschelde and Cools [1996] Mickey-mouse example as illustration
noon3 Noonburg [1989] neural network, Lotka-Volterra system, n53
noon4 Noonburg [1989] neural network, Lotka-Volterra system, n54
noon5 Noonburg [1989] neural network, Lotka-Volterra system, n55
proddeco Morgan et al. [1995] system with a product-decomposition structure
puma Morgan and Shapiro [1987] hand position and orientation of PUMA robot
quadfor2 Verschelde and Gatermann

[1995]
Gaussian quadrature with 2 knots and weights

quadgrid Sweldens [1994] interpolating quadrature formula on a grid
rabmo Moore and Jones [1977] optimal multidimensional quadrature formulas
rbpl Mourrain [1993] parallel robot, the so-called left-hand problem
rbpl24 Mourrain [1996] parallel robot with 24 real solutions
redcyc5 Emiris [1994] reduced cyclic 5-roots problem
redcyc6 Emiris [1994] reduced cyclic 6-roots problem
redcyc7 Emiris [1994] reduced cyclic 7-roots problem
redcyc8 Emiris [1994] reduced cyclic 8-roots problem
redeco5 Morgan [1987] reduced 5-dimensional economics problem
redeco6 Morgan [1987] reduced 6-dimensional economics problem
redeco7 Morgan [1987] reduced 7-dimensional economics problem
redeco8 Morgan [1987] reduced 8-dimensional economics problem
rediff3 Iserles (personal

communication 1995)
3-dimensional reaction-diffusion problem

reimer5 Traverso [1993] The 5-dimensional system of Reimer
rose Traverso [1993] a general economic equilibrium model
s9_1 Nauheim [1998] small system from constructive Galois theory
sendra Traverso [1993] the system sendra of the PoSSo test suite
solotarev Traverso [1993] the system solotarev of the PoSSo test suite
sparse5 Verschelde and Gatermann

[1995]
5-dimensional sparse symmetric polynomial
system

speer Gatermann [1990] the system of E.R. Speer
trinks Traverso [1993] system of Trinks from the PoSSo test suite
virasoro Schrans and Troost [1990] the construction of Virasoro algebras
wood Moré et al. [1981] system derived from optimizing Wood function
wright Wright [1985] system of A.H. Wright
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is portable via the gnu-ada compiler. Practical evidence for the performance
of its black-box solver has been given on a large set of applications.

A recent exciting development concerns homotopies that solve problems
in enumerative geometry; see Sottile [1997] and Huber et al. [1998]. This
class of homotopies is already incorporated in the current second release of
the package. As future (maybe futuristic) long-term project we dream of a
comprehensive framework for constructing homotopies, integrating the

Table VI. Characteristics of the Polynomial Systems, Part I. The dimension is n. D is the
total degree of the system. BZ is an m-homogeneous Bézout number, based on a partition
generated by a heuristic method. BS is a generalized linear-product Bézout number, based
on a set structure generated by a heuristic method. V is the mixed volume. #sols is number

of isolated solutions found by PHC.

Name n D BZ BS V # sols

boon 6 1024 344 216 20 8
butcher 7 4608 2090 605 24 5
butcher8 8 4608 1461 587 26 16
camera1s 6 64 20 20 20 20
caprasse 4 144 62 94 48 48
cassou 4 1344 368 361 24 16
chemequ 5 108 56 44 16 16
cohn2 4 900 468 358 124 18
cohn3 4 1080 484 358 213 102
comb3000 10 96 66 28 16 16
conform1 3 64 16 16 16 16
cpdm5 5 243 243 243 242 157
cyclic5 5 120 120 106 70 70
cyclic6 6 720 720 588 156 156
cyclic7 7 5040 5040 4200 924 924
cyclic8 8 40320 40320 30365 2560 1152
d1 12 4068 320 896 192 48
des18_3 8 324 544 241 46 46
des22_24 10 256 128 82 42 42
discret3s 8 256 128 128 128 128
eco5 5 54 20 16 8 8
eco6 6 162 48 36 16 16
eco7 7 486 112 80 32 32
eco8 8 1458 256 176 64 64
extcyc5 5 120 120 106 70 70
extcyc6 6 720 720 588 156 156
extcyc7 7 5040 5040 4200 924 924
extcyc8 8 40320 40320 30365 2560 1152
fbrfive12 12 4096 96 96 36 36
fbrfive4 4 256 96 194 36 36
fourbar 4 256 96 96 80 36
gaukwa2 4 24 11 11 5 2
gaukwa3 6 720 225 225 49 6
gaukwa4 8 40320 6769 6769 729 24
geneig 6 243 10 10 10 10
heart 8 576 193 193 121 4
i1 10 59049 452 437 66 66
ipp 8 256 96 96 64 48
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PACKage approach of numerical analysis with the general-purpose solvers
of computer algebra.
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Table VII. Characteristics of the Polynomial Systems, Part II. The dimension is n. D is the
total degree of the system. BZ is an m-homogeneous Bézout number, based on a partition
generated by a heuristic method. BS is a generalized linear-product Bézout number, based
on a set structure generated by a heuristic method. V is the mixed volume. #sols is number

of isolated solutions found by PHC.

Name n D BZ BS V # sols

ipp2 11 1024 576 848 288 16
katsura5 6 32 32 32 32 32
kin1 12 4608 320 896 192 48
kinema 9 64 240 64 64 40
ku10 10 1024 2 2 2 2
lorentz 4 16 14 12 12 11
lumped 4 16 8 11 7 4
mickey 2 4 4 4 4 4
noon3 3 27 29 21 21 21
noon4 4 81 81 73 73 73
noon5 5 243 243 233 233 233
proddeco 4 256 96 96 26 6
puma 8 128 16 32 16 16
quadfor2 4 24 11 11 4 2
quadgrid 5 120 10 10 10 5
rabmo 9 36000 22740 7090 136 16
rbpl 6 486 160 160 160 150
rbpl24 9 576 80 80 80 40
redcyc5 4 24 24 19 14 14
redcyc6 5 120 96 83 26 26
redcyc7 6 720 720 511 132 132
redcyc8 7 5040 3960 3107 320 144
redeco5 5 8 12 8 8 8
redeco6 6 16 28 16 16 16
redeco7 7 32 64 32 32 32
redeco8 8 64 144 64 64 64
rediff3 3 8 8 8 7 7
reimer5 5 720 720 720 720 144
rose 3 216 144 136 136 136
s9_1 8 16 41 10 10 10
sendra 2 49 49 46 46 46
solotarev 4 36 10 8 6 6
sparse5 5 100000 3840 3840 160 160
speer 4 625 384 246 96 43
trinks 6 24 24 18 10 10
virasoro 8 256 3072 256 200 200
wood 4 36 25 16 9 9
wright 5 32 32 32 32 32
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Table VIII. Part I of Timing Summary on SPARCserver-1000, with the Black-Box Version
Made with the gnu-ada Compiler. The CPU time of the process is expressed in hours,

minutes, seconds, and milliseconds.

Name Root Counts Start System Continuation Total Time

boon 0h 0m 0s 190 0h 0m 5s 868 0h 0m 14s 394 0h 0m 20s 937
butcher 0h 0m 13s 267 0h 0m 29s 23 0h 1m 44s 962 0h 2m 28s 449
butcher8 0h 0m 50s 513 0h 0m 25s 188 0h 4m 20s 602 0h 5m 38s 507
camera1s 0h 0m 8s 258 0h 0m 0s 110 0h 0m 34s 406 0h 0m 44s 682
caprasse 0h 0m 0s 769 0h 0m 10s 4 0h 0m 17s 80 0h 0m 28s 888
cassou 0h 0m 1s 145 0h 0m 10s 688 0h 1m 3s 439 0h 1m 15s 972
chemequ 0h 0m 1s 116 0h 0m 4s 827 0h 0m 6s 886 0h 0m 13s 378
cohn2 0h 0m 3s 989 0h 0m 49s 953 0h 2m 49s 74 0h 3m 46s 619
cohn3 0h 0m 4s 991 0h 1m 12s 618 0h 16m 15s 864 0h 17m 37s 282
comb3000 0h 0m 7s 814 0h 0m 5s 630 0h 0m 18s 162 0h 0m 33s 118
conform1 0h 0m 0s 42 0h 0m 0s 45 0h 0m 3s 880 0h 0m 4s 310
cpdm5 0h 0m 18s 683 0h 2m 27s 225 0h 9m 51s 598 0h 12m 43s 370
cyclic5 0h 0m 0s 562 0h 0m 11s 768 0h 0m 32s 469 0h 0m 45s 993
cyclic6 0h 0m 6s 40 0h 1m 15s 816 0h 2m 44s 292 0h 4m 9s 434
cyclic7 0h 1m 15s 74 0h15m 49s 391 0h 27m 50s 521 0h 45m 21s 434
cyclic8 0h 14m 41s 38 1h25m 14s 851 2h 54m 28s 884 4h 35m 54s 367
d1 0h 0m 15s 182 0h 5m 34s 397 0h 13m 30s 348 0h 19m 25s 426
des18_3 0h 3m 51s 209 0h 1m 19s 587 0h 1m 44s 25 0h 6m 57s 913
des22_24 0h 0m 23s 538 0h 0m 50s 660 0h 1m 22s 251 0h 2m 40s 53
discret3s 0h 2m 20s 4 0h 0m 0s 719 0h 56m 20s 922 0h 58m 52s 121
eco5 0h 0m 0s 281 0h 0m 1s 222 0h 0m 2s 829 0h 0m 4s 686
eco6 0h 0m 2s 217 0h 0m 4s 132 0h 0m 6s 771 0h 0m 13s 785
eco7 0h 0m 22s 215 0h 0m 20s 511 0h 0m 34s 19 0h 1m 18s 249
eco8 0h 5m 28s 66 0h 1m 1s 471 0h 1m 55s 472 0h 8m 27s 528
extcyc5 0h 0m 2s 355 0h 0m 36s 607 0h 0m 37s 521 0h 1m 17s 726
extcyc6 0h 0m 30s 15 0h 1m 45s 137 0h 2m 56s 572 0h 5m 15s 706
extcyc7 0h 9m 15s 674 0h17m 22s 278 0h 30m 29s 581 0h 57m 33s 835
extcyc8 1h 58m 58s 816 1h36m 57s 179 3h 58m 54s 943 7h 36m 30s 580
fbrfive12 0h 1m 30s 161 0h 1m 6s 686 0h 2m 18s 859 0h 4m 58s 570
fbrfive4 0h 0m 0s 463 0h 0m 17s 283 0h 1m 2s 690 0h 1m 21s 972
fourbar 0h 0m 0s 625 0h 0m 8s 706 0h 2m 1s 20 0h 2m 12s 565
gaukwa2 0h 0m 0s 55 0h 0m 0s 705 0h 0m 1s 460 0h 0m 2s 391
gaukwa3 0h 0m 1s 430 0h 0m 22s 803 0h 0m 52s 615 0h 1m 17s 674
gaukwa4 0h 1m 18s 940 0h27m 42s 595 0h 52m 30s 671 1h 21m 42s 787
geneig 0h 0m 0s 476 0h 0m 0s 303 0h 0m 11s 314 0h 0m 14s 648
heart 0h 1m 10s 899 0h 3m 14s 236 0h 4m 39s 75 0h 9m 6s 712
i1 0h 0m 37s 869 0h 0m 49s 215 0h 1m 59s 959 0h 3m 29s 913
ipp 0h 1m 4s 541 0h 1m 21s 14 0h 1m 47s 940 0h 4m 16s 287
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