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0. The Problem
Solve
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is a polynomial system with approximate coefficients.
Solve means: by computer using general methods
 so any one can re-solve and verify.
Three categories of solutions:
(1) approximations to all isolated solutions;
(2) all irreducible solution components, of all dimensions;
(3) information about the exceptional parameter values.
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A generic choice for start avoids singularities along the paths.

2. Polyhedral Homotopies
Newton polytopes model sparse structure:
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Polyhedral homotopies are optimal for generic coefficients.

References
[1] T.Y. Li. Numerical solution of multivariate polynomial systems by homotopy

continuation methods. Acta Numerica, 6:399–436, 1997.

[2] J. Verschelde. Algorithm 795: PHCpack: A general-purpose solver for polyno-
mial systems by homotopy continuation. ACM Trans. Math. Softw., 25(2):251–
276, 1999. http://www.math.uic.edu/˜jan/download.html.

3. Numerical Irreducible Decomposition
Numerical representations of positive dimensional solution sets.
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Cut space curve with a random plane to find its degree.

4. Monodromy Factorization
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Loop around the singular point (0,0) permutes the points.

5. Deflation for Isolated Singularities
Jacobian matrix <>= ��� � rank deficient close to

� 2
;

let ? be the numerical rank of < = �@� 2 � ; and
introduce ? � A

extra multiplier variables B .
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B is the multiplier vectorW
is a random matrixY

is a random vector

Reduced to corank one case. Repeat if necessary.

References
[3] A.J. Sommese and C.W. Wampler. The Numerical solution of systems of polyno-

mials arising in engineering and science. World Scientific, 2005.

[4] A. Leykin, J. Verschelde, and A. Zhao. Newton’s method with deflation for
isolated singularities of polynomial systems. Theoretical Computer Science, 359(1-
3):111–122, 2006.

6. Applications to Mechanisms
Chebychev’s 4-bar mechanism and its cognates:

Given points the mechanism must reach, determine its parameters.

7. Applications to Control
Control of an \ -input and ] -output plant by a ^ th order dynamic compensator:

_ ` acb d � ` a 5 de ` agf

hi ` a"j

k l� � m � � W _e � n �
li � o i � p e_ � q i � r e

Every feedback law corresponds to a polynomial map of degree ^ into the Grass-
mannian of ] -planes in

0 b stf that meet \ ] � ^ � \ � ] � given \ -planes sampled at\ ] � ^ � \ � ] � interpolation points.

8. Software on Clusters and Supercomputers
PHCpack [2] is available in source form, with binaries for many different computers.
Interfaces: PHCmaple (for Maple), PHClab (for MATLAB and Octave).
PHClib offers C wrappers to treat the code as a library. The parallel path trackers of
PHCpack use PHClib and MPI, developed on Rocketcalc personal clusters.
PHCpack is among the experimental packages in SAGE.
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