
Symbolic Computation with SymPy

1 Symbolic Computing in Python
SymPy in Python
SymPy in SageMath

2 Two Examples
series with a generator
solving recurrence relations

MCS 320 Lecture 37
Introduction to Symbolic Computation

Jan Verschelde, 29 July 2022

Intro to Symbolic Computation (MCS 320) Symbolic Computation with SymPy L-37 29 July 2022 1 / 9



Symbolic Computation with SymPy

1 Symbolic Computing in Python
SymPy in Python
SymPy in SageMath

2 Two Examples
series with a generator
solving recurrence relations

Intro to Symbolic Computation (MCS 320) Symbolic Computation with SymPy L-37 29 July 2022 2 / 9



SymPy in Python

Symbolic computing in pure Python.

Home: https://www.sympy.org.

Lightweight: depends only on mpmath.

Online shell at
https://live.sympy.org.

Free library, under the BSD license.

Intro to Symbolic Computation (MCS 320) Symbolic Computation with SymPy L-37 29 July 2022 3 / 9



Symbolic Computation with SymPy

1 Symbolic Computing in Python
SymPy in Python
SymPy in SageMath

2 Two Examples
series with a generator
solving recurrence relations

Intro to Symbolic Computation (MCS 320) Symbolic Computation with SymPy L-37 29 July 2022 4 / 9



SymPy in SageMath

Computing expressions starts with symbols.

Both SymPy and SageMath use var() to declare symbols.

To use SymPy symbols in SageMath:

import sympy
x = sympy.var(’x’)

SymPy symbols are needed in sympy.series.

SymPy results are cast into the Symbolic Ring with SR().

Intro to Symbolic Computation (MCS 320) Symbolic Computation with SymPy L-37 29 July 2022 5 / 9



Symbolic Computation with SymPy

1 Symbolic Computing in Python
SymPy in Python
SymPy in SageMath

2 Two Examples
series with a generator
solving recurrence relations

Intro to Symbolic Computation (MCS 320) Symbolic Computation with SymPy L-37 29 July 2022 6 / 9



Series with a Generator

The Taylor series of f (x) at x = a is

f (a) + f ′(a)(x − a) + f ′′(a)
1
2
(x − a)2 + f ′′′(a)

1
3!
(x − a)3 + · · ·

or written with the derivative operator D, up to order n

n−1∑
k=0

Dk f (a)
k !

(x − a)k + O((x − a)n),

where
Dk f (a) is the value of the k -th derivative of f (x) at x = a,
O((x − a)n) is the order of the series.

With a generator, we compute the next term in the series.

Intro to Symbolic Computation (MCS 320) Symbolic Computation with SymPy L-37 29 July 2022 7 / 9



Symbolic Computation with SymPy

1 Symbolic Computing in Python
SymPy in Python
SymPy in SageMath

2 Two Examples
series with a generator
solving recurrence relations

Intro to Symbolic Computation (MCS 320) Symbolic Computation with SymPy L-37 29 July 2022 8 / 9



solving recurrence relations

Examples of a one term and two term recurrent relations are below.

1 The cost T (n) of merge sort on a list of n numbers:

T (n) = 2T
(n

2

)
+ n − 1, T (1) = 0.

2 The Fibonacci numbers, for a nonnegative integer n,

f (n) = f (n − 1) + f (n − 2), f (0) = 0, f (1) = 1.

An explicit expression in function of n can be obtained for the solution.

Intro to Symbolic Computation (MCS 320) Symbolic Computation with SymPy L-37 29 July 2022 9 / 9


	Symbolic Computing in Python
	SymPy in Python
	SymPy in SageMath

	Two Examples
	series with a generator
	solving recurrence relations


