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SymPy in Python

Symbolic computing in pure Python.

Home: https://www.sympy.org.

Lightweight: depends only on mpmath.

Online shell at
https://live.sympy.org.

Free library, under the BSD license.
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SymPy in SageMath

Computing expressions starts with symbols.

Both SymPy and SageMath use var() to declare symbols.

To use SymPy symbols in SageMath:

import sympy
x = sympy.var(’x’)

SymPy symbols are needed in sympy.series.

SymPy results are cast into the Symbolic Ring with SR().
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Series with a Generator

The Taylor series of f (x) at x = a is

f (a) + f ′(a)(x − a) + f ′′(a)
1
2
(x − a)2 + f ′′′(a)

1
3!
(x − a)3 + · · ·

or written with the derivative operator D, up to order n

n−1∑
k=0

Dk f (a)
k !

(x − a)k + O((x − a)n),

where
Dk f (a) is the value of the k -th derivative of f (x) at x = a,
O((x − a)n) is the order of the series.

With a generator, we compute the next term in the series.
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solving recurrence relations

Examples of a one term and two term recurrent relations are below.

1 The cost T (n) of merge sort on a list of n numbers:

T (n) = 2T
(n

2

)
+ n − 1, T (1) = 0.

2 The Fibonacci numbers, for a nonnegative integer n,

f (n) = f (n − 1) + f (n − 2), f (0) = 0, f (1) = 1.

An explicit expression in function of n can be obtained for the solution.
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