24 Nov 2010

Recurrences

the cost of divide-and-conquer algorithms the recursion tree: depth and #leaves

Statement of the Master

1 Solving Recurrences

the cost of divide-and-conquer algorithms the recursion tree: depth and #leaves

Theorem asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theorem

2 Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta statement and interpretation using the master theorem

> MCS 360 Lecture 40 Introduction to Data Structures Jan Verschelde, 24 November 2010

the master method

24 Nov 2010

Solving Recurrences

the cost of divide-and-conquer algorithms the recursion tree: depth and #leaves

Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theor

Solving recurrences consists of two steps:

- **1** Apply the recursion-tree method for the solution form.
- 2 Use mathematical induction to find constants in the form and show that the solution works.

The previous lecture dealt with the recursion-tree method, before that we covered the substitution method for step 2.

Today we consider the general case of estimating the cost of divide-and-conquer algorithms.

solving recurrences

24 Nov 2010

Recurrences

the cost of divide-and-conquer algorithms

the recursion tree: depth and #leaves

Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theorem

the master method

KOLKA ARABAKEN E YOUR

1 Solving Recurrences

the cost of divide-and-conquer algorithms

the recursion tree: depth and #leaves

Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta statement and interpretation using the master theorem

24 Nov 2010

Recurrences

the cost of divide-and-conquer algorithms

the recursion tree: depth and #leaves

Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theorem

divide-and-conquer algorithms

The recurrence relation

 $T(n) = aT(n/b) + f(n)$, $a > 1, b > 1$, some function *f*.

expresses the cost of a recursive algorithm that

- splits a problem of size *n* in *a* pieces;
- every piece has size n/b (or $\lfloor n/b \rfloor$, or $\lceil n/b \rceil$); and
- it takes *f*(*n*) to divide the problem and assemble the solutions to the pieces.

Example(1): merge sort has cost $T(n) = 2T(n/2) + cn$, for some constant *c*.

Example(2): $a = 7$ and $b = 2$ in Strassen's matrix multiplication algorithm, and $f(n) = 18n^2$.

24 Nov 2010

Recurrences

the cost of divide-and-conquer algorithms

the recursion tree: depth and #leaves

Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theorem

1 Solving Recurrences

the cost of divide-and-conquer algorithms

the recursion tree: depth and #leaves

Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta statement and interpretation using the master theorem

the master method

24 Nov 2010

Solving Recurrences

the cost of divide-and-conquer algorithms

the recursion tree: depth and #leaves

Statement of the Master **Theorem**

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theorem

depth of the recursion

The recursion
$$
T(n) = aT(n/b) + f(n)
$$
 stops

- when T is applied to 1,
- at the depth of the recursion tree.

Denote by *d* the depth of the recursion: $\frac{n}{b^d} = 1$.

$$
n = b^d \Rightarrow \log_2(n) = \log_2(b^d) = d \log_2(b)
$$

We have:

$$
d = \log_b(n) = \frac{\log_2(n)}{\log_2(b)}.
$$

KORK EXTERNE PROPER

24 Nov 2010

Solving Recurrences

the cost of divide-and-conquer algorithms

the recursion tree: depth and #leaves

Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theorem

number of leaves

KORK E KERKERKERKER

The recursion
$$
T(n) = aT(n/b) + f(n)
$$
 defines a tree
of depth $d = \log_b(n) = \log_2(n)/\log_2(b)$ with L leaves.

At each level #children = a , so $L = a^d$.

$$
\begin{array}{rcl}\n\log_2(L) &=& d \log_2(a) \\
&=& \frac{\log_2(n)}{\log_2(b)} \log_2(a) \\
&=& \frac{\log_2(a)}{\log_2(b)} \log_2(n) \\
&=& \log_b(a) \log_2(n)\n\end{array}
$$

So the number of leaves *L* is $n^{\log_b(a)}$.

24 Nov 2010

Recurrences

the cost of divide-and-conquer algorithms the recursion tree: depth and #leaves

Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theorem

Solving Recurrences

the cost of divide-and-conquer algorithms the recursion tree: depth and #leaves

2 Statement of the Master Theorem asymptotic growth: big O, big Omega, and big Theta statement and interpretation using the master theorem

the master method

24 Nov 2010

Recurrences

the cost of divide-and-conquer algorithms the recursion tree: depth and #leaves

Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theorem

big O : *f* is *O*(*g*) : *f* grows no faster than *g* big theta : f is $\Theta(g)$: f grows at the same rate as g big omega : *f* is $\Omega(g)$: *f* grows at least as fast as *g* Viewed as sets: $\Theta(q) = O(q) \cap \Omega(q)$. Limit definitions: • *f* is *O*(*g*) if $\lim_{n\rightarrow+\infty}\frac{f(n)}{g(n)} < \infty$, including 0 *f*(*n*)

Asymptotic Order

KOLKA ARABAKEN E YOUR

\n- f is
$$
\Omega(g)
$$
 if $\lim_{n \to +\infty} \frac{f(n)}{g(n)} > 0$, including ∞
\n- f is $\Theta(g)$ if $\lim_{n \to +\infty} \frac{f(n)}{g(n)} = c$, $0 < c < \infty$
\n

lim *ⁿ*→+[∞] means for all *ⁿ* [≥] *^N*, for some constant *^N*

24 Nov 2010

Recurrences

the cost of divide-and-conquer algorithms the recursion tree: depth and #leaves

Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theorem

Solving Recurrences

the cost of divide-and-conquer algorithms the recursion tree: depth and #leaves

2 Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta statement and interpretation using the master theorem

the master method

24 Nov 2010

Recurrences

the cost of divide-and-conquer algorithms the recursion tree:

depth and #leaves

Statement of the Master **Theorem**

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theorem

the master theorem

The recurrence relation

 $T(n) = aT(n/b) + f(n)$, $a > 1, b > 1$, some function *f*

has the following bounds:

1 If $f(n)$ is $O(n^{\log_b(a)-\epsilon})$ for some constant $\epsilon > 0$, then $T(n)$ is $\Theta(n^{\log_b(a)})$.

2 If $f(n)$ is $\Theta(n^{\log_b(a)})$, then $T(n)$ is $\Theta(n^{\log_b(a)} \log_2(n))$.

3 If $f(n)$ is $\Omega(n^{\log_b(a)+\epsilon})$, for some constant $\epsilon > 0$, and

a $f(n/b) < c f(n)$, for some constant $c < 1$ and $n > N$,

then $T(n)$ is $\Theta(f(n))$.

24 Nov 2010

Recurrences

the cost of divide-and-conquer algorithms the recursion tree: depth and #leaves

Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theorem

interpretation of the theorem

Recall: the recurrence $T(n) = aT(n/b) + f(n)$ defines a tree of depth $log_b(n)$ with $L = n^{\log_b(a)}$ leaves.

Three cases:

- **1** *f* grows no faster than *L*: *f* is $O(n^{\log_b(a)})$
- 2 *f* grows at the same rate as *L*: *f* is $\Theta(n^{\log_b(a)})$
- ³ *f* grows at least as fast as *L*: *f* is Ω(*n*log*b*(*a*))

Relating *f*(*n*) to *L*, we find that *T*(*n*) depends on *L*. Second case: *f* is $\Theta(L) \Rightarrow T(n)$ is $\Theta(L \log_2(n))$. Note: depth $log_b(n) = log_2(n)/log_2(b)$ is $\Theta(log_2(n))$.

24 Nov 2010

Recurrences

the cost of divide-and-conquer algorithms the recursion tree: depth and #leaves

Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theorem

Solving Recurrences

the cost of divide-and-conquer algorithms the recursion tree: depth and #leaves

2 Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta statement and interpretation using the master theorem

the master method

24 Nov 2010

Recurrences

the cost of divide-and-conquer algorithms the recursion tree: depth and #leaves

Statement of

the Master **Theorem**

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theorem

merge sort

KORK EXTERNE PROPER

The merge sort algorithm has a recurrence

$$
T(n)=2T(n/2)+\Theta(n),
$$

where $a = 2$, $b = 2$, and $f(n) = \Theta(n)$.

The number of leaves: $L = n^{\log_b(a)} = n^{\log_2(2)} = n$. so case 2 of the theorem applies:

2 If $f(n)$ is $\Theta(n^{\log_b(a)})$, then $T(n)$ is $\Theta(n^{\log_b(a)} \log_2(n))$.

Therefore: $T(n)$ is $O(n \log_2(n))$.

24 Nov 2010

Recurrences

the cost of divide-and-conquer algorithms the recursion tree: depth and #leaves

Statement of the Master **Theorem**

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theorem

Strassen's matrix multiplication

For the matrix multiplication algorithm of Strassen we have $a = 7$, $b = 2$, and $f(n) = 18n^2$.

The number of leaves: $L = n^{\log_b(a)} = n^{\log_2(7)}$. and $log_2(7) \approx 2.80736$.

Which case applies?

Compare growth of *f*, which is $\Theta(n^2)$ to $O(n^{2.80736})$.

Take $\epsilon = 0.80736$ and case 1 applies:

1 If $f(n)$ is $O(n^{\log_b(a)-\epsilon})$ for some constant $\epsilon > 0$, then $T(n)$ is $\Theta(n^{\log_b(a)})$.

Therefore: $T(n)$ is $O(n^{2.81})$ which is better than $O(n^3)$.

24 Nov 2010

Recurrences

the cost of divide-and-conquer algorithms the recursion tree:

depth and #leaves

Statement of the Master **Theorem**

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theorem

Let $T(n) = 3T(n/4) + n \log_2(n)$, so $a = 3, b = 4$, and $f(n) = n \log_2(n)$. $L = n^{\log_b(a)} = n^{\log_4(3)}$ is $O(n^{0.793})$, as $\log_4(3) \approx 0.79248$. Take $\epsilon = 0.2$, then $f(n)$ is $\Omega(n^{\log_4(3)+\epsilon})$.

Does *a* $f(n/b) < c f(n)$ hold for some constant $c < 1$ asymptotically? We check:

 $a f(n/b) = 3(n/4) \log_2(n/4) < 3/4n \log_2(n) = c f(n)$,

holds for $c = 3/4$.

Therefore: $T(n)$ is $\Theta(n \log_2(n))$.

case 3 applies

$$
1 \cup \text{max} \{ \text{max} \mid \text{max} \mid
$$

24 Nov 2010

Recurrences

the cost of divide-and-conquer algorithms the recursion tree: depth and #leaves

Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theorem

the master method does not apply

Let
$$
T(n) = 2T(n/2) + n \log_2(n)
$$
, so $a = 2$, $b = 2$,
and $f(n) = n \log_2(n)$.

It appears easy at first as $n^{\log_b(a)} = n^{\log_2(2)} = n$.

As *f*(*n*) grows faster than *n*, we are drawn to case 3. However, verifying the condition $a f(n/b) < c f(n)$:

$$
2(n/2)\log_2(n/2) = n(\log_2(n) - 1) = n\log_2(n) - n
$$

and

 $n \log_2(n) - n \le c \ n \log_2(n)$ or $\log_2(n) - 1 \le c \log_2(n)$ does not permit a value of *c* < 1.

KORK EXTERNE PROPER

24 Nov 2010

Recurrences

the cost of divide-and-conquer algorithms

the recursion tree: depth and #leaves

Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theorem

Summary + Assignments

We covered §4.5 of *Introduction to Algorithms*, 3rd edition by Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.

Assignments:

- **1** Consider $T(n) = 2T(n/4) + n^k$ for $k = 0, 1/2, 1, 2$. Solve the recurrence for each *k*.
- 2 Use the master method to solve the recurrence for binary search $T(n) = T(n/2) + O(1)$.
- **3** Can the master method be applied to $T(n) = 4T(n/2) + n^2 \log_2(n)$? Justify your answer.

Last homework collection on Monday 29 November: #1 of L-30, #1 of L-31, #3 of L-32, #2 of L-33, #1 of L-34.

Final exam on Tuesday 7 December, 8-10AM in TH 216.