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solving recurrences

Solving recurrences consists of two steps:

@ Apply the recursion-tree method for the solution form.

® Use mathematical induction to find constants in the
form and show that the solution works.

The previous lecture dealt with the recursion-tree method,
before that we covered the substitution method for step 2.

Today we consider the general case of estimating the cost
of divide-and-conquer algorithms.
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divide-and-conquer algorithms

The recurrence relation
T(n)=aT(n/b)+f(n), a>1,b > 1, somefunctionf.

expresses the cost of a recursive algorithm that
¢ splits a problem of size n in a pieces;
e every piece has size n/b (or [n/b|, or [n/b]); and
e it takes f(n) to divide the problem
and assemble the solutions to the pieces.

Example(1): merge sort has cost T (n) = 2T (n/2) + cn,
for some constant c.

Example(2): a = 7 and b = 2 in Strassen’s matrix
multiplication algorithm, and f(n) = 18n2.
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The recursion T (n) = aT (n/b) + f(n) stops
e when T is applied to 1,

the recursion tree:
depth and #leaves

¢ at the depth of the recursion tree.

Denote by d the depth of the recursion: bid =1.

n=b% = log,(n)=log,(b?) =dlog,(b)

We have:

_ log,(n)
log,(b)

d = logy,(n)



MCS 360 L-40

24 Nov 2010 number of leaves

The recursion T (n) = aT (n/b) 4 f(n) defines a tree
e of depth d = log,(n) = log,(n)/log,(b) with L leaves.

At each level #children = a, so L = ad.

log,(L) = dlog,(a)

. log,(n)
fog,(b) °%2(®)
log,(a)

= Togy() %"

= logy(a)log,(n)

So the number of leaves L is n'©% (@),
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big O : fisO(g) f grows no faster than g
big theta : fis©(g) : f grows atthe samerate asg
bigomega : fisQ(g) f grows at least as fast as g

Viewed as sets: ©(g) = O(g) N Q(9).

asymptotic growth:

big 0, big Omega, Limit definitions:

and big Theta

, . . f(n) , .

fis O(q) if nﬂrroo a(n) < o0, including 0
, N (1)) . .

fis Q(q) if nﬂrpoo o(m > 0, including oo
, oo f(n)

f |s@(g)|fnﬂrpoow =c,0<c<x

g
lim means for all n > N, for some constant N

n—+4-00
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statement and interpretation
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The recurrence relation

T(n)=aT(n/b)+f(n), a>1b>1, somefunctionf
has the following bounds:

@ I f(n) is O(n'°%(2)—<) for some constant ¢ > 0,
then T (n) is ©(n'°% (),

® Iff(n) is ©(n'°% (), then T (n) is ©(n'°%(®) |og,(n)).
@® Iff(n) is Q(n'°%@)+<) for some constant e > 0, and
af(n/b) <c f(n), for someconstantc < 1andn > N,

then T(n) is ©(f(n)).
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interpretation of the theorem

Recall: the recurrence T (n) = aT (n/b) + f(n) defines
a tree of depth log,(n) with L = n'°%(@) leaves.

Three cases:
@ f grows no faster than L: f is O(n'°%(®))
@ f grows at the same rate as L: f is ©(n'°%(2))
® f grows at least as fast as L: f is Q(n'°% ()

Relating f(n) to L, we find that T (n) depends on L.
Second case: f is ©(L) = T (n) is ©(Llog,(n)).
Note: depth log,(n) = log,(n)/log,(b) is ©(log,(n)).
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The merge sort algorithm has a recurrence
T(n) =2T(n/2) +©(n),

wherea =2, b =2, and f(n) = ©(n).

The number of leaves: L = n'0%(@) = nlog2(2) — n,
so case 2 of the theorem applies:

@® Iff(n) is ©(n'°% (), then T (n) is ©(n'°%(®) log,(n)).

Therefore: T(n) is O(nlog,(n)).
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For the matrix multiplication algorithm of Strassen
we have a = 7, b = 2, and f(n) = 18n2.

The number of leaves: L = n'°%(2) = nlog(7),
and log,(7) ~ 2.80736.

Which case applies?
Compare growth of f, which is ©(n?) to O(n?:80736),

Take ¢ = 0.80736 and case 1 applies:

@ I f(n) is O(n'°%(2)—<) for some constant ¢ > 0,
then T (n) is ©(n'°% (),

Therefore: T(n) is O(n?8%) which is better than O(n3).
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Let T(n) =3T(n/4) +nlog,(n), soa=3,b =4,
and f(n) = nlog,(n).

L = n'°9%(@) = n'0%(3) js O(n®793), as log,(3) ~ 0.79248.
Take ¢ = 0.2, then f(n) is Q(n'0%()+e),

Does a f(n/b) < c f(n) hold for some constantc < 1
asymptotically? We check:

af(n/b) = 3(n/4)log,(n/4) < 3/4nlog,(n) = c f(n),

holds for c = 3/4.
Therefore: T (n) is ©(nlog,(n)).
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theorem

the master method does not apply

LetT(n) =2T(n/2) +nlog,(n),soa=2,b =2,
and f(n) = nlog,(n).

It appears easy at first as n'°%(@) = nlog:(2) — n
As f(n) grows faster than n, we are drawn to case 3.

However, verifying the condition a f(n/b) < ¢ f(n):
2(n/2)log,(n/2) = n(log,(n) — 1) = nlog,(n) - n
and
nlog,(n) —n <cnlog,(n) or log,(n)—1<c log,(n)

does not permit a value of ¢ < 1.
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using the master
theorem

Summary + Assignments

We covered 84.5 of Introduction to Algorithms, 3rd edition
by Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and
Charles E. Leiserson.

Assignments:
@ Consider T(n) = 2T(n/4) +nX fork =0,1/2,1,2.
Solve the recurrence for each k.

® Use the master method to solve the recurrence for
binary search T(n) = T(n/2) + O(1).
©® Can the master method be applied to
T(n) = 4T(n/2) 4+ n?log,(n)? Justify your answer.
Last homework collection on Monday 29 November:
#1 of L-30, #1 of L-31, #3 of L-32, #2 of L-33, #1 of L-34.

Final exam on Tuesday 7 December, 8-10AM in TH 216.



