24 Nov 2010

Solving Recurrence

the cost of divide-and-conque algorithms

the recursion tree: depth and #leaves

Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the maste theorem

Solving Recurrences

the cost of divide-and-conquer algorithms the recursion tree: depth and #leaves

2 Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta statement and interpretation using the master theorem

MCS 360 Lecture 40 Introduction to Data Structures Jan Verschelde, 24 November 2010

the master method

24 Nov 2010

Solving Recurrences

the cost of divide-and-conquer algorithms the recursion tree:

depth and #leaves

Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theorem

Solving recurrences consists of two steps:

- 1 Apply the recursion-tree method for the solution form.
- 2 Use mathematical induction to find constants in the form and show that the solution works.

The previous lecture dealt with the recursion-tree method, before that we covered the substitution method for step 2.

Today we consider the general case of estimating the cost of divide-and-conquer algorithms.

solving recurrences

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ の Q ()

24 Nov 2010

Solving Recurrenc

the cost of divide-and-conquer algorithms

the recursion tree: depth and #leaves

Statement o the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theorem

1 Solving Recurrences

the cost of divide-and-conquer algorithms

the recursion tree: depth and #leaves

2

Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta statement and interpretation using the master theorem

the master method

24 Nov 2010

Solving Recurrence

the cost of divide-and-conquer algorithms

the recursion tree: depth and #leaves

Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theorem

divide-and-conquer algorithms

The recurrence relation

 $T(n) = aT(n/b) + f(n), \quad a \ge 1, b > 1, \text{ some function } f.$

expresses the cost of a recursive algorithm that

- splits a problem of size *n* in *a* pieces;
- every piece has size n/b (or $\lfloor n/b \rfloor$, or $\lceil n/b \rceil$); and
- it takes *f*(*n*) to divide the problem and assemble the solutions to the pieces.

Example(1): merge sort has cost T(n) = 2T(n/2) + cn, for some constant *c*.

Example(2): a = 7 and b = 2 in Strassen's matrix multiplication algorithm, and $f(n) = 18n^2$.

24 Nov 2010

Solving Recurrence

the cost of divide-and-conquer algorithms

the recursion tree: depth and #leaves

Statement o the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theorem

Solving Recurrences

the cost of divide-and-conquer algorithms

the recursion tree: depth and #leaves

Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta statement and interpretation using the master theorem

the master method

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

24 Nov 2010

Solving Recurrence

the cost of divide-and-conque algorithms

the recursion tree: depth and #leaves

Statement o the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the maste theorem

depth of the recursion

The recursion
$$T(n) = aT(n/b) + f(n)$$
 stops

- when T is applied to 1,
- at the depth of the recursion tree.

(

Denote by *d* the depth of the recursion: $\frac{h}{b^d} = 1$.

$$n = b^d \quad \Rightarrow \quad \log_2(n) = \log_2(b^d) = d \log_2(b)$$

We have:

$$d = \log_b(n) = \frac{\log_2(n)}{\log_2(b)}.$$

・ロット (四)・ (田)・ (日)・ (日)・

24 Nov 2010

Solving Recurrence

the cost of divide-and-conquer algorithms

the recursion tree: depth and #leaves

Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the maste theorem

number of leaves

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

The recursion
$$T(n) = aT(n/b) + f(n)$$
 defines a tree
of depth $d = \log_b(n) = \log_2(n) / \log_2(b)$ with *L* leaves.

At each level #children = a, so $L = a^d$.

$$\log_2(L) = d \log_2(a)$$

$$= \frac{\log_2(n)}{\log_2(b)} \log_2(a)$$

$$= \frac{\log_2(a)}{\log_2(b)} \log_2(n)$$

$$= \log_b(a) \log_2(n)$$

So the number of leaves *L* is $n^{\log_b(a)}$.

24 Nov 2010

Solving Recurrence

the cost of divide-and-conque algorithms

the recursion tree: depth and #leaves

Statement o the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theorem

Solving Recurrences

the cost of divide-and-conquer algorithms the recursion tree: depth and #leaves

Statement of the Master Theorem asymptotic growth: big O, big Omega, and big Theta statement and interpretation using the master theorem

the master method

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

24 Nov 2010

Solving Recurrence

the cost of divide-and-conque algorithms the recursion tree:

depth and #leaves

Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the maste theorem

big O : f is O(g) : f grows no faster than g big theta : f is $\Theta(g)$: f grows at the same rate as gbig omega : f is $\Omega(g)$: f grows at least as fast as gViewed as sets: $\Theta(q) = O(q) \cap \Omega(q)$. Limit definitions: • *f* is O(g) if $\lim_{n \to +\infty} \frac{f(n)}{g(n)} < \infty$, including 0 • f is $\Omega(g)$ if $\lim_{n \to +\infty} \frac{f(n)}{g(n)} > 0$, including ∞ f(m)

Asymptotic Order

•
$$f$$
 is $\Theta(g)$ if $\lim_{n \to +\infty} \frac{f(n)}{g(n)} = c$, $0 < c < \infty$

 $\lim_{n \to +\infty} \text{ means for all } n \ge N, \text{ for some constant } N$

24 Nov 2010

the recursion tree:

statement and interpretation

the master method

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

the recursion tree: depth and #leaves

2 Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta statement and interpretation

24 Nov 2010

Solving Recurrence

the cost of divide-and-conque algorithms

the recursion tree: depth and #leaves

Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the maste theorem

the master theorem

The recurrence relation

 $T(n) = aT(n/b) + f(n), a \ge 1, b > 1$, some function f

has the following bounds:

1 If f(n) is $O(n^{\log_b(a)-\epsilon})$ for some constant $\epsilon > 0$, then T(n) is $O(n^{\log_b(a)})$.

2 If f(n) is $\Theta(n^{\log_b(a)})$, then T(n) is $\Theta(n^{\log_b(a)}\log_2(n))$.

3 If f(n) is $\Omega(n^{\log_b(a)+\epsilon})$, for some constant $\epsilon > 0$, and

 $a f(n/b) \le c f(n)$, for some constant c < 1 and $n \ge N$,

then T(n) is $\Theta(f(n))$.

24 Nov 2010

Solving Recurrence:

the cost of divide-and-conquer algorithms the recursion tree:

Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the maste theorem

interpretation of the theorem

Recall: the recurrence T(n) = aT(n/b) + f(n) defines a tree of depth $\log_b(n)$ with $L = n^{\log_b(a)}$ leaves.

Three cases:

- **1** *f* grows no faster than *L*: *f* is $O(n^{\log_b(a)})$
- 2 *f* grows at the same rate as *L*: *f* is $\Theta(n^{\log_b(a)})$
- **3** *f* grows at least as fast as *L*: *f* is $\Omega(n^{\log_b(a)})$

Relating f(n) to L, we find that T(n) depends on L. Second case: f is $\Theta(L) \Rightarrow T(n)$ is $\Theta(L \log_2(n))$. Note: depth $\log_b(n) = \log_2(n) / \log_2(b)$ is $\Theta(\log_2(n))$.

24 Nov 2010

Solving Recurrence

the cost of divide-and-conquer algorithms the recursion tree:

Statement o the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theorem

the master method

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

Solving Recurrences

the cost of divide-and-conquer algorithms the recursion tree: depth and #leaves

Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta statement and interpretation using the master theorem

24 Nov 2010

Solving Recurrence

the cost of divide-and-conque algorithms

the recursion tree: depth and #leaves

Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theorem

merge sort

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

The merge sort algorithm has a recurrence

$$T(n)=2T(n/2)+\Theta(n),$$

where a = 2, b = 2, and $f(n) = \Theta(n)$.

The number of leaves: $L = n^{\log_b(a)} = n^{\log_2(2)} = n$, so case 2 of the theorem applies:

2 If f(n) is $\Theta(n^{\log_b(a)})$, then T(n) is $\Theta(n^{\log_b(a)} \log_2(n))$.

Therefore: T(n) is $O(n \log_2(n))$.

24 Nov 2010

Solving Recurrence:

the cost of divide-and-conque algorithms

the recursion tree: depth and #leaves

Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theorem

Strassen's matrix multiplication

For the matrix multiplication algorithm of Strassen we have a = 7, b = 2, and $f(n) = 18n^2$.

The number of leaves: $L = n^{\log_b(a)} = n^{\log_2(7)}$, and $\log_2(7) \approx 2.80736$.

Which case applies?

Compare growth of *f*, which is $\Theta(n^2)$ to $O(n^{2.80736})$.

Take $\epsilon = 0.80736$ and case 1 applies:

1 If f(n) is $O(n^{\log_b(a)-\epsilon})$ for some constant $\epsilon > 0$, then T(n) is $\Theta(n^{\log_b(a)})$.

Therefore: T(n) is $O(n^{2.81})$ which is better than $O(n^3)$.

24 Nov 2010

Solving Recurrence

the cost of divide-and-conque algorithms

the recursion tree: depth and #leaves

Statement o the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theorem

Let $T(n) = 3T(n/4) + n \log_2(n)$, so a = 3, b = 4, and $f(n) = n \log_2(n)$. $L = n^{\log_b(a)} = n^{\log_4(3)}$ is $O(n^{0.793})$, as $\log_4(3) \approx 0.79248$. Take $\epsilon = 0.2$, then f(n) is $\Omega(n^{\log_4(3)+\epsilon})$.

Does a $f(n/b) \le c f(n)$ hold for some constant c < 1 asymptotically? We check:

 $a f(n/b) = 3(n/4) \log_2(n/4) \le 3/4n \log_2(n) = c f(n),$

holds for c = 3/4.

Therefore: T(n) is $\Theta(n \log_2(n))$.

case 3 applies

24 Nov 2010

Solving Recurrence

the cost of divide-and-conque algorithms

the recursion tree: depth and #leaves

Statement of the Master Theorem

asymptotic growth big O, big Omega, and big Theta

statement and interpretation

using the master theorem

the master method does not apply

Let
$$T(n) = 2T(n/2) + n \log_2(n)$$
, so $a = 2, b = 2$,
and $f(n) = n \log_2(n)$.

It appears easy at first as $n^{\log_b(a)} = n^{\log_2(2)} = n$.

As f(n) grows faster than n, we are drawn to case 3. However, verifying the condition $a f(n/b) \le c f(n)$:

$$2(n/2)\log_2(n/2) = n(\log_2(n) - 1) = n\log_2(n) - n$$

and

 $n\log_2(n) - n \le c \ n\log_2(n)$ or $\log_2(n) - 1 \le c \ \log_2(n)$ does not permit a value of c < 1.

24 Nov 2010

Solving Recurrence

the cost of divide-and-conque algorithms

the recursion tree: depth and #leaves

Statement of the Master Theorem

asymptotic growth: big O, big Omega, and big Theta

statement and interpretation

using the master theorem

Summary + Assignments

We covered §4.5 of *Introduction to Algorithms*, 3rd edition by Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.

Assignments:

- 1 Consider $T(n) = 2T(n/4) + n^k$ for k = 0, 1/2, 1, 2. Solve the recurrence for each k.
- 2 Use the master method to solve the recurrence for binary search T(n) = T(n/2) + O(1).
- 3 Can the master method be applied to $T(n) = 4T(n/2) + n^2 \log_2(n)$? Justify your answer.

Last homework collection on Monday 29 November: #1 of L-30, #1 of L-31, #3 of L-32, #2 of L-33, #1 of L-34.

Final exam on Tuesday 7 December, 8-10AM in TH 216.