
MCS 360 L-40

24 Nov 2010

Solving
Recurrences
the cost of
divide-and-conquer
algorithms

the recursion tree:
depth and #leaves

Statement of
the Master
Theorem
asymptotic growth:
big O, big Omega,
and big Theta

statement and
interpretation

using the master
theorem

the master method

1 Solving Recurrences
the cost of divide-and-conquer algorithms
the recursion tree: depth and #leaves

2 Statement of the Master Theorem
asymptotic growth: big O, big Omega, and big Theta
statement and interpretation
using the master theorem

MCS 360 Lecture 40
Introduction to Data Structures

Jan Verschelde, 24 November 2010



MCS 360 L-40

24 Nov 2010

Solving
Recurrences
the cost of
divide-and-conquer
algorithms

the recursion tree:
depth and #leaves

Statement of
the Master
Theorem
asymptotic growth:
big O, big Omega,
and big Theta

statement and
interpretation

using the master
theorem

solving recurrences

Solving recurrences consists of two steps:

1 Apply the recursion-tree method for the solution form.

2 Use mathematical induction to find constants in the
form and show that the solution works.

The previous lecture dealt with the recursion-tree method,
before that we covered the substitution method for step 2.

Today we consider the general case of estimating the cost
of divide-and-conquer algorithms.



MCS 360 L-40

24 Nov 2010

Solving
Recurrences
the cost of
divide-and-conquer
algorithms

the recursion tree:
depth and #leaves

Statement of
the Master
Theorem
asymptotic growth:
big O, big Omega,
and big Theta

statement and
interpretation

using the master
theorem

the master method

1 Solving Recurrences
the cost of divide-and-conquer algorithms
the recursion tree: depth and #leaves

2 Statement of the Master Theorem
asymptotic growth: big O, big Omega, and big Theta
statement and interpretation
using the master theorem



MCS 360 L-40

24 Nov 2010

Solving
Recurrences
the cost of
divide-and-conquer
algorithms

the recursion tree:
depth and #leaves

Statement of
the Master
Theorem
asymptotic growth:
big O, big Omega,
and big Theta

statement and
interpretation

using the master
theorem

divide-and-conquer algorithms

The recurrence relation

T (n) = aT (n/b) + f (n), a ≥ 1, b > 1, some function f .

expresses the cost of a recursive algorithm that

• splits a problem of size n in a pieces;

• every piece has size n/b (or �n/b�, or �n/b�); and

• it takes f (n) to divide the problem
and assemble the solutions to the pieces.

Example(1): merge sort has cost T (n) = 2T (n/2) + cn,
for some constant c.

Example(2): a = 7 and b = 2 in Strassen’s matrix
multiplication algorithm, and f (n) = 18n2.



MCS 360 L-40

24 Nov 2010

Solving
Recurrences
the cost of
divide-and-conquer
algorithms

the recursion tree:
depth and #leaves

Statement of
the Master
Theorem
asymptotic growth:
big O, big Omega,
and big Theta

statement and
interpretation

using the master
theorem

the master method

1 Solving Recurrences
the cost of divide-and-conquer algorithms
the recursion tree: depth and #leaves

2 Statement of the Master Theorem
asymptotic growth: big O, big Omega, and big Theta
statement and interpretation
using the master theorem



MCS 360 L-40

24 Nov 2010

Solving
Recurrences
the cost of
divide-and-conquer
algorithms

the recursion tree:
depth and #leaves

Statement of
the Master
Theorem
asymptotic growth:
big O, big Omega,
and big Theta

statement and
interpretation

using the master
theorem

depth of the recursion

The recursion T (n) = aT (n/b) + f (n) stops

• when T is applied to 1,

• at the depth of the recursion tree.

Denote by d the depth of the recursion:
n
bd = 1.

n = bd ⇒ log2(n) = log2(b
d) = d log2(b)

We have:

d = logb(n) =
log2(n)

log2(b)
.



MCS 360 L-40

24 Nov 2010

Solving
Recurrences
the cost of
divide-and-conquer
algorithms

the recursion tree:
depth and #leaves

Statement of
the Master
Theorem
asymptotic growth:
big O, big Omega,
and big Theta

statement and
interpretation

using the master
theorem

number of leaves

The recursion T (n) = aT (n/b) + f (n) defines a tree
of depth d = logb(n) = log2(n)/ log2(b) with L leaves.

At each level #children = a, so L = ad .

log2(L) = d log2(a)

=
log2(n)

log2(b)
log2(a)

=
log2(a)

log2(b)
log2(n)

= logb(a) log2(n)

So the number of leaves L is n logb(a).



MCS 360 L-40

24 Nov 2010

Solving
Recurrences
the cost of
divide-and-conquer
algorithms

the recursion tree:
depth and #leaves

Statement of
the Master
Theorem
asymptotic growth:
big O, big Omega,
and big Theta

statement and
interpretation

using the master
theorem

the master method

1 Solving Recurrences
the cost of divide-and-conquer algorithms
the recursion tree: depth and #leaves

2 Statement of the Master Theorem
asymptotic growth: big O, big Omega, and big Theta
statement and interpretation
using the master theorem



MCS 360 L-40

24 Nov 2010

Solving
Recurrences
the cost of
divide-and-conquer
algorithms

the recursion tree:
depth and #leaves

Statement of
the Master
Theorem
asymptotic growth:
big O, big Omega,
and big Theta

statement and
interpretation

using the master
theorem

Asymptotic Order

big O : f is O(g) : f grows no faster than g
big theta : f is Θ(g) : f grows at the same rate as g
big omega : f is Ω(g) : f grows at least as fast as g

Viewed as sets: Θ(g) = O(g) ∩ Ω(g).

Limit definitions:

• f is O(g) if lim
n→+∞

f (n)

g(n)
< ∞, including 0

• f is Ω(g) if lim
n→+∞

f (n)

g(n)
> 0, including ∞

• f is Θ(g) if lim
n→+∞

f (n)

g(n)
= c, 0 < c < ∞

lim
n→+∞ means for all n ≥ N, for some constant N



MCS 360 L-40

24 Nov 2010

Solving
Recurrences
the cost of
divide-and-conquer
algorithms

the recursion tree:
depth and #leaves

Statement of
the Master
Theorem
asymptotic growth:
big O, big Omega,
and big Theta

statement and
interpretation

using the master
theorem

the master method

1 Solving Recurrences
the cost of divide-and-conquer algorithms
the recursion tree: depth and #leaves

2 Statement of the Master Theorem
asymptotic growth: big O, big Omega, and big Theta
statement and interpretation
using the master theorem



MCS 360 L-40

24 Nov 2010

Solving
Recurrences
the cost of
divide-and-conquer
algorithms

the recursion tree:
depth and #leaves

Statement of
the Master
Theorem
asymptotic growth:
big O, big Omega,
and big Theta

statement and
interpretation

using the master
theorem

the master theorem

The recurrence relation

T (n) = aT (n/b) + f (n), a ≥ 1, b > 1, some function f

has the following bounds:

1 If f (n) is O(nlogb(a)−ε) for some constant ε > 0,
then T (n) is Θ(nlogb(a)).

2 If f (n) is Θ(nlogb(a)), then T (n) is Θ(nlogb(a) log2(n)).

3 If f (n) is Ω(nlogb(a)+ε), for some constant ε > 0, and

a f (n/b) ≤ c f (n), for some constant c < 1 and n ≥ N,

then T (n) is Θ(f (n)).



MCS 360 L-40

24 Nov 2010

Solving
Recurrences
the cost of
divide-and-conquer
algorithms

the recursion tree:
depth and #leaves

Statement of
the Master
Theorem
asymptotic growth:
big O, big Omega,
and big Theta

statement and
interpretation

using the master
theorem

interpretation of the theorem

Recall: the recurrence T (n) = aT (n/b) + f (n) defines
a tree of depth logb(n) with L = nlogb(a) leaves.

Three cases:

1 f grows no faster than L: f is O(nlogb(a))

2 f grows at the same rate as L: f is Θ(nlogb(a))

3 f grows at least as fast as L: f is Ω(nlogb(a))

Relating f (n) to L, we find that T (n) depends on L.

Second case: f is Θ(L) ⇒ T (n) is Θ(L log2(n)).

Note: depth logb(n) = log2(n)/ log2(b) is Θ(log2(n)).



MCS 360 L-40

24 Nov 2010

Solving
Recurrences
the cost of
divide-and-conquer
algorithms

the recursion tree:
depth and #leaves

Statement of
the Master
Theorem
asymptotic growth:
big O, big Omega,
and big Theta

statement and
interpretation

using the master
theorem

the master method

1 Solving Recurrences
the cost of divide-and-conquer algorithms
the recursion tree: depth and #leaves

2 Statement of the Master Theorem
asymptotic growth: big O, big Omega, and big Theta
statement and interpretation
using the master theorem



MCS 360 L-40

24 Nov 2010

Solving
Recurrences
the cost of
divide-and-conquer
algorithms

the recursion tree:
depth and #leaves

Statement of
the Master
Theorem
asymptotic growth:
big O, big Omega,
and big Theta

statement and
interpretation

using the master
theorem

merge sort

The merge sort algorithm has a recurrence

T (n) = 2T (n/2) + Θ(n),

where a = 2, b = 2, and f (n) = Θ(n).

The number of leaves: L = n logb(a) = nlog2(2) = n,
so case 2 of the theorem applies:

2 If f (n) is Θ(nlogb(a)), then T (n) is Θ(nlogb(a) log2(n)).

Therefore: T (n) is O(n log2(n)).



MCS 360 L-40

24 Nov 2010

Solving
Recurrences
the cost of
divide-and-conquer
algorithms

the recursion tree:
depth and #leaves

Statement of
the Master
Theorem
asymptotic growth:
big O, big Omega,
and big Theta

statement and
interpretation

using the master
theorem

Strassen’s matrix multiplication

For the matrix multiplication algorithm of Strassen
we have a = 7, b = 2, and f (n) = 18n2.

The number of leaves: L = n logb(a) = nlog2(7),
and log2(7) ≈ 2.80736.

Which case applies?

Compare growth of f , which is Θ(n2) to O(n2.80736).

Take ε = 0.80736 and case 1 applies:

1 If f (n) is O(nlogb(a)−ε) for some constant ε > 0,
then T (n) is Θ(nlogb(a)).

Therefore: T (n) is O(n2.81) which is better than O(n3).



MCS 360 L-40

24 Nov 2010

Solving
Recurrences
the cost of
divide-and-conquer
algorithms

the recursion tree:
depth and #leaves

Statement of
the Master
Theorem
asymptotic growth:
big O, big Omega,
and big Theta

statement and
interpretation

using the master
theorem

case 3 applies

Let T (n) = 3T (n/4) + n log2(n), so a = 3, b = 4,
and f (n) = n log2(n).

L = nlogb(a) = nlog4(3) is O(n0.793), as log4(3) ≈ 0.79248.

Take ε = 0.2, then f (n) is Ω(nlog4(3)+ε).

Does a f (n/b) ≤ c f (n) hold for some constant c < 1
asymptotically? We check:

a f (n/b) = 3(n/4) log2(n/4) ≤ 3/4n log2(n) = c f (n),

holds for c = 3/4.

Therefore: T (n) is Θ(n log2(n)).



MCS 360 L-40

24 Nov 2010

Solving
Recurrences
the cost of
divide-and-conquer
algorithms

the recursion tree:
depth and #leaves

Statement of
the Master
Theorem
asymptotic growth:
big O, big Omega,
and big Theta

statement and
interpretation

using the master
theorem

the master method does not apply

Let T (n) = 2T (n/2) + n log2(n), so a = 2, b = 2,
and f (n) = n log2(n).

It appears easy at first as nlogb(a) = nlog2(2) = n.

As f (n) grows faster than n, we are drawn to case 3.

However, verifying the condition a f (n/b) ≤ c f (n):

2(n/2) log2(n/2) = n(log2(n) − 1) = n log2(n) − n

and

n log2(n) − n ≤ c n log2(n) or log2(n) − 1 ≤ c log2(n)

does not permit a value of c < 1.



MCS 360 L-40

24 Nov 2010

Solving
Recurrences
the cost of
divide-and-conquer
algorithms

the recursion tree:
depth and #leaves

Statement of
the Master
Theorem
asymptotic growth:
big O, big Omega,
and big Theta

statement and
interpretation

using the master
theorem

Summary + Assignments

We covered §4.5 of Introduction to Algorithms, 3rd edition
by Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and
Charles E. Leiserson.

Assignments:

1 Consider T (n) = 2T (n/4) + nk for k = 0, 1/2, 1, 2.
Solve the recurrence for each k .

2 Use the master method to solve the recurrence for
binary search T (n) = T (n/2) + O(1).

3 Can the master method be applied to
T (n) = 4T (n/2) + n2 log2(n)? Justify your answer.

Last homework collection on Monday 29 November:
#1 of L-30, #1 of L-31, #3 of L-32, #2 of L-33, #1 of L-34.

Final exam on Tuesday 7 December, 8-10AM in TH 216.


