22 Nov 2010

solving

expanding the recurrence into a tre

summing the cost at each level

applying the substitution method

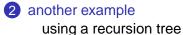
another example

using a recursion tree

the recursion-tree method

solving recurrences

expanding the recurrence into a tree summing the cost at each level applying the substitution method



MCS 360 Lecture 39 Introduction to Data Structures Jan Verschelde, 22 November 2010

22 Nov 2010

solving recurrences

expanding the recurrence into a tree

summing the cost at each level

applying the substitution methor

another example

using a recursion tree

solving recurrences

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ の Q ()

The substitution method for solving recurrences consists of two steps:

- **1** Guess the form of the solution.
- 2 Use mathematical induction to find constants in the form and show that the solution works.

In the previous lecture, the focus was on step 2.

Today we introduce the recursion-tree method to generate a guess for the form of the solution to the recurrence.

22 Nov 2010

solving

expanding the recurrence into a tree

summing the cost at each level

applying the substitution methor

another example

using a recursion tree

the recursion-tree method

solving recurrences expanding the recurrence into a tree

summing the cost at each level applying the substitution method

2 another example using a recursion tree

22 Nov 2010

solving

expanding the recurrence into a tree

summing the cost at each level

applying the substitution method

another example

using a recursion tree

an example

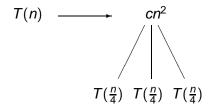
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Consider the recurrence relation

$$T(n) = 3T(n/4) + cn^2$$
 for some constant c.

We assume that *n* is an exact power of 4.

In the recursion-tree method we expand T(n) into a tree:



22 Nov 2010

solving

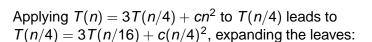
expanding the recurrence into a tree

summing the cost at each level

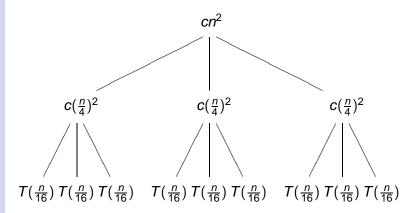
applying the substitution method

another example

using a recursion tree



we expand $T(\frac{n}{4})$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ● □ ● ●

22 Nov 2010

solving

expanding the recurrence into a tree

summing the cost at each level

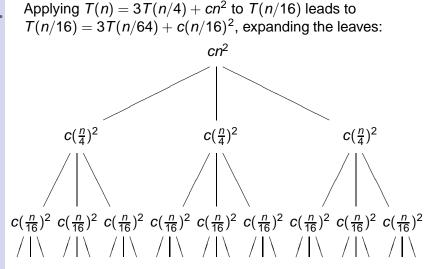
applying the substitution method

another example

using a recursion tree

we expand $T(\frac{n}{16})$

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト



22 Nov 2010

solving

recurrences

expanding the recurrence into a tree

summing the cost at each level

applying the substitution methor

another example

using a recursion tree

the recursion-tree method

solving recurrences

expanding the recurrence into a tree summing the cost at each level applying the substitution method

 another example using a recursion tree

22 Nov 2010

solving

recurrences

expanding the recurrence into a tre

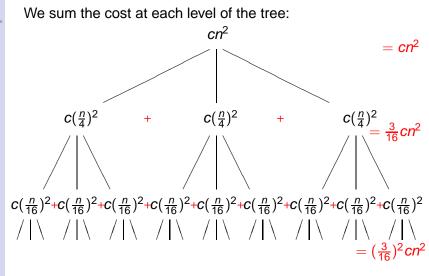
summing the cost at each level

applying the substitution method

another example

using a recursion tree

the cost at each level



▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

22 Nov 2010

solving

recurrences

expanding the recurrence into a tree

summing the cost at each level

applying the substitution method

another example

using a recursion tree

$$T(n) = cn^{2} + \frac{3}{16}cn^{2} + \left(\frac{3}{16}\right)^{2}cn^{2} + \cdots$$
$$= cn^{2}\left(1 + \frac{3}{16} + \left(\frac{3}{16}\right)^{2} + \cdots\right)$$

adding up the costs

The \cdots disappear if n = 16, or the tree has depth at least 2 if $n \ge 16 = 4^2$.

For $n = 4^k$, $k = \log_4(n)$, we have:

$$T(n) = cn^2 \sum_{i=0}^{\log_4(n)} \left(\frac{3}{16}\right)^i.$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

22 Nov 2010

solving

recurrences

expanding the recurrence into a tree

summing the cost at each level

applying the substitution method

another example

using a recursion tree

geometric series

Consider a finite sum first:

$$S_n = 1 + r + r^2 + \dots + r^n = \sum_{i=0}^n r^i.$$

To find an explicit form of the solution we do

So the explicit sum is

$$\mathsf{S}_n=\frac{r^{n+1}-1}{r-1}.$$

▲口▼▲□▼▲目▼▲目▼ 目 のみの

22 Nov 2010

solving

recurrences

expanding the recurrence into a tree

summing the cost at each level

applying the substitution method

another example

using a recursion tree

Applying

$$S_n = \sum_{i=0}^n r^i = \frac{r^{n+1} - 1}{r - 1}$$

$$T(n) = cn^2 \sum_{i=0}^{\log_4(n)} \left(\frac{3}{16}\right)^i$$

with $r = \frac{3}{16}$ leads to

$$T(n) = cn^2 \frac{\left(\frac{3}{16}\right)^{\log_4(n)+1} - 1}{\frac{3}{16} - 1}.$$

▲ロト▲御ト▲臣ト▲臣ト 臣 めんぐ

22 Nov 2010

solving

recurrences

expanding the recurrence into a tree

summing the cost at each level

applying the substitution method

another example

using a recursion tree

Recall

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Instead of $T(n) \le dn^2$ for some constant *d*, we have

$$T(n) = cn^2 \frac{\left(\frac{3}{16}\right)^{\log_4(n)+1} - 1}{\frac{3}{16} - 1}.$$

$$T(n) = cn^2 \sum_{i=0}^{\log_4(n)} \left(\frac{3}{16}\right)^i.$$

To remove the $\log_4(n)$ factor, we consider

$$T(n) \leq cn^{2} \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^{i}$$

= $cn^{2} \frac{-1}{\frac{3}{16} - 1} \leq dn^{2}$, for some constant *d*.

22 Nov 2010

solving

expanding the

summing the cost at each level

applying the substitution method

another example

using a recursion tree

the recursion-tree method

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

1 solving recurrences

expanding the recurrence into a tree summing the cost at each level applying the substitution method

22 Nov 2010

solving

expanding the recurrence into a tree

summing the cost at each level

applying the substitution method

another example

using a recursion tree

verifying the guess

Let us see if $T(n) \le dn^2$ is good for $T(n) = 3T(n/4) + cn^2$. Applying the substitution method:

$$T(n) = 3T(n/4) + cn^{2}$$

$$\leq 3d \left(\frac{n}{4}\right)^{2} + cn^{2}$$

$$= \left(\frac{3}{16}d + c\right)n^{2}$$

$$= \frac{3}{16}\left(d + \frac{16}{3}c\right)n^{2}$$

$$\leq \frac{3}{16}(2d)n^{2}, \text{ if } d \geq \frac{16}{3}c$$

$$\leq dn^{2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

22 Nov 2010

solving

recurrences

expanding the recurrence into a tree

summing the cost at each level

applying the substitution methor

another example

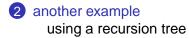
using a recursion tree

the recursion-tree method

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ の Q ()

solving recurrences

expanding the recurrence into a tree summing the cost at each level applying the substitution method



22 Nov 2010

solving

recurrences

expanding the recurrence into a tree

summing the cost at each level

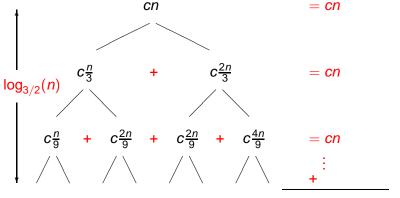
applying the substitution method

another example

using a recursion tree

using a recursion tree

Consider
$$T(n) = T(n/3) + T(2n/3) + cn$$
.



 $= O(n \log_2(n))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

22 Nov 2010

solving

expanding the recurrence into a tre

summing the cost at each level

applying the substitution method

another example

using a recursion tree

Summary + Assignments

We covered §4.4 of *Introduction to Algorithms*, 3rd edition by Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.

Assignments:

- 1 Consider T(n) = 3T(n/2) + n. Use a recursion tree to derive a guess for an asymptotic upper bound for T(n) and verify the guess with the substitution method.
- 2 Same question as before for $T(n) = T(n/2) + n^2$.
- **3** Same question as before for T(n) = 2T(n-1) + 1.

Last homework collection on Monday 29 November: #1 of L-30, #1 of L-31, #3 of L-32, #2 of L-33, #1 of L-34.

Final exam on Tuesday 7 December, 8-10AM in TH 216.