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the limit definition and Taylor expansion

Give a function f (x), its derivative is defined as

f ′(x) = lim
h→0

f (x + h)− f (x)
h

.

For some x = a and h > 0, consider the approximation

f ′(a) ≈ f (a + h)− f (a)
h

.

The above formula is called a forward difference formula.

An alternative derivation follows the Taylor expansion of f at x = a:

f (a + h) = f (a) + hf ′(a) + O(h2) ⇒ f ′(a) ≈ f (a + h)− f (a)
h

.
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forward, backward, and central difference formulas

Given a function f (x), we can approximate f ′ at x = a with
1 a forward difference formula:

f ′(a) ≈ f (a + h)− f (a)
h

2 a backward difference formula:

f ′(a) ≈ f (a)− f (a− h)
h

3 a central difference formula:

f ′(a) ≈ f (a + h/2)− f (a− h/2)
h
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first and second order formulas

The error of forward and backward difference formulas is O(h).
Because of O(h1), the error is of first order.
The error of the central difference formula is O(h2).
which is of second order.

Numerically, if h = 10−2, then first order gives an error of about 10−2,
whereas the error of a second order formula will be about 10−4.

Exercise 1: Consider f (x) = exp(x), a = 1, and h = 0.01.
1 Evaluate the forward, backward, and central difference formulas

to approximate f ′(1).
2 Compute the error for three approximations, using f ′(1) = exp(1).

Which formula gives the most accurate result?
In your explanation, refer to the order of each formula.
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a numerical experiment

What is the right value for h?

f ′(a) ≈ f (a + h)− f (a)
h

Consider the following:
h too large: O(h2) term matters,
h too small: dividing by h causes roundoff to magnify.

Setup for a numerical experiment:
1 Take f (x) = ex , which has an easy f ′(x) = ex .
2 Start with h = 1 and divide h by 10 in each step.

3 Compare
∣∣∣∣ex − ea+h − ea

h

∣∣∣∣ to h.
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a Julia program – the setup

fwdexp(x, h) = (exp(x+h) - exp(x))/h

print("Give a value for x : ")
line = readline(stdin)
xval = parse(Float64, line)
print("Give an upper bound for h : ")
line = readline(stdin)
hval = parse(Float64, line)
print("Give the number of approximations : ")
line = readline(stdin)
nbr = parse(Float64, line)
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a Julia program – the loop

exact = exp(xval)
strexact = @sprintf("%.16e", exact)
println("Approximating $strexact :")
for i=1:nbr

approx = fwdexp(xval, hval)
err = abs(exact - approx)
strhval = @sprintf("%.3e", hval)
strapprox = @sprintf("%.16e", approx)
strexact = @sprintf("%.16e", exact)
strerr = @sprintf("%.3e", err)
println(" $strhval $strapprox $strerr")
hval = hval/10.0

end
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running the program at the command prompt
$ julia difforward.jl
Give a value for x : 1
Give an upper bound for h : 0.1
Give the number of approximations : 16
Approximating 2.7182818284590451e+00 :

1.000e-01 2.8588419548738830e+00 1.406e-01
1.000e-02 2.7319186557871245e+00 1.364e-02
1.000e-03 2.7196414225332255e+00 1.360e-03
1.000e-04 2.7184177470829241e+00 1.359e-04
1.000e-05 2.7182954199567173e+00 1.359e-05
1.000e-06 2.7182831874306141e+00 1.359e-06
1.000e-07 2.7182819684057331e+00 1.399e-07
1.000e-08 2.7182818218562939e+00 6.603e-09
1.000e-09 2.7182820439008983e+00 2.154e-07
1.000e-10 2.7182833761685279e+00 1.548e-06
1.000e-11 2.7183144624132174e+00 3.263e-05
1.000e-12 2.7187141427020829e+00 4.323e-04
1.000e-13 2.7178259642823828e+00 4.559e-04
1.000e-14 2.7089441800853815e+00 9.338e-03
1.000e-15 3.1086244689504379e+00 3.903e-01
1.000e-16 0.0000000000000000e+00 2.718e+00

$
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a log error plot
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errors of finite differences

We observe the most accurate approximation at h = 10−8:
for h > 10−8, the O(h2) dominates,
for h < 10−8, the roundoff on f (·) dominates.

Exercise 2:
Set up a numerical experiment to approximate the derivative of cos(x)
at x = 0, with central difference formulas.

Try values h = 10−p for p ranging from 1 to 16.

For which value of p do you observe the most accurate approximation?
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differentiation by interpolation

The condition of the differentiation problem is often stated
as very poor because small random noise on the input function values
gives huge differences in the values of the derivatives.

We can take an interpolating polynomial for f (x)
and approximate f ′(x) by p′(x).

Experimental setup:
1 Consider f (x) over [0,2].
2 Interpolate at Chebyshev points xk = cos((2k − 1)π/(2n)),

k = 1,2, . . . ,n.
3 Compare p′(xk ) with f ′(xk ).

Experiment with quadric: p′(x1) = 4.75, f ′(x1) = 4.
Experiment with quartic: p′(x2) = 5.69, f ′(x2) = 6.
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the derivative of an interpolating quadric
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the derivative of an interpolating quartic
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interpolation at higher degrees

Did our experiment now work?

While taking more points in the interpolation improves,
our problem is a local problem, we want more accuracy
nearby the point where we want to compute the derivative.

We can obtain highly accurate results by
1 computing more approximations for smaller values of h, and
2 extrapolating on those approximations,

as will be explained next.

For numerical differentiation, extrapolation works, not interpolation.
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Taylor expansions

Consider the Taylor expansion of f (x) at x = a:

f (a + h) = f (a) + h f ′(a) + h2 f ′′(a)
2

+ O(h3).

We want to compute f ′(a) and rewrite accordingly:

f (a + h)− f (a) = h f ′(a) + h2 f ′′(a)
2

+ O(h3),

f (a + h)− f (a)
h

= f ′(a) + h
f ′′(a)

2
+ O(h2).

In the last formula, replace h by h/2:

f
(
a + h

2

)
− f (a)

h
2

= f ′(a) +
h
2

f ′′(a)
2

+ O(h2).
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eliminating error terms

With D(f ,a,h) =
f (a + h)− f (a)

h
, the last two formulas simplify:

D(f ,a,h) = f ′(a) + h
f ′′(a)

2
+ O(h2),

D
(

f ,a,
h
2

)
= f ′(a) +

h
2

f ′′(a)
2

+ O(h2).

Now we can eliminate the f ′′(a) term:

2D
(

f ,a,
h
2

)
− D(f ,a,h) = (2− 1)f ′(a) + O(h2).

Then we have an O(h2) approximation for f ′(a):

f ′(a) = 2D
(

f ,a,
h
2

)
− D(f ,a,h) + O(h2).
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more terms in the Taylor series

f (a + h) = f (a) + h f ′(a) + h2 f (2)(a)
2

+ h3 f (3)(a)
3!

+ h4 f (4)(a)
4!

+ O(h5).

With D(f ,a,h) =
f (a + h)− f (a)

h
, we rearrange:

D(f ,a,h) = f ′(a) + h
f (2)(a)

2
+ h2 f (3)(a)

3!
+ h3 f (4)(a)

4!
+ O(h4).

We drop the O(h4) term and introduce coefficients ck =
f (k)(a)

k !
:

D(f ,a,h) ≈ f ′(a) + c1h + c2h2 + c3h3

D(f ,a,h/2) ≈ f ′(a) + c1h/2 + c2h2/4 + c3h3/8
D(f ,a,h/4) ≈ f ′(a) + c1h/4 + c2h2/16 + c3h3/64
D(f ,a,h/8) ≈ f ′(a) + c1h/8 + c2h2/64 + c3h3/512

By linear combinations we obtain an O(h4) approximation for f ′(a).
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eliminating more error terms

D(f ,a,h) ≈ f ′(a) + c1h + c2h2 + c3h3

D(f ,a,h/2) ≈ f ′(a) + c1h/2 + c2h2/4 + c3h3/8
D(f ,a,h/4) ≈ f ′(a) + c1h/4 + c2h2/16 + c3h3/64
D(f ,a,h/8) ≈ f ′(a) + c1h/8 + c2h2/64 + c3h3/512

Observe the pattern:
1 to eliminate h : ( 2× ( more accurate )− previous )/(2− 1),
2 to eliminate h2: ( 4× ( more accurate )− previous )/(4− 1),
3 to eliminate h3: ( 8× ( more accurate )− previous )/(8− 1).
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a triangular table

Define the table R[i , j], for i = 1,2, . . . ,n, and j = 1,2, . . . , i .

The first column contains forward differences:

R[i ,1] = D(f ,a,h/2i−1), i = 1,2, . . . ,n.

For j > 1, we apply the formula:

R[i , j] =
2j−1R[i , j − 1]− R[i − 1, j − 1]

2j−1 − 1
, i = j , j + 1, . . . ,n.

The algorithm is called Richardson extrapolation.

If the error of R[n,1] is O(h), then the error of R[n,2] is O(h2),
and then the error of R[n,3] is O(h3), . . ., the error of R[n, k ] is O(hk ),
for column k in the table.
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a Julia function
"""

richardson(f::Function,z::Float64,h::Float64,n::Int)

returns the triangular table of numerical approximations of
the derivative of f at z.
"""
function richardson(f::Function,z::Float64,h::Float64,n::Int)

R = zeros(n, n)
w = h
for i=1:n

R[i, 1] = (f(z+w) - f(z))/w
w = w/2

end
for j=2:n

for i=j:n
w = 2^(j-1) - 1
R[i, j] = (2^(j-1)*R[i, j-1] - R[i-1, j-1])/w

end
end
return R

end
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a test on the exponential function
f (x) = exp(x), a = 1.0, h = 0.1, n = 4:

$ julia richardson.jl
Richardson extrapolation on exp(x) :
4×4 Array{Float64,2}:
2.85884195e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
2.78738579e+00 2.71592963e+00 0.00000000e+00 0.00000000e+00
2.75254528e+00 2.71770478e+00 2.71829649e+00 0.00000000e+00
2.73534210e+00 2.71813892e+00 2.71828363e+00 2.71828179e+00

The table with errors :
4×4 Array{Float64,2}:
1.40560126e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00
6.91039636e-02 2.35219917e-03 0.00000000e+00 0.00000000e+00
3.42634558e-02 5.77051997e-04 1.46637268e-05 0.00000000e+00
1.70602718e-02 1.42912242e-04 1.80100989e-06 3.65210884e-08

$

Observe the magnitude of the errors in the columns. We have a 4-th order approximation.
With h = 0.1/8 = 0.0125, we obtain an error 3.7× 10−8.
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one last exercise

Exercise 3:
Use extrapolation on forward differences to compute a third order
approximation for the derivative of cos(x) at

π

4
.

Start with h = 0.1.
1 Compute the error of the approximation.
2 Verify that the approximation is indeed of third order.
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concluding remarks on Richardson extrapolation

Two remarks:
For Richardson extrapolation to be effective, all terms
in the Taylor series should appear with nonzero coefficients.

Some functions are odd or even, for example:
I expanding sin(x) at x = 0 gives x − x3/6 + x5/120 + O(x6),
I expanding cos(x) at x = 0 gives 1− x2/2 + x4/24 + O(x6).

Richardson extrapolation starting with central difference formulas
will lead to more accurate results.
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The Complex Step Derivative

Let f (z) be a function which accepts z ∈ C as its argument.
Denote i =

√
−1 as the imaginary unit.

For some a and real step h > 0, the Taylor series for f at a + i h is

f (a + i h) = f (a) + i h f ′(a)− h2f ′′(a)/2!− i h3f ′′′(a)/3! + · · ·

Taking the imaginary parts I(·) of both sides:

I(f (a + i h)) = h f ′(a)− h3f ′′′(a)/3! + · · ·

Dividing both sides by h yields

f ′(a) = I(f (a + i h))/h + O(h2).

A second order approximation without cancellation errors is obtained.
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an example

Consider the function

g(z) =
exp(z)

(cos(z))3 + (sin(z))3 .

With SymPy we can compute the derivatives of g(z),
although the symbolic expressions are swelling.

The complex step derivative in Julia, on this example:

g(z) = exp(z)/((cos(z))^3 + (sin(z))^3)
i = complex(0.0,1.0)
csdg(a,h) = imag(g(a+i*h))/h
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observe the O(h2) convergence

h = 1.00e-01 : 1.5914476349582889e+00 : 4.94e-02
h = 1.00e-02 : 1.6403947367308929e+00 : 4.82e-04
h = 1.00e-03 : 1.6408723131660323e+00 : 4.82e-06
h = 1.00e-04 : 1.6408770877678895e+00 : 4.82e-08
h = 1.00e-05 : 1.6408771355137928e+00 : 4.82e-10
h = 1.00e-06 : 1.6408771359912524e+00 : 4.82e-12
h = 1.00e-07 : 1.6408771359960252e+00 : 4.93e-14
h = 1.00e-08 : 1.6408771359960737e+00 : 8.88e-16
h = 1.00e-09 : 1.6408771359960739e+00 : 6.66e-16
h = 1.00e-10 : 1.6408771359960739e+00 : 6.66e-16

Observe:
The last column has the error, which is O(h2).
As h goes smaller than 10−8, the error stays small.
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a last exercise

Exercise 4: Consider the function h(z) = z9/2.

Apply the complex step derivative to approximate h′(z) at a = 1.5,
for h = 10−k for k ranging from 1 to 19.

For each value of k ,
compare with the exact value of the derivative.

For which value k is the approximation the most accurate?

Redo the experiment, but now for h = 8−k , for k from 1 to 19.

Is there a difference in the results of the first experiment?
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