
Numerical Differentiation

1 Finite Difference Formulas
the limit definition and Taylor expansion
differentiation by interpolation

2 Richardson Extrapolation
eliminating error terms
higher order approximations
a Julia function

3 The Complex Step Derivative
avoiding errors caused by subtractions

MCS 471 Lecture 24
Numerical Analysis

Jan Verschelde, 17 October 2022

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 1 / 33

Numerical Differentiation

1 Finite Difference Formulas
the limit definition and Taylor expansion
differentiation by interpolation

2 Richardson Extrapolation
eliminating error terms
higher order approximations
a Julia function

3 The Complex Step Derivative
avoiding errors caused by subtractions

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 2 / 33

the limit definition and Taylor expansion

Give a function f (x), its derivative is defined as

f ′(x) = lim
h→0

f (x + h)− f (x)
h

.

For some x = a and h > 0, consider the approximation

f ′(a) ≈ f (a + h)− f (a)
h

.

The above formula is called a forward difference formula.

An alternative derivation follows the Taylor expansion of f at x = a:

f (a + h) = f (a) + hf ′(a) + O(h2) ⇒ f ′(a) ≈ f (a + h)− f (a)
h

.

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 3 / 33

forward, backward, and central difference formulas

Given a function f (x), we can approximate f ′ at x = a with
1 a forward difference formula:

f ′(a) ≈ f (a + h)− f (a)
h

2 a backward difference formula:

f ′(a) ≈ f (a)− f (a− h)
h

3 a central difference formula:

f ′(a) ≈ f (a + h/2)− f (a− h/2)
h

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 4 / 33

first and second order formulas

The error of forward and backward difference formulas is O(h).
Because of O(h1), the error is of first order.
The error of the central difference formula is O(h2).
which is of second order.

Numerically, if h = 10−2, then first order gives an error of about 10−2,
whereas the error of a second order formula will be about 10−4.

Exercise 1: Consider f (x) = exp(x), a = 1, and h = 0.01.
1 Evaluate the forward, backward, and central difference formulas

to approximate f ′(1).
2 Compute the error for three approximations, using f ′(1) = exp(1).

Which formula gives the most accurate result?
In your explanation, refer to the order of each formula.

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 5 / 33

a numerical experiment

What is the right value for h?

f ′(a) ≈ f (a + h)− f (a)
h

Consider the following:
h too large: O(h2) term matters,
h too small: dividing by h causes roundoff to magnify.

Setup for a numerical experiment:
1 Take f (x) = ex , which has an easy f ′(x) = ex .
2 Start with h = 1 and divide h by 10 in each step.

3 Compare
∣∣∣∣ex − ea+h − ea

h

∣∣∣∣ to h.

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 6 / 33

a Julia program – the setup

fwdexp(x, h) = (exp(x+h) - exp(x))/h

print("Give a value for x : ")
line = readline(stdin)
xval = parse(Float64, line)
print("Give an upper bound for h : ")
line = readline(stdin)
hval = parse(Float64, line)
print("Give the number of approximations : ")
line = readline(stdin)
nbr = parse(Float64, line)

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 7 / 33

a Julia program – the loop

exact = exp(xval)
strexact = @sprintf("%.16e", exact)
println("Approximating $strexact :")
for i=1:nbr

approx = fwdexp(xval, hval)
err = abs(exact - approx)
strhval = @sprintf("%.3e", hval)
strapprox = @sprintf("%.16e", approx)
strexact = @sprintf("%.16e", exact)
strerr = @sprintf("%.3e", err)
println(" $strhval $strapprox $strerr")
hval = hval/10.0

end

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 8 / 33

running the program at the command prompt
$ julia difforward.jl
Give a value for x : 1
Give an upper bound for h : 0.1
Give the number of approximations : 16
Approximating 2.7182818284590451e+00 :

1.000e-01 2.8588419548738830e+00 1.406e-01
1.000e-02 2.7319186557871245e+00 1.364e-02
1.000e-03 2.7196414225332255e+00 1.360e-03
1.000e-04 2.7184177470829241e+00 1.359e-04
1.000e-05 2.7182954199567173e+00 1.359e-05
1.000e-06 2.7182831874306141e+00 1.359e-06
1.000e-07 2.7182819684057331e+00 1.399e-07
1.000e-08 2.7182818218562939e+00 6.603e-09
1.000e-09 2.7182820439008983e+00 2.154e-07
1.000e-10 2.7182833761685279e+00 1.548e-06
1.000e-11 2.7183144624132174e+00 3.263e-05
1.000e-12 2.7187141427020829e+00 4.323e-04
1.000e-13 2.7178259642823828e+00 4.559e-04
1.000e-14 2.7089441800853815e+00 9.338e-03
1.000e-15 3.1086244689504379e+00 3.903e-01
1.000e-16 0.0000000000000000e+00 2.718e+00

$

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 9 / 33

a log error plot

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 10 / 33

errors of finite differences

We observe the most accurate approximation at h = 10−8:
for h > 10−8, the O(h2) dominates,
for h < 10−8, the roundoff on f (·) dominates.

Exercise 2:
Set up a numerical experiment to approximate the derivative of cos(x)
at x = 0, with central difference formulas.

Try values h = 10−p for p ranging from 1 to 16.

For which value of p do you observe the most accurate approximation?

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 11 / 33

Numerical Differentiation

1 Finite Difference Formulas
the limit definition and Taylor expansion
differentiation by interpolation

2 Richardson Extrapolation
eliminating error terms
higher order approximations
a Julia function

3 The Complex Step Derivative
avoiding errors caused by subtractions

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 12 / 33

differentiation by interpolation

The condition of the differentiation problem is often stated
as very poor because small random noise on the input function values
gives huge differences in the values of the derivatives.

We can take an interpolating polynomial for f (x)
and approximate f ′(x) by p′(x).

Experimental setup:
1 Consider f (x) over [0,2].
2 Interpolate at Chebyshev points xk = cos((2k − 1)π/(2n)),

k = 1,2, . . . ,n.
3 Compare p′(xk) with f ′(xk).

Experiment with quadric: p′(x1) = 4.75, f ′(x1) = 4.
Experiment with quartic: p′(x2) = 5.69, f ′(x2) = 6.

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 13 / 33

the derivative of an interpolating quadric

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 14 / 33

the derivative of an interpolating quartic

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 15 / 33

interpolation at higher degrees

Did our experiment now work?

While taking more points in the interpolation improves,
our problem is a local problem, we want more accuracy
nearby the point where we want to compute the derivative.

We can obtain highly accurate results by
1 computing more approximations for smaller values of h, and
2 extrapolating on those approximations,

as will be explained next.

For numerical differentiation, extrapolation works, not interpolation.

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 16 / 33

Numerical Differentiation

1 Finite Difference Formulas
the limit definition and Taylor expansion
differentiation by interpolation

2 Richardson Extrapolation
eliminating error terms
higher order approximations
a Julia function

3 The Complex Step Derivative
avoiding errors caused by subtractions

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 17 / 33

Taylor expansions

Consider the Taylor expansion of f (x) at x = a:

f (a + h) = f (a) + h f ′(a) + h2 f ′′(a)
2

+ O(h3).

We want to compute f ′(a) and rewrite accordingly:

f (a + h)− f (a) = h f ′(a) + h2 f ′′(a)
2

+ O(h3),

f (a + h)− f (a)
h

= f ′(a) + h
f ′′(a)

2
+ O(h2).

In the last formula, replace h by h/2:

f
(
a + h

2

)
− f (a)

h
2

= f ′(a) +
h
2

f ′′(a)
2

+ O(h2).

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 18 / 33

eliminating error terms

With D(f ,a,h) =
f (a + h)− f (a)

h
, the last two formulas simplify:

D(f ,a,h) = f ′(a) + h
f ′′(a)

2
+ O(h2),

D
(

f ,a,
h
2

)
= f ′(a) +

h
2

f ′′(a)
2

+ O(h2).

Now we can eliminate the f ′′(a) term:

2D
(

f ,a,
h
2

)
− D(f ,a,h) = (2− 1)f ′(a) + O(h2).

Then we have an O(h2) approximation for f ′(a):

f ′(a) = 2D
(

f ,a,
h
2

)
− D(f ,a,h) + O(h2).

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 19 / 33

Numerical Differentiation

1 Finite Difference Formulas
the limit definition and Taylor expansion
differentiation by interpolation

2 Richardson Extrapolation
eliminating error terms
higher order approximations
a Julia function

3 The Complex Step Derivative
avoiding errors caused by subtractions

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 20 / 33

more terms in the Taylor series

f (a + h) = f (a) + h f ′(a) + h2 f (2)(a)
2

+ h3 f (3)(a)
3!

+ h4 f (4)(a)
4!

+ O(h5).

With D(f ,a,h) =
f (a + h)− f (a)

h
, we rearrange:

D(f ,a,h) = f ′(a) + h
f (2)(a)

2
+ h2 f (3)(a)

3!
+ h3 f (4)(a)

4!
+ O(h4).

We drop the O(h4) term and introduce coefficients ck =
f (k)(a)

k !
:

D(f ,a,h) ≈ f ′(a) + c1h + c2h2 + c3h3

D(f ,a,h/2) ≈ f ′(a) + c1h/2 + c2h2/4 + c3h3/8
D(f ,a,h/4) ≈ f ′(a) + c1h/4 + c2h2/16 + c3h3/64
D(f ,a,h/8) ≈ f ′(a) + c1h/8 + c2h2/64 + c3h3/512

By linear combinations we obtain an O(h4) approximation for f ′(a).

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 21 / 33

eliminating more error terms

D(f ,a,h) ≈ f ′(a) + c1h + c2h2 + c3h3

D(f ,a,h/2) ≈ f ′(a) + c1h/2 + c2h2/4 + c3h3/8
D(f ,a,h/4) ≈ f ′(a) + c1h/4 + c2h2/16 + c3h3/64
D(f ,a,h/8) ≈ f ′(a) + c1h/8 + c2h2/64 + c3h3/512

Observe the pattern:
1 to eliminate h : (2× (more accurate)− previous)/(2− 1),
2 to eliminate h2: (4× (more accurate)− previous)/(4− 1),
3 to eliminate h3: (8× (more accurate)− previous)/(8− 1).

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 22 / 33

a triangular table

Define the table R[i , j], for i = 1,2, . . . ,n, and j = 1,2, . . . , i .

The first column contains forward differences:

R[i ,1] = D(f ,a,h/2i−1), i = 1,2, . . . ,n.

For j > 1, we apply the formula:

R[i , j] =
2j−1R[i , j − 1]− R[i − 1, j − 1]

2j−1 − 1
, i = j , j + 1, . . . ,n.

The algorithm is called Richardson extrapolation.

If the error of R[n,1] is O(h), then the error of R[n,2] is O(h2),
and then the error of R[n,3] is O(h3), . . ., the error of R[n, k] is O(hk),
for column k in the table.

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 23 / 33

Numerical Differentiation

1 Finite Difference Formulas
the limit definition and Taylor expansion
differentiation by interpolation

2 Richardson Extrapolation
eliminating error terms
higher order approximations
a Julia function

3 The Complex Step Derivative
avoiding errors caused by subtractions

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 24 / 33

a Julia function
"""

richardson(f::Function,z::Float64,h::Float64,n::Int)

returns the triangular table of numerical approximations of
the derivative of f at z.
"""
function richardson(f::Function,z::Float64,h::Float64,n::Int)

R = zeros(n, n)
w = h
for i=1:n

R[i, 1] = (f(z+w) - f(z))/w
w = w/2

end
for j=2:n

for i=j:n
w = 2^(j-1) - 1
R[i, j] = (2^(j-1)*R[i, j-1] - R[i-1, j-1])/w

end
end
return R

end

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 25 / 33

a test on the exponential function
f (x) = exp(x), a = 1.0, h = 0.1, n = 4:

$ julia richardson.jl
Richardson extrapolation on exp(x) :
4×4 Array{Float64,2}:
2.85884195e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
2.78738579e+00 2.71592963e+00 0.00000000e+00 0.00000000e+00
2.75254528e+00 2.71770478e+00 2.71829649e+00 0.00000000e+00
2.73534210e+00 2.71813892e+00 2.71828363e+00 2.71828179e+00

The table with errors :
4×4 Array{Float64,2}:
1.40560126e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00
6.91039636e-02 2.35219917e-03 0.00000000e+00 0.00000000e+00
3.42634558e-02 5.77051997e-04 1.46637268e-05 0.00000000e+00
1.70602718e-02 1.42912242e-04 1.80100989e-06 3.65210884e-08

$

Observe the magnitude of the errors in the columns. We have a 4-th order approximation.
With h = 0.1/8 = 0.0125, we obtain an error 3.7× 10−8.

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 26 / 33

one last exercise

Exercise 3:
Use extrapolation on forward differences to compute a third order
approximation for the derivative of cos(x) at

π

4
.

Start with h = 0.1.
1 Compute the error of the approximation.
2 Verify that the approximation is indeed of third order.

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 27 / 33

concluding remarks on Richardson extrapolation

Two remarks:
For Richardson extrapolation to be effective, all terms
in the Taylor series should appear with nonzero coefficients.

Some functions are odd or even, for example:
I expanding sin(x) at x = 0 gives x − x3/6 + x5/120 + O(x6),
I expanding cos(x) at x = 0 gives 1− x2/2 + x4/24 + O(x6).

Richardson extrapolation starting with central difference formulas
will lead to more accurate results.

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 28 / 33

Numerical Differentiation

1 Finite Difference Formulas
the limit definition and Taylor expansion
differentiation by interpolation

2 Richardson Extrapolation
eliminating error terms
higher order approximations
a Julia function

3 The Complex Step Derivative
avoiding errors caused by subtractions

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 29 / 33

The Complex Step Derivative

Let f (z) be a function which accepts z ∈ C as its argument.
Denote i =

√
−1 as the imaginary unit.

For some a and real step h > 0, the Taylor series for f at a + i h is

f (a + i h) = f (a) + i h f ′(a)− h2f ′′(a)/2!− i h3f ′′′(a)/3! + · · ·

Taking the imaginary parts I(·) of both sides:

I(f (a + i h)) = h f ′(a)− h3f ′′′(a)/3! + · · ·

Dividing both sides by h yields

f ′(a) = I(f (a + i h))/h + O(h2).

A second order approximation without cancellation errors is obtained.

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 30 / 33

an example

Consider the function

g(z) =
exp(z)

(cos(z))3 + (sin(z))3 .

With SymPy we can compute the derivatives of g(z),
although the symbolic expressions are swelling.

The complex step derivative in Julia, on this example:

g(z) = exp(z)/((cos(z))^3 + (sin(z))^3)
i = complex(0.0,1.0)
csdg(a,h) = imag(g(a+i*h))/h

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 31 / 33

observe the O(h2) convergence

h = 1.00e-01 : 1.5914476349582889e+00 : 4.94e-02
h = 1.00e-02 : 1.6403947367308929e+00 : 4.82e-04
h = 1.00e-03 : 1.6408723131660323e+00 : 4.82e-06
h = 1.00e-04 : 1.6408770877678895e+00 : 4.82e-08
h = 1.00e-05 : 1.6408771355137928e+00 : 4.82e-10
h = 1.00e-06 : 1.6408771359912524e+00 : 4.82e-12
h = 1.00e-07 : 1.6408771359960252e+00 : 4.93e-14
h = 1.00e-08 : 1.6408771359960737e+00 : 8.88e-16
h = 1.00e-09 : 1.6408771359960739e+00 : 6.66e-16
h = 1.00e-10 : 1.6408771359960739e+00 : 6.66e-16

Observe:
The last column has the error, which is O(h2).
As h goes smaller than 10−8, the error stays small.

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 32 / 33

a last exercise

Exercise 4: Consider the function h(z) = z9/2.

Apply the complex step derivative to approximate h′(z) at a = 1.5,
for h = 10−k for k ranging from 1 to 19.

For each value of k ,
compare with the exact value of the derivative.

For which value k is the approximation the most accurate?

Redo the experiment, but now for h = 8−k , for k from 1 to 19.

Is there a difference in the results of the first experiment?

Numerical Analysis (MCS 471) Numerical Differentiation L-24 17 October 2022 33 / 33

	Finite Difference Formulas
	the limit definition and Taylor expansion
	differentiation by interpolation

	Richardson Extrapolation
	eliminating error terms
	higher order approximations
	a Julia function

	The Complex Step Derivative
	avoiding errors caused by subtractions

