
Iterative Methods for Linear Systems

1 the method of Jacobi
derivation of the formulas
cost and convergence of the algorithm
a Julia function

2 Gauss-Seidel Relaxation
an iterative method for solving linear systems
the algorithm
successive over-relaxation

MCS 471 Lecture 11
Numerical Analysis

Jan Verschelde, 16 September 2022

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 1 / 29

Iterative Methods for Linear Systems

1 the method of Jacobi
derivation of the formulas
cost and convergence of the algorithm
a Julia function

2 Gauss-Seidel Relaxation
an iterative method for solving linear systems
the algorithm
successive over-relaxation

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 2 / 29

a fixed point formula

We want to solve Ax = b for A ∈ Rn×n, b ∈ Rn, for very large n.

Consider A = L + D + U, where
L = [`i,j], `i,j = ai,j , i > j , `i,j = 0, i ≤ j . L is lower triangular.
D = [di,j],di,i = ai,i 6= 0,di,j = 0, i 6= j . D is diagonal.
U = [ui,j],ui,j = ai,j , i < j ,ui,j = 0, i ≥ j . U is upper triangular.

Then we rewrite Ax = b as
Ax = b ⇔ (L + D + U)x = b

⇔ Dx = b− Lx− Ux
⇔ Dx = Dx + b− Lx− Ux− Dx
⇔ Dx = Dx + b− Ax
⇔ x = x + D−1(b− Ax).

The fixed point formula x = x + D−1(b− Ax) is well defined if ai,i 6= 0.

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 3 / 29

the Jacobi iterative method

The fixed point formula x = x + D−1(b− Ax) leads to

x(k+1) = x(k) + D−1
(

b− Ax(k)
)

︸ ︷︷ ︸
∆x

, k = 0,1, . . .

Writing the formula as an algorithm:

Input: A, b, x(0), ε, N.
Output: x(k), k is the number of iterations done.

for k from 1 to N do
∆x := D−1(b− Ax(k))

x(k+1) := x(k) + ∆x
exit when (||∆x|| ≤ ε)

end for.

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 4 / 29

Iterative Methods for Linear Systems

1 the method of Jacobi
derivation of the formulas
cost and convergence of the algorithm
a Julia function

2 Gauss-Seidel Relaxation
an iterative method for solving linear systems
the algorithm
successive over-relaxation

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 5 / 29

cost and convergence

Counting the number of operations in

for k from 1 to N do
∆x := D−1(b− Ax(k));
x(k+1) := x(k) + ∆x;
exit when (||∆x|| ≤ ε);

end for.

we have a cost of O(Nn2), O(n2) for Ax(k), if A is dense.

Theorem
The Jacobi method converges for strictly row-wise or column-wise
diagonally dominant matrices, i.e.: if

|ai,i | >
∑
j 6=i

|ai,j | or |ai,i | >
∑
j 6=i

|aj,i |, i = 1,2, . . . ,n.

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 6 / 29

Iterative Methods for Linear Systems

1 the method of Jacobi
derivation of the formulas
cost and convergence of the algorithm
a Julia function

2 Gauss-Seidel Relaxation
an iterative method for solving linear systems
the algorithm
successive over-relaxation

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 7 / 29

design of a Julia function
using Printf
Base.show(io::IO, f::Float64) = @printf(io, "%.3e", f)
using LinearAlgebra
"""

jacobi(mat::Array{Float64},rhs::Array{Float64},
sol::Array{Float64},
maxit::Int=100,tol::Float64=1.0e-8)

Runs the method of Jacobi on the linear system with coefficient
matrix mat, with right hand side vector rhs, a start solution sol.
Running stops if the maximum number of iterations in maxit is
reached, or if the norm of the correction is less than tol.

Returns (solution, numit, nrmdx, fail), the computed solution,
the number of iterations numit, an estimate for the forward error
normdx, and fail is true if the given tolerance was not reached.
"""
function jacobi(mat::Array{Float64},rhs::Array{Float64},

sol::Array{Float64},
maxit::Int=100,tol::Float64=1.0e-8)

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 8 / 29

the Julia function jacobi
function jacobi(mat::Array{Float64},rhs::Array{Float64},

sol::Array{Float64},
maxit::Int=100,tol::Float64=1.0e-8)

nbrows, nbcols = size(mat)
result = deepcopy(sol)
numit = 0; nrmdx = 1
while numit < maxit

numit = numit + 1
deltax = rhs - mat*result
for i=1:nbrows

deltax[i] = deltax[i]/mat[i,i]
end
result = result + deltax
nrmdx = norm(deltax)
strdx = @sprintf("%.2e", nrmdx)
println("||dx|| = $strdx")
if norm(deltax) <= tol

return (result, numit, nrmdx, false)
end

end
return (result, numit, nrmdx, true)

end

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 9 / 29

the main program in runjacobi.jl

import Random # to fix the seed of the random numbers
include("jacobi.jl")
"""
Prompts the user for a dimension and then
generates a random matrix to test the Jacobi method.
"""
function main()

print("Give the dimension : ")
line = readline(stdin)
dim = parse(Int, line)
Random.seed!(123);
mat = rand(dim, dim)
make the matrix diagonally dominant
for i=1:dim

mat[i, i] = 100*mat[i,i]
end
sol = ones(dim, 1)
noise = (1.0e-4)*rand(dim, 1)
rhs = mat*sol
wrk = sol + noise

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 10 / 29

runjacobi.jl continued

println("A random matrix :")
show(stdout, "text/plain", mat); println("");
sol, numit, nrmdx, fail = jacobi(mat, rhs, wrk)
println("The solution after ", numit, " iterations :")
for i=1:dim

strsol = @sprintf("%.16e", sol[i])
println(i, " : $strsol")

end
print("Estimated forward error : ", nrmdx)
if fail

println(" failed.")
else

println(" succeeded.")
end

end

main()

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 11 / 29

running runjacobi.jl at the command prompt
$ julia runjacobi.jl
Give the dimension : 3
A random matrix :
3×3 Array{Float64,2}:
7.684e+01 3.955e-01 5.860e-01
9.405e-01 3.132e+01 5.213e-02
6.740e-01 6.626e-01 2.686e+01

||dx|| = 5.21e-05
||dx|| = 9.32e-07
||dx|| = 2.73e-08
||dx|| = 6.56e-10
The solution after 4 iterations :
1 : 1.0000000000054128e+00
2 : 1.0000000000079821e+00
3 : 1.0000000000121563e+00
Estimated forward error : 6.559e-10 succeeded.
$

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 12 / 29

a first exercise

Exercise 1: Consider runjacobi.jl.

1 What is the largest dimension M for which runjacobi.jl
reports success?

Make a table with dimension n = 2,3, . . . ,M
and the number of iterations for each dimension n.

2 Adjust the statement mat[i, i] = 100*mat[i,i]
(you may modify only the diagonal element of mat)
so the matrix is always diagonally dominant,
for any dimension of the matrix.

Illustrate the adjustment with a run for a dimension larger
than the M you found in the first part of the exercise.

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 13 / 29

a test system

For the dimension n, we consider the diagonally dominant system:
n + 1 1 · · · 1

1 n + 1 · · · 1
...

...
. . .

...
1 1 · · · n + 1




x1
x2
...

xn

 =


2n
2n
...

2n

 .
The exact solution is x: for i = 1,2, . . . ,n, xi = 1.

Exercise 2:
Start the Jacobi iteration method at x(0) = 0,
with tolerance 10−4, allowing N = 2n2 iterations,
for n = 10,20,40, and 80.

How many steps does the method of Jacobi take to converge?

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 14 / 29

Iterative Methods for Linear Systems

1 the method of Jacobi
derivation of the formulas
cost and convergence of the algorithm
a Julia function

2 Gauss-Seidel Relaxation
an iterative method for solving linear systems
the algorithm
successive over-relaxation

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 15 / 29

fixed point formula for Gauss-Seidel relaxation

The fixed point formula for Ax = b where A = L + D + U,
L is strict lower triangular, L = [ai,j], i > j , 0 otherwise
D is diagonal, D = [ai,j], i = j , 0 otherwise
U is strict upper triangular, U = [ai,j], i < j , 0 otherwise

Ax = b ⇔ (L + D + U)x = b
⇔ (L + D)x + Ux = b
⇔ (L + D)x = b− Ux

Observe that L + D is lower triangular.
We apply forward substitution in each step.

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 16 / 29

the formulas for Gauss-Seidel relaxation

We want to solve Ax = b for A ∈ Rn×n, b ∈ Rn, for very large n.

Writing the method of Jacobi componentwise:

x (k+1)
i := x (k)

i +
1

ai,i

bi −
n∑

j=1

ai,jx
(k)
j

 , i = 1,2, . . . ,n

we observe that we can already use x (k+1)
j for j < i .

This leads to the following formulas

x (k+1)
i := x (k)

i +
1

ai,i

bi −
i−1∑
j=1

ai,jx
(k+1)
j −

n∑
j=i

ai,jx
(k)
j

 , i = 1,2, . . . ,n.

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 17 / 29

Iterative Methods for Linear Systems

1 the method of Jacobi
derivation of the formulas
cost and convergence of the algorithm
a Julia function

2 Gauss-Seidel Relaxation
an iterative method for solving linear systems
the algorithm
successive over-relaxation

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 18 / 29

the Gauss-Seidel method
Writing the formulas as an algorithm:

Input: A, b, x(0), ε, N.
Output: x(k), k is the number of iterations done.

for k from 1 to N do
for i from 1 to n do

∆xi := bi
for j from 1 to i − 1 do

∆xi := ∆xi − ai,jx
(k+1)
j

for j from i to n do
∆xi := ∆xi − ai,jx

(k)
j

∆xi := ∆xi/ai,i

x (k+1)
i := x (k)

i + ∆xi
exit when (||∆x|| ≤ ε)

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 19 / 29

the Julia function gauss_seidel

function gauss_seidel(mat::Array{Float64},rhs::Array{Float64},
sol::Array{Float64},
maxit::Int=100,tol::Float64=1.0e-8)

nbrows, nbcols = size(mat)
result = deepcopy(sol)
deltax = zeros(nbrows, 1)
numit = 0; nrmdx = 1;
while numit < maxit

numit = numit + 1
for i=1:nbrows

deltax[i] = rhs[i]
for j=1:nbcols

deltax[i] = deltax[i] - mat[i,j]*result[j]
end
deltax[i] = deltax[i]/mat[i,i]
result[i] = result[i] + deltax[i]

end
The rest is the same as in the function jacobi.

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 20 / 29

running rungauss_seidel.jl as a program
$ julia rungauss_seidel.jl
Give the dimension : 3
A random matrix :
3×3 Array{Float64,2}:
7.684e+01 3.955e-01 5.860e-01
9.405e-01 3.132e+01 5.213e-02
6.740e-01 6.626e-01 2.686e+01

||dx|| = 5.13e-05
||dx|| = 4.50e-07
||dx|| = 2.41e-10
The solution after 3 iterations :
1 : 1.0000000000001867e+00
2 : 1.0000000000000031e+00
3 : 9.9999999999999523e-01
Estimated forward error : 2.405e-10 succeeded.
$

Compare with runjacobi.jl!

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 21 / 29

convergence

We have the same condition on convergence as the method of Jacobi:

Theorem
The Gauss-Seidel method converges for strictly row-wise or
column-wise diagonally dominant matrices, i.e.: if

|ai,i | >
∑
j 6=i

|ai,j | or |ai,i | >
∑
j 6=i

|aj,i |, i = 1,2, . . . ,n.

The method of Gauss-Seidel converges faster
than the method of Jacobi.

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 22 / 29

comparing on the test system

Exercise 3:
Consider again the test system as in exercise 2.
Solve exercise 2 with the method of Gauss-Seidel.
Compare the convergence of the method of Gauss-Seidel
with the method of Jacobi.

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 23 / 29

Iterative Methods for Linear Systems

1 the method of Jacobi
derivation of the formulas
cost and convergence of the algorithm
a Julia function

2 Gauss-Seidel Relaxation
an iterative method for solving linear systems
the algorithm
successive over-relaxation

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 24 / 29

successive over-relaxation

Successive Over-Relaxation (SOR) takes a weighted average of the
current and the new approximation, using the relaxation parameter ω.
For ω > 1, we have over-relaxation, under-relaxation for ω < 1.

Writing A = L + D + U, we derive

(ωL + ωD + ωU)x = ωb
(ωL + ωD + D − D)x = ωb− ωUx

(ωL + D)x = ωb + (1− ω)Dx− ωUx
x = (ωL + D)−1 [ωb + (1− ω)Dx− ωUx]

For ω = 1, we have x = (L + D)−1 [b− Ux], which is Gauss-Seidel.

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 25 / 29

code for the Julia function sor
The ω is provided by the parameter wgt.

function sor(mat::Array{Float64},rhs::Array{Float64},
sol::Array{Float64},wgt::Float64=1.1,
maxit::Int=100,tol::Float64=1.0e-8)

nbrows, nbcols = size(mat)
result = deepcopy(sol)
deltax = zeros(nbrows, 1)
numit = 0; nrmdx = 1;
while numit < maxit

numit = numit + 1
for i=1:nbrows

deltax[i] = wgt*rhs[i]
for j=1:nbcols

deltax[i] = deltax[i] - mat[i,j]*wgt*result[j]
end
deltax[i] = deltax[i]/mat[i,i]
result[i] = result[i] + deltax[i]

end
The rest is the same as in the function jacobi.

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 26 / 29

running on a special matrix
"""
Returns a special matrix.
"""
function special_matrix()

mat = [3.0, -1.0, 0.0, 0.0, 0.0, 0.5,
-1.0, 3.0, -1.0, 0.0, 0.5, 0.0,
0.0, -1.0, 3.0, -1.0, 0.0, 0.0,
0.0, 0.0, -1.0, 3.0, -1.0, 0.0,
0.0, 0.5, 0.0, -1.0, 3.0, -1.0,
0.5, 0.0, 0.0, 0.0, -1.0, 3.0]

mat = reshape(mat, (6, 6))
mat = permutedims(mat)
return mat

end

Set the solution as ones(6, 1).

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 27 / 29

the output of runsor.jl
||dx|| = 1.36e-04
||dx|| = 3.06e-05
||dx|| = 9.12e-06
||dx|| = 2.94e-06
||dx|| = 1.11e-06
||dx|| = 4.50e-07
||dx|| = 6.24e-08
||dx|| = 1.78e-08
||dx|| = 5.69e-09
The solution after 9 iterations :
1 : 9.9999999905817438e-01
2 : 9.9999999785724880e-01
3 : 9.9999999865023992e-01
4 : 9.9999999949241514e-01
5 : 1.0000000002526264e+00
6 : 1.0000000002774445e+00
Estimated forward error : 5.690e-09 succeeded.

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 28 / 29

one last exercise

Exercise 4:
For the special matrix to test successive over-relaxation,
compare with the method of Jacobi and the method of Gauss-Seidel.

Is successive over-relaxation better than Jacobi and Gauss-Seidel?

Numerical Analysis (MCS 471) Iterative Methods for Linear Systems L-11 16 September 2022 29 / 29

	the method of Jacobi
	derivation of the formulas
	cost and convergence of the algorithm
	a Julia function

	Gauss-Seidel Relaxation
	an iterative method for solving linear systems
	the algorithm
	successive over-relaxation

