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roots of unity

The eight roots of unity, generated by ω = e−i2π/8 = e−iπ/4, are

−π/4

e−i7π/4

ei0π/4e−i4π/4

e−i6π/4

e−i2π/4

e−i5π/4

e−i3π/4 e−iπ/4

ω = e−iπ/4 = cos(π/4)− i sin(π/4), i =
√
−1, (Euler’s formula)
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roots of unity and primitive roots

Definition (roots of unity)
The number z is an nth root of unity if zn − 1 = 0.

Definition (primitive root of unity)
An nth root of unity is primitive
if it is not a k th root of unity for any k < n.

Exercise 1:
For n = 8, write all nth roots that are primitive.

Verify that for each primitive root z,
all other eight roots can be generated by taking powers.
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sums of powers of the nth root of unity

For n > 0, the nth primitive root of unity is ω = e−i2π/n.

ω is a root of the equation

xn − 1 = 0,

the other n − 1 roots are the powers ωk , k = 2,3, . . . ,n,
with ωn = ω0 = 1.

The root 1 makes the polynomial xn − 1 factor:

ωn − 1 = (ω − 1)
(

1 + ω + ω2 + · · ·+ ωn−1
)
= 0.

For ω ̸= 1, we have then

1 + ω + ω2 + · · ·+ ωn−1 = 0.
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sums of the powers of the roots of unity

As the other n − 2 roots are powers ωk , k = 1,2, . . . ,n − 1:

1 + ωk + ω2k + · · ·+ ω(n−1)k = 0.

For k = n, we have

1 + ωn + ω2n + · · ·+ ω(n−1)n = 1 + 1 + 1 + · · ·+ 1 = n.

Proposition (the Gauss relation)
Let ω be a primitive n root of unity and let k be an integer.

n−1∑
j=0

ω j k =

{
n if k/n is an integer,
0 otherwise.
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the discrete Fourier transform

Definition (the Discrete Fourier Transform (DFT))

Let x = [x0, x1, . . . , xn−1]
T be an n-dimensional vector.

The Discrete Fourier Transform of x is y = [y0, y1, . . . , yn−1]
T ,

where

yk =
1√
n

n−1∑
j=0

xjω
j k , ω = e−i2π/n.
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the matrix representation

yk =
1√
n

n−1∑
j=0

xjω
j k

For example, for n = 8, in matrix form the DFT is



y0
y1
y2
y3
y4
y5
y6
y7


=

1√
n



ω0·0 ω0·0 ω0·0 ω0·0 ω0·0 ω0·0 ω0·0 ω0·0

ω1·0 ω1·1 ω1·2 ω1·3 ω1·4 ω1·5 ω1·6 ω1·7

ω2·0 ω2·1 ω2·2 ω2·3 ω2·4 ω2·5 ω2·6 ω2·7

ω3·0 ω3·1 ω3·2 ω3·3 ω3·4 ω3·5 ω3·6 ω3·7

ω4·0 ω4·1 ω4·2 ω4·3 ω4·4 ω4·5 ω4·6 ω4·7

ω5·0 ω5·1 ω5·2 ω5·3 ω5·4 ω5·5 ω5·6 ω5·7

ω6·0 ω6·1 ω6·2 ω6·3 ω6·4 ω6·5 ω6·6 ω6·7

ω7·0 ω7·1 ω7·2 ω7·3 ω7·4 ω7·5 ω7·6 ω7·7





x0
x1
x2
x3
x4
x5
x6
x7


The n-by-n matrix in this representation is the Fourier matrix.
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the Fourier matrix

For ω = e−i2π/n, the Fourier matrix is

Fn =
1√
n


ω0 ω0 ω0 · · · ω0

ω0 ω1 ω2 · · · ωn−1

ω0 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...
ω0 ωn−1 ω2(n−1) · · · ω(n−1)2

 .

Then for x and y two n-dimensional vectors for which

y = Fnx,

we have that y is the DFT of x.
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the inverse of the Fourier matrix

Fn =
1√
n


ω0 ω0 ω0 · · · ω0

ω0 ω1 ω2 · · · ωn−1

ω0 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...
ω0 ωn−1 ω2(n−1) · · · ω(n−1)2


has as inverse (by the Gauss relation):

F−1
n =

1√
n


ω0 ω0 ω0 · · · ω0

ω0 ω−1 ω−2 · · · ω−(n−1)

ω0 ω−2 ω−4 · · · ω−(2(n−1))

...
...

...
. . .

...
ω0 ω−(n−1) ω−2(n−1) · · · ω−(n−1)2

 .

Observe: F−1
n = Fn, the complex conjugate of F . ω = e−i2π/n
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the inverse discrete Fourier transform

Definition (the inverse Discrete Fourier Transform (iDFT))

Let y = [y0, y1, . . . , yn−1]
T be an n-dimensional vector.

The inverse Discrete Fourier Transform of y is x = [x0, x1, . . . , xn−1]
T ,

x = F−1
n y,

where Fn is the n-by-n Fourier matrix.

Componentwise, we have the formulas:

xj =
1√
n

n−1∑
k=0

(
ω−k

)j
yk , ω = e−i2π/n, j = 0,1, . . . ,n − 1.
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verify with Julia functions

Exercise 2:
1 Write a Julia function FourierMatrix with takes on input n and

which returns the Fourier matrix Fn.

2 Write a Julia function inverseFourierMatrix with takes on
input n and which returns the inverse Fourier matrix F−1

n .

3 Verify for n = 8 that the product of the output of your
FourierMatrix(n) with the output of your
inverseFourierMatrix(n) is indeed the identity matrix.
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filters and convolutions

u0 u1 u2 · · ·
- H -

y1 y2 y3 · · ·

A linear, time invariant, causal filter is determined by the impulse

response
{

hk

}∞

k=0
and the transfer function is H(z) =

∞∑
k=0

hkz−k .

For input u, the k -th element in the output y is

yk = hku0 + hk−1u1 + · · ·+ h1uk−1 + h0uk =
k∑

j=0

hk−juj .

The convolution is denoted by the operator ⋆, as y = h ⋆ u.
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filtering a periodic signal

u0,u1,u2,u3,u0, . . . → (h0,h1,h2,h3) → y0, y1, y2, y3, y0, . . .

Let us compute y = h ⋆ u, applying yk =
k∑

j=0

hk−juj :

y0 = h0u0 + h−1u1 + h−2u2 + h−3u3.

By the periodicity: h−1 = h3, h−2 = h2, and h−3 = h1.

y0 = h0u0 + h3u1 + h2u2 + h1u3

y1 = h1u0 + h0u1 + h3u2 + h2u3

y2 = h2u0 + h1u1 + h0u2 + h3u3

y3 = h3u0 + h2u1 + h1u2 + h0u3
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applying the discrete Fourier transform

Apply yk =
1√
n

n−1∑
j=0

xjω
j k , for n = 4, k = 1, on (y0, y1, y2, y3) as input:

ŷ1 =
1√
4

(
y0ω

0 + y1ω
1 + y2ω

2 + y3ω
3
)
.

Multiply the formulas with powers of ω:

ω0y0 = ω0h0u0 + ω0h3u1 + ω0h2u2 + ω0h1u3

ω1y1 = ω1h1u0 + ω1h0u1 + ω1h3u2 + ω1h2u3

ω2y2 = ω2h2u0 + ω2h1u1 + ω2h0u2 + ω2h3u3

ω3y3 = ω3h3u0 + ω3h2u1 + ω3h1u2 + ω3h0u3

Adding up the above left hand sides leads to

ω0y0 + ω1y1 + ω2y2 + ω3y3 = 2ŷ1.
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collecting terms

ω0y0 = ω0h0u0 + ω0h3u1 + ω0h2u2 + ω0h1u3

ω1y1 = ω1h1u0 + ω1h0u1 + ω1h3u2 + ω1h2u3

ω2y2 = ω2h2u0 + ω2h1u1 + ω2h0u2 + ω2h3u3

ω3y3 = ω3h3u0 + ω3h2u1 + ω3h1u2 + ω3h0u3

Adding up the above right hand sides and collecting terms gives

u0

(
ω0h0 + ω1h1 + ω2h2 + ω3h3

)
+ u1

(
ω0h3 + ω1h0 + ω2h1 + ω3h2

)
+ u2

(
ω0h2 + ω1h3 + ω2h0 + ω3h1

)
+ u3

(
ω0h1 + ω1h2 + ω2h3 + ω3h0

)
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the Fourier transform of h0, h1, h2, h3

Apply yk =
1√
n

n−1∑
j=0

xjω
j k , for n = 4, k = 1, on (h0,h1,h2,h3) as input:

ĥ1 =
1√
4

(
h0ω

0 + h1ω
1 + h2ω

2 + h3ω
3
)
.

Now we can rewrite the added right hand sides:

u0

(
ω0h0 + ω1h1 + ω2h2 + ω3h3

)
= u0 2ĥ1

+ u1

(
ω0h3 + ω1h0 + ω2h1 + ω3h2

)
= u1 2ĥ1 ω1

+ u2

(
ω0h2 + ω1h3 + ω2h0 + ω3h1

)
= u2 2ĥ1 ω2

+ u3

(
ω0h1 + ω1h2 + ω2h3 + ω3h0

)
= u3 2ĥ1 ω3
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the Fourier transform of u0, u1, u2, u3

Apply yk =
1√
n

n−1∑
j=0

xjω
j k , for n = 4, k = 1, on (u0,u1,u2,u3) as input:

û1 =
1√
4

(
u0ω

0 + u1ω
1 + u2ω

2 + u3ω
3
)
.

So we found

2ŷ1 = u0 2ĥ1 + u1 2ĥ1 ω1 + u2 2ĥ1 ω2 + u3 2ĥ1 ω3

= 2ĥ1

(
u0 + u1ω

1 + u2ω
2 + u3ω

3
)

= 2ĥ12û1,

or, more in general:
ŷ1 =

√
n ĥ1û1,

where ŷ = DFT(y), ĥ = DFT(h), and û = DFT(u).

Industrial Math & Computation (MCS 472) the discrete Fourier transform L-9 29 January 2024 21 / 31



the DFT convolution property

u0 u1 u2 · · ·
- H -

y1 y2 y3 · · ·

The filter H has impulse response
{

hk

}∞

k=0
.

y = h ⋆ u
convolution

-DFT
ŷ =

√
n ĥ · û

componentwise product

where ŷ = DFT(y), ĥ = DFT(h), and û = DFT(u).

Theorem (the DFT convolution property)
The discrete Fourier transform of h ⋆ u is

√
n times the componentwise

product of the discrete Fourier transforms of h and u.
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verify numerically and symbolically

Exercise 3:
Verify the DFT convolution property
on two random vectors x and y, for n = 8.

1 Use your FourierMatrix of Exercise 2
to compute the DFT of x and y, x̂ = DFT(x) and ŷ = DFT(y).

2 Verify that
√

8 times the componentwise product of x̂ and ŷ
equals the DFT of x ⋆ y.

Exercise 4:
We derived the statement of the DFT convolution property
for n = 4 and k = 1.

Verify the DFT convolution property
by symbolic calculation for n = 4 and k = 2.
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the DFT convolution theorem

Theorem (the DFT convolution property)
Let x and y be two n-dimensional vectors.
The discrete Fourier transform of x ⋆ y is

√
n times the componentwise

product of the discrete Fourier transforms of x and y.

Theorem (the DFT convolution theorem)
Let x and y be two n-dimensional vectors.
The convolution x ⋆ y can be computed as

x ⋆ y = iDFT(
√

n DFT(x) · DFT(y)),

where DFT is the discrete Fourier transform and
iDFT is the inverse discrete Fourier transform.
· is the componentwise product of two vectors.
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the DFT interpolation theorem

Theorem (the DFT Interpolation Theorem)
Consider n points tj = j/n, for j = 0,1, . . . ,n − 1.
Let x = [x0, x1, . . . , xn−1]

T , y = Fnx, where Fn is the Fourier matrix.
Then

f (t) =
1√
n

n−1∑
k=0

ykei2πkt

satisfies f (tj) = xj , for j = 0,1, . . . ,n − 1.

The coefficients yk of the discrete Fourier transform are the
coefficients of an interpolating function f (t) in a trigonometric basis.
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proof by the inverse DFT

y = Fnx, f (t) =
1√
n

n−1∑
k=0

ykei2πkt , f (tj) = xj , tj = j/n, j = 0,1, . . . ,n

Proof: we use x = F−1
n y, for j = 0,1, . . . ,n − 1:

xj =
1√
n

n−1∑
k=0

(
ω−k

)j
yk , ω = e−i2π/n

=
1√
n

n−1∑
k=0

(
ei2πk j/n

)
yk

=
1√
n

n−1∑
k=0

(
ei2πk tj

)
yk = f (tj).

Q.E.D.
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the 8th roots of unity again

Exercise 5:
Verify the DFT interpolation property for n = 8.

1 Generate a random vector x of size 8.
2 Compute y = Fnx, with your FourierMatrix of Exercise 2.
3 Define the function f (t).
4 Verify that f (j/n) = xj , for j = 0,1, . . . ,n − 1.
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applied to filter design

Theorem (amplitude gain and phase shift of filter)

Let H(z) =
∞∑

k=0

hkz−k be the transfer function of a filter F .

For input u =
{

uk = sin(ωkT )
}∞

k=0
, y =

{
yk = r sin(ωkT + ϕ)

}∞

k=0
is

the output, where (ω = 2πn, T is the sampling rate),
r = |H(eiωT )| is the amplitude gain, and
ϕ = argH(eiωT ) is the phase shift.

Filter design in three steps:
1 Make the desired gain r = r(t) and phase shift ϕ = ϕ(t).
2 Evaluate the desired gains and phase shifts at equidistant angles

θk ∈ [0,2π], rk = r(θk ), ϕk = ϕ(θk ), ĥk = rkeiϕk .
3 h = iDFT(ĥ) is the impulse response, which defines H(z).
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summary and bibliography

We defined the Discrete Fourier Transform (DFT), derived the DFT
Convolution Theorem and proved the DFT Interpolation Theorem.

The main references for this lecture:
Charles R. MacCluer:
Industrial Mathematics. Modeling in Industry, Science, and
Government. Prentice Hall, 2000.
We started Chapter 4.

Timothy Sauer: Numerical Analysis,
second edition, Pearson, 2012.
Chapter 10 deals with the discrete Fourier transform.
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