- The Discrete Fourier Transform
 - roots of unity
 - definition of the DFT
- Convolutions and the DFT
 - convolutions become componentwise products
 - applying the discrete Fourier transform
- Interpolation by the DFT
 - the DFT interpolation theorem
 - applied to filter design

MCS 472 Lecture 9 Industrial Math & Computation Jan Verschelde, 29 January 2024

- The Discrete Fourier Transform
 - roots of unity
 - definition of the DFT
- Convolutions and the DFT
 - convolutions become componentwise products
 - applying the discrete Fourier transform
- Interpolation by the DFT
 - the DFT interpolation theorem
 - applied to filter design

roots of unity

The eight roots of unity, generated by $\omega = e^{-i2\pi/8} = e^{-i\pi/4}$, are

$$\omega = e^{-i\pi/4} = \cos(\pi/4) - i\sin(\pi/4), \quad i = \sqrt{-1},$$
 (Euler's formula)

roots of unity and primitive roots

Definition (roots of unity)

The number z is an *nth root of unity* if $z^n - 1 = 0$.

Definition (primitive root of unity)

An nth root of unity is primitive if it is not a kth root of unity for any k < n.

Exercise 1:

For n = 8, write all nth roots that are primitive.

Verify that for each primitive root *z*, all other eight roots can be generated by taking powers.

sums of powers of the nth root of unity

For n > 0, the *n*th primitive root of unity is $\omega = e^{-i2\pi/n}$. ω is a root of the equation

$$x^n - 1 = 0$$
,

the other n-1 roots are the powers ω^k , $k=2,3,\ldots,n$, with $\omega^n=\omega^0=1$.

The root 1 makes the polynomial $x^n - 1$ factor:

$$\omega^{n} - 1 = (\omega - 1) \left(1 + \omega + \omega^{2} + \dots + \omega^{n-1} \right) = 0.$$

For $\omega \neq 1$, we have then

$$1 + \omega + \omega^2 + \cdots + \omega^{n-1} = 0.$$

sums of the powers of the roots of unity

As the other n-2 roots are powers ω^k , $k=1,2,\ldots,n-1$:

$$1 + \omega^k + \omega^{2k} + \dots + \omega^{(n-1)k} = 0.$$

For k = n, we have

$$1 + \omega^{n} + \omega^{2n} + \cdots + \omega^{(n-1)n} = 1 + 1 + 1 + \cdots + 1 = n.$$

Proposition (the Gauss relation)

Let ω be a primitive n root of unity and let k be an integer.

$$\sum_{i=0}^{n-1} \omega^{jk} = \begin{cases} n & \text{if } k/n \text{ is an integer,} \\ 0 & \text{otherwise.} \end{cases}$$

- The Discrete Fourier Transform
 - roots of unity
 - definition of the DFT
- Convolutions and the DFT
 - convolutions become componentwise products
 - applying the discrete Fourier transform
- Interpolation by the DFT
 - the DFT interpolation theorem
 - applied to filter design

Definition (the Discrete Fourier Transform (DFT))

Let $\mathbf{x} = [x_0, x_1, \dots, x_{n-1}]^T$ be an *n*-dimensional vector.

The *Discrete Fourier Transform* of **x** is $\mathbf{y} = [y_0, y_1, \dots, y_{n-1}]^T$, where

$$y_k = \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} x_j \omega^{jk}, \quad \omega = e^{-i2\pi/n}.$$

the matrix representation

$$y_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \omega^{jk}$$

For example, for n = 8, in matrix form the DFT is

$$\begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \end{bmatrix} = \frac{1}{\sqrt{n}} \begin{bmatrix} \omega^{0.0} & \omega^{0.0} \\ \omega^{1.0} & \omega^{1.1} & \omega^{1.2} & \omega^{1.3} & \omega^{1.4} & \omega^{1.5} & \omega^{1.6} & \omega^{1.7} \\ \omega^{2.0} & \omega^{2.1} & \omega^{2.2} & \omega^{2.3} & \omega^{2.4} & \omega^{2.5} & \omega^{2.6} & \omega^{2.7} \\ \omega^{3.0} & \omega^{3.1} & \omega^{3.2} & \omega^{3.3} & \omega^{3.4} & \omega^{3.5} & \omega^{3.6} & \omega^{3.7} \\ \omega^{4.0} & \omega^{4.1} & \omega^{4.2} & \omega^{4.3} & \omega^{4.4} & \omega^{4.5} & \omega^{4.6} & \omega^{4.7} \\ \omega^{5.0} & \omega^{5.1} & \omega^{5.2} & \omega^{5.3} & \omega^{5.4} & \omega^{5.5} & \omega^{5.6} & \omega^{5.7} \\ \omega^{6.0} & \omega^{6.1} & \omega^{6.2} & \omega^{6.3} & \omega^{6.4} & \omega^{6.5} & \omega^{6.6} & \omega^{6.7} \\ \omega^{7.0} & \omega^{7.1} & \omega^{7.2} & \omega^{7.3} & \omega^{7.4} & \omega^{7.5} & \omega^{7.6} & \omega^{7.7} \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{bmatrix}$$

The *n*-by-*n* matrix in this representation is the *Fourier matrix*.

the Fourier matrix

For $\omega = e^{-i2\pi/n}$, the Fourier matrix is

$$F_n = \frac{1}{\sqrt{n}} \begin{bmatrix} \omega^0 & \omega^0 & \omega^0 & \cdots & \omega^0 \\ \omega^0 & \omega^1 & \omega^2 & \cdots & \omega^{n-1} \\ \omega^0 & \omega^2 & \omega^4 & \cdots & \omega^{2(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \omega^0 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)^2} \end{bmatrix}.$$

Then for **x** and **y** two *n*-dimensional vectors for which

$$\mathbf{y} = F_n \mathbf{x},$$

we have that y is the DFT of x.

the inverse of the Fourier matrix

$$F_n = \frac{1}{\sqrt{n}} \begin{bmatrix} \omega^0 & \omega^0 & \omega^0 & \cdots & \omega^0 \\ \omega^0 & \omega^1 & \omega^2 & \cdots & \omega^{n-1} \\ \omega^0 & \omega^2 & \omega^4 & \cdots & \omega^{2(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \omega^0 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)^2} \end{bmatrix}$$

has as inverse (by the Gauss relation):

$$F_n^{-1} = \frac{1}{\sqrt{n}} \begin{bmatrix} \omega^0 & \omega^0 & \omega^0 & \cdots & \omega^0 \\ \omega^0 & \omega^{-1} & \omega^{-2} & \cdots & \omega^{-(n-1)} \\ \omega^0 & \omega^{-2} & \omega^{-4} & \cdots & \omega^{-(2(n-1))} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \omega^0 & \omega^{-(n-1)} & \omega^{-2(n-1)} & \cdots & \omega^{-(n-1)^2} \end{bmatrix}.$$

Observe: $F_n^{-1} = \overline{F_n}$, the complex conjugate of F.

 $\omega = e^{-i2\pi/n}$

the inverse discrete Fourier transform

Definition (the inverse Discrete Fourier Transform (iDFT))

Let $\mathbf{y} = [y_0, y_1, \dots, y_{n-1}]^T$ be an *n*-dimensional vector.

The *inverse Discrete Fourier Transform* of **y** is $\mathbf{x} = [x_0, x_1, \dots, x_{n-1}]^T$,

$$\mathbf{x} = \mathbf{F}_n^{-1} \mathbf{y},$$

where F_n is the n-by-n Fourier matrix.

Componentwise, we have the formulas:

$$x_j = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} (\omega^{-k})^j y_k, \quad \omega = e^{-i2\pi/n}, \quad j = 0, 1, \dots, n-1.$$

verify with Julia functions

Exercise 2:

- Write a Julia function FourierMatrix with takes on input n and which returns the Fourier matrix F_n .
- **2** Write a Julia function inverseFourierMatrix with takes on input n and which returns the inverse Fourier matrix F_n^{-1} .
- **3** Verify for n = 8 that the product of the output of your FourierMatrix(n) with the output of your inverseFourierMatrix(n) is indeed the identity matrix.

- The Discrete Fourier Transform
 - roots of unity
 - definition of the DFT
- Convolutions and the DFT
 - convolutions become componentwise products
 - applying the discrete Fourier transform
- Interpolation by the DFT
 - the DFT interpolation theorem
 - applied to filter design

filters and convolutions

A linear, time invariant, causal filter is determined by the impulse response $\left\{h_k\right\}_{k=0}^{\infty}$ and the transfer function is $H(z) = \sum_{k=0}^{\infty} h_k z^{-k}$.

For input *u*, the *k*-th element in the output *y* is

$$y_k = h_k u_0 + h_{k-1} u_1 + \cdots + h_1 u_{k-1} + h_0 u_k = \sum_{j=0}^k h_{k-j} u_j.$$

The convolution is denoted by the operator \star , as $y = h \star u$.

filtering a periodic signal

$$u_0, u_1, u_2, u_3, u_0, \ldots \rightarrow (h_0, h_1, h_2, h_3) \rightarrow y_0, y_1, y_2, y_3, y_0, \ldots$$

Let us compute
$$y = h \star u$$
, applying $y_k = \sum_{j=0}^k h_{k-j} u_j$:

$$y_0 = h_0 u_0 + h_{-1} u_1 + h_{-2} u_2 + h_{-3} u_3.$$

By the periodicity:
$$h_{-1} = h_3$$
, $h_{-2} = h_2$, and $h_{-3} = h_1$.

$$y_0 = h_0 u_0 + h_3 u_1 + h_2 u_2 + h_1 u_3$$

$$y_1 = h_1 u_0 + h_0 u_1 + h_3 u_2 + h_2 u_3$$

$$y_2 = h_2 u_0 + h_1 u_1 + h_0 u_2 + h_3 u_3$$

$$y_3 = h_3 u_0 + h_2 u_1 + h_1 u_2 + h_0 u_3$$

- The Discrete Fourier Transform
 - roots of unity
 - definition of the DFT
- Convolutions and the DFT
 - convolutions become componentwise products
 - applying the discrete Fourier transform
- Interpolation by the DFT
 - the DFT interpolation theorem
 - applied to filter design

applying the discrete Fourier transform

Apply
$$y_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \omega^{jk}$$
, for $n = 4$, $k = 1$, on (y_0, y_1, y_2, y_3) as input:

$$\widehat{y}_1 = \frac{1}{\sqrt{4}} \left(y_0 \omega^0 + y_1 \omega^1 + y_2 \omega^2 + y_3 \omega^3 \right).$$

Multiply the formulas with powers of ω :

$$\omega^{0}y_{0} = \omega^{0}h_{0}u_{0} + \omega^{0}h_{3}u_{1} + \omega^{0}h_{2}u_{2} + \omega^{0}h_{1}u_{3}
\omega^{1}y_{1} = \omega^{1}h_{1}u_{0} + \omega^{1}h_{0}u_{1} + \omega^{1}h_{3}u_{2} + \omega^{1}h_{2}u_{3}
\omega^{2}y_{2} = \omega^{2}h_{2}u_{0} + \omega^{2}h_{1}u_{1} + \omega^{2}h_{0}u_{2} + \omega^{2}h_{3}u_{3}
\omega^{3}y_{3} = \omega^{3}h_{3}u_{0} + \omega^{3}h_{2}u_{1} + \omega^{3}h_{1}u_{2} + \omega^{3}h_{0}u_{3}$$

Adding up the above left hand sides leads to

$$\omega^{0}y_{0} + \omega^{1}y_{1} + \omega^{2}y_{2} + \omega^{3}y_{3} = 2\widehat{y}_{1}.$$

collecting terms

$$\omega^{0}y_{0} = \omega^{0}h_{0}u_{0} + \omega^{0}h_{3}u_{1} + \omega^{0}h_{2}u_{2} + \omega^{0}h_{1}u_{3}
\omega^{1}y_{1} = \omega^{1}h_{1}u_{0} + \omega^{1}h_{0}u_{1} + \omega^{1}h_{3}u_{2} + \omega^{1}h_{2}u_{3}
\omega^{2}y_{2} = \omega^{2}h_{2}u_{0} + \omega^{2}h_{1}u_{1} + \omega^{2}h_{0}u_{2} + \omega^{2}h_{3}u_{3}
\omega^{3}y_{3} = \omega^{3}h_{3}u_{0} + \omega^{3}h_{2}u_{1} + \omega^{3}h_{1}u_{2} + \omega^{3}h_{0}u_{3}$$

Adding up the above right hand sides and collecting terms gives

$$u_{0} \left(\omega^{0} h_{0} + \omega^{1} h_{1} + \omega^{2} h_{2} + \omega^{3} h_{3}\right)$$

$$+ u_{1} \left(\omega^{0} h_{3} + \omega^{1} h_{0} + \omega^{2} h_{1} + \omega^{3} h_{2}\right)$$

$$+ u_{2} \left(\omega^{0} h_{2} + \omega^{1} h_{3} + \omega^{2} h_{0} + \omega^{3} h_{1}\right)$$

$$+ u_{3} \left(\omega^{0} h_{1} + \omega^{1} h_{2} + \omega^{2} h_{3} + \omega^{3} h_{0}\right)$$

the Fourier transform of h_0 , h_1 , h_2 , h_3

Apply
$$y_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \omega^{jk}$$
, for $n = 4$, $k = 1$, on (h_0, h_1, h_2, h_3) as input:

$$\hat{h}_1 = \frac{1}{\sqrt{4}} \left(h_0 \omega^0 + h_1 \omega^1 + h_2 \omega^2 + h_3 \omega^3 \right).$$

Now we can rewrite the added right hand sides:

$$u_{0} \left(\omega^{0} h_{0} + \omega^{1} h_{1} + \omega^{2} h_{2} + \omega^{3} h_{3}\right) = u_{0} 2 \hat{h}_{1}$$

$$+ u_{1} \left(\omega^{0} h_{3} + \omega^{1} h_{0} + \omega^{2} h_{1} + \omega^{3} h_{2}\right) = u_{1} 2 \hat{h}_{1} \omega^{1}$$

$$+ u_{2} \left(\omega^{0} h_{2} + \omega^{1} h_{3} + \omega^{2} h_{0} + \omega^{3} h_{1}\right) = u_{2} 2 \hat{h}_{1} \omega^{2}$$

$$+ u_{3} \left(\omega^{0} h_{1} + \omega^{1} h_{2} + \omega^{2} h_{3} + \omega^{3} h_{0}\right) = u_{3} 2 \hat{h}_{1} \omega^{3}$$

the Fourier transform of u_0 , u_1 , u_2 , u_3

Apply
$$y_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \omega^{jk}$$
, for $n = 4$, $k = 1$, on (u_0, u_1, u_2, u_3) as input:

$$\widehat{u}_1 \ = \ \frac{1}{\sqrt{4}} \left(u_0 \omega^0 + u_1 \omega^1 + u_2 \omega^2 + u_3 \omega^3 \right).$$

So we found

$$\begin{aligned} 2\widehat{y}_1 &= u_0 \ 2\widehat{h}_1 + u_1 \ 2\widehat{h}_1 \ \omega^1 + u_2 \ 2\widehat{h}_1 \ \omega^2 + u_3 \ 2\widehat{h}_1 \ \omega^3 \\ &= 2\widehat{h}_1 \left(u_0 + u_1 \omega^1 + u_2 \omega^2 + u_3 \omega^3 \right) \\ &= 2\widehat{h}_1 2\widehat{u}_1, \end{aligned}$$

or, more in general:

$$\widehat{y}_1 = \sqrt{n} \, \widehat{h}_1 \widehat{u}_1$$

where $\hat{y} = DFT(y)$, $\hat{h} = DFT(h)$, and $\hat{u} = DFT(u)$.

the DFT convolution property

$$u_0 \ u_1 \ u_2 \cdots$$
 H
 $y_1 \ y_2 \ y_3 \cdots$

The filter *H* has impulse response $\left\{h_k\right\}_{k=0}^{\infty}$.

$$y = h \star u$$
 $\xrightarrow{\text{DFT}}$ $\widehat{y} = \sqrt{n} \ \widehat{h} \cdot \widehat{u}$ convolution componentwise product

where
$$\hat{y} = DFT(y)$$
, $\hat{h} = DFT(h)$, and $\hat{u} = DFT(u)$.

Theorem (the DFT convolution property)

The discrete Fourier transform of $h \star u$ is \sqrt{n} times the componentwise product of the discrete Fourier transforms of h and u.

verify numerically and symbolically

Exercise 3:

Verify the DFT convolution property on two random vectors \mathbf{x} and \mathbf{y} , for n = 8.

- Use your FourierMatrix of Exercise 2 to compute the DFT of \mathbf{x} and \mathbf{y} , $\hat{\mathbf{x}} = \mathrm{DFT}(\mathbf{x})$ and $\hat{\mathbf{y}} = \mathrm{DFT}(\mathbf{y})$.
- ② Verify that $\sqrt{8}$ times the componentwise product of $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ equals the DFT of $\mathbf{x} \star \mathbf{y}$.

Exercise 4:

We derived the statement of the DFT convolution property for n = 4 and k = 1.

Verify the DFT convolution property by symbolic calculation for n = 4 and k = 2.

the DFT convolution theorem

Theorem (the DFT convolution property)

Let **x** and **y** be two n-dimensional vectors.

The discrete Fourier transform of $\mathbf{x} \star \mathbf{y}$ is \sqrt{n} times the componentwise product of the discrete Fourier transforms of \mathbf{x} and \mathbf{y} .

Theorem (the DFT convolution theorem)

Let **x** and **y** be two n-dimensional vectors.

The convolution $\mathbf{x} \star \mathbf{y}$ can be computed as

$$\mathbf{x} \star \mathbf{y} = iDFT(\sqrt{n} DFT(\mathbf{x}) \cdot DFT(\mathbf{y})),$$

where DFT is the discrete Fourier transform and iDFT is the inverse discrete Fourier transform.

· is the componentwise product of two vectors.

- The Discrete Fourier Transform
 - roots of unity
 - definition of the DFT
- Convolutions and the DFT
 - convolutions become componentwise products
 - applying the discrete Fourier transform
- Interpolation by the DFT
 - the DFT interpolation theorem
 - applied to filter design

the DFT interpolation theorem

Theorem (the DFT Interpolation Theorem)

Consider n points $t_j = j/n$, for j = 0, 1, ..., n-1. Let $\mathbf{x} = [x_0, x_1, ..., x_{n-1}]^T$, $\mathbf{y} = F_n \mathbf{x}$, where F_n is the Fourier matrix. Then

$$f(t) = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} y_k e^{i2\pi kt}$$

satisfies $f(t_j) = x_j$, for j = 0, 1, ..., n - 1.

The coefficients y_k of the discrete Fourier transform are the coefficients of an interpolating function f(t) in a trigonometric basis.

proof by the inverse DFT

$$\mathbf{y} = F_n \mathbf{x}, \ f(t) = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} y_k e^{i2\pi kt}, \ f(t_j) = x_j, t_j = j/n, \ j = 0, 1, \dots, n$$

Proof: we use $\mathbf{x} = F_n^{-1} \mathbf{y}$, for j = 0, 1, ..., n - 1:

$$x_{j} = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \left(\omega^{-k} \right)^{j} y_{k}, \quad \omega = e^{-i2\pi/n}$$

$$= \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \left(e^{i2\pi k j/n} \right) y_{k}$$

$$= \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \left(e^{i2\pi k t_{j}} \right) y_{k} = f(t_{j}).$$

Q.E.D.

the 8th roots of unity again

Exercise 5:

Verify the DFT interpolation property for n = 8.

- Generate a random vector **x** of size 8.
- ② Compute $\mathbf{y} = F_n \mathbf{x}$, with your FourierMatrix of Exercise 2.
- **3** Define the function f(t).
- **4** Verify that $f(j/n) = x_j$, for j = 0, 1, ..., n 1.

- The Discrete Fourier Transform
 - roots of unity
 - definition of the DFT
- Convolutions and the DFT
 - convolutions become componentwise products
 - applying the discrete Fourier transform
- Interpolation by the DFT
 - the DFT interpolation theorem
 - applied to filter design

applied to filter design

Theorem (amplitude gain and phase shift of filter)

Let
$$H(z) = \sum_{k=0}^{\infty} h_k z^{-k}$$
 be the transfer function of a filter F .

For input
$$u = \left\{ u_k = \sin(\omega kT) \right\}_{k=0}^{\infty}$$
, $y = \left\{ y_k = r \sin(\omega kT + \phi) \right\}_{k=0}^{\infty}$ is the output, where $(\omega = 2\pi n, T \text{ is the sampling rate})$,

- $r = |H(e^{i\omega T})|$ is the amplitude gain, and
 - $\phi = \arg H(e^{i\omega T})$ is the phase shift.

Filter design in three steps:

- Make the desired gain r = r(t) and phase shift $\phi = \phi(t)$.
- **2** Evaluate the desired gains and phase shifts at equidistant angles $\theta_k \in [0, 2\pi]$, $r_k = r(\theta_k)$, $\phi_k = \phi(\theta_k)$, $\widehat{h}_k = r_k e^{i\phi_k}$.
- **1** $h = iDFT(\hat{h})$ is the impulse response, which defines H(z).

summary and bibliography

We defined the Discrete Fourier Transform (DFT), derived the DFT Convolution Theorem and proved the DFT Interpolation Theorem.

The main references for this lecture:

- Charles R. MacCluer: Industrial Mathematics. Modeling in Industry, Science, and Government. Prentice Hall, 2000.
 We started Chapter 4.
- Timothy Sauer: Numerical Analysis, second edition, Pearson, 2012.
 Chapter 10 deals with the discrete Fourier transform.