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the watchman problem

Given is a floorplan of an art gallery, guarded by rotating cameras.

The floorplan is a simple polygon (no holes), not always convex.
Inner vertices or inner edges are considered holes.

Goal: use as few cameras as possible to the entire gallery is guarded.

Theorem (the art gallery theorem, Vasek Chvatal, 1975)

For a simple polygon with n vertices, | n/3| cameras suffice
for any point to be visible.

Convex polygons may need fewer cameras, |n/3] is the worst case.
The “book proof” follows the 1978 proof by Steve Fisk.

Finding the minimal number of cameras is NP-hard.
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comb shaped floorplans

e 6 vertices, 2 cameras needed:

e 9 vertices, 3 cameras needed:
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triangulations and 3-colorings

e Consider a triangulation:

e Assign different colors to each vertex of a triangle:
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given is a polygonal floorplan
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construct a triangulation of the polygon
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apply a 3-coloring to the triangulation
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all edges are vertical or horizontal

Exercise 1: Consider a simple (no holes) polygon P
with n vertices, where all edges are either vertical or horizontal.

The simplest example is a rectangle and 1 camera suffices.

Draw examples to justify that | n/4| cameras suffice.
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number of triangles

Theorem (Simple Polygon Triangulations)

A simple polygon P with n vertices admits a triangulation
with n — 2 triangles.

An easy case: P is convex.

Take the leftmost vertex v as the vertex of every triangle.
Starting at the leftmost vertex,

@ take two adjacent vertices to form a triangle with v,
@ walk to the next vertex, form next triangle, swapping vertices
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proof by induction on n

Theorem (Simple Polygon Triangulations)

A simple polygon P with n vertices admits a triangulation
with n — 2 triangles.

Proof. By induction on n.
Base case: n = 3, one triangle, 1 =3 — 2.

Induction hypothesis: Every simple polygon with k vertices, k < n,
admits a triangulation with kK — 2 triangles.

Let v be the leftmost highest vertex of P with n vertices.
Removing v from P results in a polygon with n — 1 vertices
and then we can apply the induction hypothesis.

We must show to apply the induction hypothesis correctly.
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two cases

Let u and w be the neighbors of v. Consider:
u u

w w

There are two cases to consider:
@ The line segment (u, w) lies in P.
@ The line segment (u, w) does not lie entirely in P.
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the line segment (u, w) lies in P

w w

@ Consider the triangle (u, v, w).

© Apply the induction hypothesis to P\ {v}:
@ P\{v}hasn—1—-2=n-3triangles,
@ and we add the triangle (u, v, w),

to obtain a triangulation of P with n — 2 triangles.
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the line segment (u, w) does not lie entirely in P

There must be at least one vertex at the left of (u, w),
a vertex, different from v, and to the right of v.

Consider the vertex v’ farthest to the left of (u, w):
u u

w w

The line segment (v, V') lies entirely in P
because v and v’ are leftmost, they intersect no edge.
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application of the induction hypothesis
u u

w w

The edge (v, V') splits P in two pieces P; and P»,

respectively with my and m» vertices:

my < n,me <n,m+ms=n+ 2 (the +2 counts v and v/).
We can now apply the induction hypothesis:

@ P; has a triangulation with my — 2 triangles.

@ P; has a triangulation with m, — 2 triangles.
So the total number of triangles is
m—-24+m—-2=my+m—4=n-2.

Q.E.D.
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3-colorings

Definition (3-coloring)
Given a triangulation, a 3-coloring assigns a color (red, green, or blue)
to each vertex so that vertices that are adjacent have a different color.

Does a 3-coloring exist?

The base case in the induction is one triangle:

Is there an algorithm to color the vertices in a triangulation?
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given a triangulation, visit all triangles
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the dual graph
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traverse the dual graph in depth first order
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apply a 3-coloring
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pseudo code for traversing and 3-coloring

Exercise 2: Given a doubly connected edge list which stores a

triangulation of a simple polygon,
write pseudo code to visit all triangles in depth first search order.

Exercise 3: Given a doubly connected edge list which stores a
triangulation of a simple polygon and a 3-coloring of the first triangle,
write pseudo code to apply a 3-coloring to all vertices.
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the art gallery theorem

Theorem (the art gallery theorem, Vasek Chvatal, 1975)

For a simple polygon with n vertices, |n/3| cameras suffice
for any point to be visible.

Proof. A simple polygon has a triangulation with n — 2 triangles.

The dual graph of the triangulation has a vertex for each triangle.
Vertices are connected by an edge if their triangles are adjacent.

As the polygon has no holes, the dual graph is a tree,
which we traverse in depth-first search order.

As we traverse all triangles, we apply a 3-coloring to the vertices.
The colors on the first triangle determine the colors of all others.

Determine which color occurs the least number of times.
This least number equals or is less than |n/3].
Position the cameras at the vertices with that color.
Q.E.D.
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exercises

We started the third chapter in the textbook, covered section 3.1.

Consider the following activities, listed below.
@ Write the solutions to exercises 1, 2, and 3.
@ Consider the exercises 1,2,3 in the textbook.
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