
Line Segment Intersection
1 Output Sensitive Algorithms

map overlay and input specification
using the cgal-swig-bindings

2 A Plane Sweep Algorithm
handling events caused by sweeping a line
adjacent line segments
classification of events

3 Data Structures
the event queue
the global algorithm
an example with CGAL in C++

MCS 481 Lecture 4
Computational Geometry

Jan Verschelde, 22 January 2025

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 1 / 33



Line Segment Intersection

1 Output Sensitive Algorithms
map overlay and input specification
using the cgal-swig-bindings

2 A Plane Sweep Algorithm
handling events caused by sweeping a line
adjacent line segments
classification of events

3 Data Structures
the event queue
the global algorithm
an example with CGAL in C++

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 2 / 33



map overlay

Geographic information systems store maps in layers,
each layer is a thematic map, stores only one type of information

rainfall,
altitude,
vegitation,
population density, etc...

In overlaying maps, we are interested in intersections.

In its simplest form we view a layer is a set of line segments
and to keep it simple, we focus on one set.

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 3 / 33



specification of input and output

Input: n line segments S = {s1, s2, . . . , sn}, #S = n < ∞,

si = ((ai
x ,ai

y ), (bi
x ,bi

y )), i = 1,2, . . . ,n.

Output: intersection points P = { ((i , j), (x , y)) | (x , y) ∈ si ∩ sj }.

Each line segment si is a tuple of end points:

si

ai = (ai
x ,ai

y )

bi = (bi
x ,bi

y )

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 4 / 33



an easy input

a1

a2

a3

a4

a5

a6 b1

b2

b3

b4

b5

b6

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 5 / 33



an easier input

a1

a2

a3

a4

a5

a6 b6

b5

b4

b3

b2

b1

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 6 / 33



output sensitive algorithms

Given n line segments,
the number of intersection points ranges between 0 and n(n − 1)/2.

The direct algorithm intersects every line segment
with every other line segment.
It works well in case all line segments intersect each other.
This case is the worst case and the running time of any algorithm for
this problem will therefore be Ω(n2).

But, on average, we may expect to do better.

Definition (output sensitive algorithm)
An algorithm is output sensitive if its running time
is proportional to the size of its output.

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 7 / 33



big O(·), Ω(·), Θ(·), asymptotic bounds

Let T (n) be the worst case running time for input size n.

Definition (big O asymptotic upper bound)
For functions T (n) and f (n), T (n) is O(f (n)) if there exists
a constant c > 0, independent of n: T (n) ≤ c f (n), as n → ∞,
for all n ≥ n0, for a fixed constant value n0.

Definition (big Ω(·) asymptotic lower bound)
For functions T (n) and f (n), T (n) is Ω(f (n)) if there exists
a constant c > 0, independent of n: T (n) ≥ cf (n), as n → ∞,
for all n ≥ n0, for a fixed constant value n0.

Definition (big Θ(·) asymptotic sharp bound)
T (n) is Θ(f (n)) if T (n) is Ω(f (n)) and T (n) is O(f (n)).

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 8 / 33



Line Segment Intersection

1 Output Sensitive Algorithms
map overlay and input specification
using the cgal-swig-bindings

2 A Plane Sweep Algorithm
handling events caused by sweeping a line
adjacent line segments
classification of events

3 Data Structures
the event queue
the global algorithm
an example with CGAL in C++

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 9 / 33



line segments in CGAL

Consider three line segments defined by the tuples

((0, 0), (2, 2)), ((1, 0), (0, 2)), ((2, 0), (1, 1))

and compute their intersections.

Defining the input in Python, with cgal-swig-bindings:

from CGAL.CGAL_Kernel import Point_2
from CGAL.CGAL_Kernel import Segment_2
from CGAL.CGAL_Kernel import intersection

segments = []
segments.append(Segment_2(Point_2(0, 0), Point_2(2, 2)))
segments.append(Segment_2(Point_2(1, 0), Point_2(0, 2)))
segments.append(Segment_2(Point_2(2, 0), Point_2(1, 2)))

Consider also the posted Jupyter notebook.

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 10 / 33



computing all intersection points

for i in range(len(segments)):
for j in range(i+1, len(segments)):

intsisj = intersection(segments[i], segments[j])
print(’segments’, i, ’and’, j, end=’ ’)
if intsisj.empty():

print(’do not intersect’)
elif not intsisj.is_Point_2():

print(’do not intersect in a point’)
else:

iptsisj = intsisj.get_Point_2()
print(’intersect :’, end=’ ’)
print(iptsisj.x(), ’,’, iptsisj.y())

which prints (edited to fit the slide):

segments 0 and 1 intersect : 0.666..6 , 0.666..6
segments 0 and 2 intersect : 1.333..3 , 1.333..3
segments 1 and 2 do not intersect

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 11 / 33



Line Segment Intersection

1 Output Sensitive Algorithms
map overlay and input specification
using the cgal-swig-bindings

2 A Plane Sweep Algorithm
handling events caused by sweeping a line
adjacent line segments
classification of events

3 Data Structures
the event queue
the global algorithm
an example with CGAL in C++

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 12 / 33



ruling out intersections

Observe that si = ((ai
x ,ai

y ), (bi
x ,bi

y )) and sj = ((aj
x ,a

j
y ), (b

j
x ,b

j
y ))

do not intersect if their y -coordinates do not overlap.

sj
aj = (aj

x ,a
j
y )

bj = (bj
x ,b

j
y )

ℓ

si

ai = (ai
x ,ai

y )

bi = (bi
x ,bi

y )

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 13 / 33



the idea for an algorithm

Preprocessing: sort the segments on their y -coordinate.
The first segment has an end point with the highest y -coordinate.

Imagine a line: ℓ
The line ℓ is a sweep line:

1 ℓ starts above all line segments,

2 ℓ slides gradually downwards,

3 ℓ encounters an end point of a segment: an event.
Two types of events:

1 meet highest end point: consider new segment, or
2 meet lowest end point: no longer consider segment.

Invariant: all intersections with segments above ℓ are computed.

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 14 / 33



the status of the sweep line

The sweep line ℓ is characterized by its height.

Definition (status of the sweep line)

Given a set S of line segments and a sweep line ℓ,

the status of the sweep line ℓ is the set of segments meeting ℓ:

status(ℓ) = { s ∈ S | s ∩ℓ ̸= ∅ }.

ℓ

Exercise 1: What is the status in the case when the y -coordinates of
the line segments in S do not overlap?

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 15 / 33



handling events

Invariant: all intersections with segments above ℓ are computed.

ℓ

At the next event:

ℓ

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 16 / 33



a first sweep algorithm
We can now formulate a first sweep algorithm:

for every new segment si about to enter status(ℓ) do

test whether si intersects s ∈ status(ℓ).
Consider the following input:

1 2 3 4 5 6 7 8

Exercise 2: Run the first sweep algorithm on the above input and

describe the evolution of status(ℓ) at each event. Relate the number of
intersection tests to the number of intersection points.

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 17 / 33



Line Segment Intersection

1 Output Sensitive Algorithms
map overlay and input specification
using the cgal-swig-bindings

2 A Plane Sweep Algorithm
handling events caused by sweeping a line
adjacent line segments
classification of events

3 Data Structures
the event queue
the global algorithm
an example with CGAL in C++

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 18 / 33



adjacent line segments

For an output sensitive algorithm, intersect only adjacent segments.

Consider three line segments:
1 2 3

1 2 3

1 3 2

3 1 2

Observe: after an intersection, the adjacency changes.

Third type of event: change of adjacency.

status(ℓ) is ordered: two consecutive segments are adjacent.

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 19 / 33



Are intersections always detected?

As adjacencies change, will all intersections be detected?
si sj

pℓ

Lemma (detection of intersection points)
Let si and sj be two line segments, both are not horizontal.
If si ∩ sj = {p} ̸∈ sk , k ̸= i , k ̸= j ,

then there is an event point above ℓ where si and sj are adjacent.

Exercise 3: What is k in the Lemma?
Draw an example of a segment sk so si and sj are not adjacent.

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 20 / 33



intersections are detected

Lemma (detection of intersection points)
Let si and sj be two line segments, both are not horizontal.
If si ∩ sj = {p} ̸∈ sk , k ̸= i , k ̸= j ,

then there is an event point above ℓ where si and sj are adjacent.

Proof. Two observations:
1 If ℓ is positioned just above p, then si and sj are adjacent.

2 For high enough ℓ, status(ℓ) = ∅.
Therefore, there must be an event point where si and sj become
adjacent are are tested for intersection.

Q.E.D.

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 21 / 33



Line Segment Intersection

1 Output Sensitive Algorithms
map overlay and input specification
using the cgal-swig-bindings

2 A Plane Sweep Algorithm
handling events caused by sweeping a line
adjacent line segments
classification of events

3 Data Structures
the event queue
the global algorithm
an example with CGAL in C++

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 22 / 33



classification of event points

We have three type of event points p:
1 p is the upper end of a line segment:

1 Find the neighbors of this line segment, test for intersection.
2 Add the intersection points as event points.

2 p is an intersection point:
1 Find new neighbors for intersecting segments.
2 Test for intersection, for all new neighbors.
3 Add the intersection points as event points.

3 p is the lower end of a line segment:
1 Remove the segment from the status.

The neighbors of the removed segment become adjacent.
2 Test for intersection, for all new neighbors.
3 Add the intersection points as event points.

This provides a sketch of a plane sweep algorithm.

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 23 / 33



a general configuration
1 2

3
4

5
6

7

Exercise 4: Run the plane sweep algorithm on the above input and

define status(ℓ) at each event point.

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 24 / 33



Line Segment Intersection

1 Output Sensitive Algorithms
map overlay and input specification
using the cgal-swig-bindings

2 A Plane Sweep Algorithm
handling events caused by sweeping a line
adjacent line segments
classification of events

3 Data Structures
the event queue
the global algorithm
an example with CGAL in C++

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 25 / 33



the event queue

Events are stored in a queue, represented as a balanced binary tree.
The order between event points p and q is defined as follows:

p(px ,py ) ≺ q(qx ,qy ) ⇔ py > qy or py = qy and px < qx .

In breaking a tie between two points with same height,
we prefer the leftmost point.
Segments are stored following ≺, starting with the upper end point.

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 26 / 33



an event queue

ℓ

si
sj

sk

sl

sm

sk
si sl

sj

si
sj sk

sl sm

An update to the tree takes O(log(n)) time.

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 27 / 33



Line Segment Intersection

1 Output Sensitive Algorithms
map overlay and input specification
using the cgal-swig-bindings

2 A Plane Sweep Algorithm
handling events caused by sweeping a line
adjacent line segments
classification of events

3 Data Structures
the event queue
the global algorithm
an example with CGAL in C++

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 28 / 33



the global algorithm

Input: S = { si((ai
x ,ai

y ), (bi
x ,bi

y )), i = 1,2, . . . ,n }.
Output: P = { ((i , j), (x , y)) | (x , y) ∈ si ∩ sj }.

1 Initialize event queue Q with upper end points of the segments.
2 Initialize status T = ∅.
3 While Q ̸= ∅ do
4 p = pop off next event point from Q,
5 HANDLEEVENTPOINT(p,Q,T ).

The subroutine HANDLEEVENTPOINT does two tasks:
1 adjust the adjacency information in the status T ,
2 compute the new intersection points.

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 29 / 33



Line Segment Intersection

1 Output Sensitive Algorithms
map overlay and input specification
using the cgal-swig-bindings

2 A Plane Sweep Algorithm
handling events caused by sweeping a line
adjacent line segments
classification of events

3 Data Structures
the event queue
the global algorithm
an example with CGAL in C++

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 30 / 33



an example with CGAL in C++
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Surface_sweep_2_algorithms.h>

typedef CGAL::Exact_predicates_exact_constructions_kernel Kernel;
typedef Kernel::Point_2 Point_2;
typedef CGAL::Arr_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::Curve_2 Segment_2;

int main()
{

// construct the input segments
Segment_2 segments[] = {Segment_2(Point_2(0, 0), Point_2(2, 2)),

Segment_2(Point_2(1, 0), Point_2(0, 2)),
Segment_2(Point_2(2, 0), Point_2(1, 2))};

// compute all intersection points
std::list<Point_2> pts;

CGAL::compute_intersection_points(segments, segments + 3,
std::back_inserter(pts));

// print the result
std::cout << "Found " << pts.size() << " intersection points: " << std::endl;
std::copy(pts.begin(), pts.end(),

std::ostream_iterator<Point_2>(std::cout, "\n"));

return 0;
}

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 31 / 33



compilation and running the code

Writing the executable to sweep, compile with the command
g++ sweep_segments.cpp -lgmp -lmpfr -o sweep

The output of sweep is
Found 2 intersection points:
0.666667 0.666667
1.33333 1.33333

On MacOS, when installed with brew, insert the -I after g++ as
g++ -I/opt/homebrew/include/

and add to your .zshrc file the following lines:
export C_INCLUDE_PATH=/opt/homebrew/include
export LIBRARY_PATH=/opt/homebrew/lib

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 32 / 33



suggested activities

We started the second chapter in the textbook.

Consider the following activities, listed below.
0 Run the posted Python script and Jupyter notebook.

Install CGAL on your computer (if not already done so).
Browse the documentation and run examples.

1 Write the solutions to Exercises 1 through 4.
2 Consider the exercises 1,2,3 in the textbook.

Computational Geometry (MCS 481) line segment intersection L-4 22 January 2025 33 / 33


	Output Sensitive Algorithms
	map overlay and input specification
	using the cgal-swig-bindings

	A Plane Sweep Algorithm
	handling events caused by sweeping a line
	adjacent line segments
	classification of events

	Data Structures
	the event queue
	the global algorithm
	an example with CGAL in C++


