Trapezoidal Maps

- the planar point location problem
- point location queries in CGAL
- a directed acyclic graph
- input-output specification

A Randomized Incremental Algorithm

- adding line segments in a random order
- locating intersected trapezoids
- algorithms to update the data structures
- statement of expected cost

MCS 481 Lecture 19 Computational Geometry Jan Verschelde, 26 February 2025

E 5 4 E

Trapezoidal Maps

- the planar point location problem
- point location queries in CGAL
- a directed acyclic graph
- input-output specification

2 A Randomized Incremental Algorithm

- adding line segments in a random order
- Iocating intersected trapezoids
- algorithms to update the data structures
- statement of expected cost

the planar point location problem

Given a map, do you know where you are?

Input: a planar subdivision S, n = #edges of S, a query point q = (q_x, q_y).
Output: face of S that contains q, or eventually the edge which contains q, or the vertex matching q.

a trapezoidal decomposition of a subdivision

Constructing a trapezoidal decomposition T(S) of a subdivision S:

for every edge *e* in *S* do for every end point *p* of *e* do add a vertical extension from *p* to the next edge below *p* add a vertical extension from *p* to the next edge above *p*

The Sec. 74

Trapezoidal Maps

- the planar point location problem
- point location queries in CGAL
- a directed acyclic graph
- input-output specification

A Randomized Incremental Algorithm

- adding line segments in a random order
- Iocating intersected trapezoids
- algorithms to update the data structures
- statement of expected cost

Trapezoidal Maps in CGAL

- Look in the tutorial on 2D Arrangements, in particular in the section Point-Location Queries.
- As the point-location strategy, select Arr_trapezoid_ric_point_location<Arrangement> which implements a variant of Ketan Mulmuley's algorithm.
- Ketan Mulmuley: **A Fast Planar Partition Algorithm, I** Journal of Symbolic Computation Vol. 10, pages 253-280, 1990.
- An example: curve_history.cpp.

A (10) A (10)

Trapezoidal Maps

- the planar point location problem
- point location queries in CGAL
- a directed acyclic graph
- input-output specification

2 A Randomized Incremental Algorithm

- adding line segments in a random order
- Iocating intersected trapezoids
- algorithms to update the data structures
- statement of expected cost

4 3 5 4 3

searching a trapezoidal map

We use a directed acyclic graph to search a trapezoidal map.

There are two types of nodes:

x-node: left or right of an end point of a line segment?

v-node: above or below a line segment?

Exercise 1: Write pseudo code for the above or below test.

update the trapezoidal map with a new line segment

The new s_2 intersects the trapezoids A and B.

- A is replaced by A_1 , A_2 , and E.
- **2** B is replaced by B_1 , B_2 , and E.

Observe the shortening of the extension through p_1 .

update the graph with a new line segment

In the directed acyclic graph, the leaf A, at the left of p_1 , is replaced first:

In the next step, the leaf B is replaced by B_1 , B_2 , and E.

In the directed acyclic graph, every trapezoid is stored only once.

The construction replaces leaves intersected by the new segment.

Trapezoidal Maps

- the planar point location problem
- point location queries in CGAL
- a directed acyclic graph
- input-output specification

A Randomized Incremental Algorithm

- adding line segments in a random order
- locating intersected trapezoids
- algorithms to update the data structures
- statement of expected cost

12/31

input-output specification

Algorithm TRAPEZOIDALMAP(S)

Input: *S* is a subdivision with *n* line segments. Output: T(S) is a list of trapezoids, \mathcal{D} a directed acyclic graph to search T(S).

Assumptions on the input:

- S is bounded by a rectangular box R,
- S is in general position: no vertical segments, and no two points with the same x-coordinate.

Every trapezoid $\Delta \in T(S)$ has at most 4 neighbors:

$$\begin{array}{c} \Delta_1 \\ \Delta_2 \end{array} \bullet \Delta \bullet \begin{array}{c} \Delta_3 \\ \Delta_4 \end{array}$$

Every Δ is determined by $leftp(\Delta)$, $rightp(\Delta)$, $top(\Delta)$, and $bottom(\Delta)$.

the depth of the directed acyclic graph

Exercise 2: For *n* line segments, the depth of the directed acyclic graph \mathcal{D} can be O(n). Describe an (unfortunate) order of *n* line segments where the depth is O(n).

L-19 26 February 2025

Trapezoidal Maps

- the planar point location problem
- point location queries in CGAL
- a directed acyclic graph
- input-output specification

A Randomized Incremental Algorithm

- adding line segments in a random order
- Iocating intersected trapezoids
- algorithms to update the data structures
- statement of expected cost

15/31

a randomized incremental algorithm

Algorithm TRAPEZOIDALMAP(S)

Input: S is a subdivision with n line segments. Output: T(S) is a list of trapezoids, \mathcal{D} a directed acyclic graph to search T(S).

In an incremental algorithm,

the line segments are added one after the other.

For every new line segment s:

- **1** use \mathcal{D} to locate trapezoids intersected by s,
- 2 update T(S) with new trapezoids.

In a randomized incremental algorithm, the order of adding the line segments is at random.

3

16/31

main steps in the algorithm

Algorithm TRAPEZOIDALMAP(S)

Input: S is a subdivision with n line segments. Output: T(S) is a list of trapezoids, \mathcal{D} a directed acyclic graph to search T(S).

•
$$R = \text{BOUNDINGBOX}(S)$$

• $T(S_0) = R; \mathcal{D} = \text{VERTICES}(R)$
• $s_1, s_2, \dots, s_n = \text{PERMUTE}(S)$
• for $i = 1, 2, \dots n$ do
• $\Delta_0, \Delta_1, \dots, \Delta_k = \text{FOLLOWSEGMENT}(T(S_{i-1}), \mathcal{D}, s_i)$
• $\Delta'_0, \Delta'_1, \dots, \Delta'_{\ell} = \text{UPDATET}(T(S_{i-1}), \Delta_0, \Delta_1, \dots, \Delta_k, s_i)$
• UPDATED $(\mathcal{D}, \Delta_0, \Delta_1, \dots, \Delta_k, \Delta'_0, \Delta'_1, \dots, \Delta'_{\ell}, s_i)$

17/31

< 17 ▶

the loop invariant

- **1** R = BOUNDINGBOX(S) **2** $T(S_0) = R; \mathcal{D} = \text{VERTICES}(R)$ **3** $s_1, s_2, \dots, s_n = \text{PERMUTE}(S)$ **3** for $i = 1, 2, \dots n$ do

 - $O \qquad \mathsf{UPDATED}(\mathcal{D}, \Delta_0, \Delta_1, \dots, \Delta_k, \Delta'_0, \Delta'_1, \dots, \Delta'_\ell, s_i)$

The loop invariant:

- $T(S_i)$ is a trapezoidal map for s_1, s_2, \ldots, s_i , and
- 2 \mathcal{D} is a valid search structure for $T(S_i)$.

The correctness of the algorithm TRAPEZOIDALMAP follows from the correctness of FOLLOWSEGMENT, UPDATET, and UPDATED.

Trapezoidal Maps

- the planar point location problem
- point location queries in CGAL
- a directed acyclic graph
- input-output specification

A Randomized Incremental Algorithm

adding line segments in a random order

locating intersected trapezoids

- algorithms to update the data structures
- statement of expected cost

locating intersected trapezoids

Exercise 3: Draw a directed acyclic graph <u>before</u> s_i was considered.

the algorithm to locate intersected segments Algorithm FOLLOWSEGMENT(T, D, s_i)

Input: $T = T(S_{i-1})$, \mathcal{D} is search DAG for T, line segment s_i with end points p and q. Output: $\{\Delta_0, \Delta_1, \dots, \Delta_k\}, \Delta_j \cap s_i \neq \emptyset, j = 0, 1, \dots, k$.

1
$$\Delta_0 = \mathsf{Search}(\mathcal{D}, \boldsymbol{p}); j = 0$$

2 while q at the right of rightp (Δ_i) do

if rightp
$$(\Delta_j)$$
 is above s_i

• then
$$\Delta_{j+1} = \text{ lower right neighbor of } \Delta_j$$

else
$$\Delta_{j+1} = \text{ upper right neighbor of } \Delta_j$$

$$i = j + 1$$

7 return
$$\Delta_0, \Delta_1, \ldots, \Delta_j$$

Observe that the adjacency information stored at each Δ is needed. Exercise 4: Run the algorithm on the example on the previous slide.

Trapezoidal Maps

- the planar point location problem
- point location queries in CGAL
- a directed acyclic graph
- input-output specification

A Randomized Incremental Algorithm

- adding line segments in a random order
- locating intersected trapezoids
- algorithms to update the data structures
- statement of expected cost

22/31

the segment s_i lies entirely inside one trapezoid

The trapezoid Δ is a leaf in \mathcal{D} and is replaced by A, B, C, and D.

Computational Geometry (MCS 481)

A Randomized Incremental Algorithm

assigning top, bottom, leftp, and rightp

Every trapezoid Δ is determined by

- **1** top and bottom edges: $top(\Delta)$ and $bottom(\Delta)$,
- 2 left and right vertices: leftp(Δ) and rightp(Δ).

Exercise 5: For each new trapezoid A, B, C, and D, define top(), bottom(), leftp(), rightp(), in function of Δ , p_i , q_i , and s_i . Write your answer as a function in pseudo code.

the segment s_i intersects several trapezoids s_i intersects Δ_0 , Δ_1 , Δ_2 , and Δ_3 .

1 Define vertical extensions through p_i and q_i .

Shorten existing extensions so they end at s_i: new trapezoids have their top or bottom edge set to s_i.

3 Replace Δ_0 , Δ_1 , Δ_2 , and Δ_3 by A, B, C, D, E, and F.

pseudo code for UPDATET

Exercise 6: Write pseudo code for UPDATET.

- Define in detail the input-output specification.
- Is Formalize the examples on the previous slides into code.

< A >

4 3 5 4 3 5 5

updating the search structure

Leaves Δ_0 , Δ_1 , Δ_2 , and Δ_3 are replaced:

pseudo code for UPDATED

Exercise 7: Write pseudo code for UPDATED.

- Define in detail the input-output specification.
- Pormalize the examples on the previous slides into code.

< 17 >

4 3 5 4 3 5 5

Trapezoidal Maps

- the planar point location problem
- point location queries in CGAL
- a directed acyclic graph
- input-output specification

A Randomized Incremental Algorithm

- adding line segments in a random order
- locating intersected trapezoids
- algorithms to update the data structures
- statement of expected cost

29/31

statement of expected cost

Given is a subdivision *S* with *n* edges.

In the randomized algorithm, there are *n*! ways to add the edges.

The expected cost is the average cost over all *n*! running times.

Theorem (expected cost of a randomized incremental algorithm) Given is a subdivision S with n edges in general position.

- A trapezoidal map T(S) and a search structure \mathcal{D} can be computed in $O(n\log(n))$ expected time.
- 2 The expected size of the search structure \mathcal{D} is O(n).
- So For any query point q, the expected query time is $O(\log(n))$.

Next lecture will be devoted to a probabilistic analysis of algorithm TRAPEZOIDALMAP, and to remove the general position assumption.

3

summary and exercises

With a trapezoidal map and a directed acyclic graph we solve the point location problem.

We covered half of section 6.2 in the textbook.

Consider the following activities, listed below.

- Write the solutions to exercises 1 through 7.
- Consult the CGAL documentation and example code on trapezoidal maps.
- Onsider the exercises 5, 7, 8 in the textbook.

4 **A** N A **B** N A **B** N

31/31