
numpy, linear algebra, vectorization

1 NumPy and Linear Algebra
arrays and matrices
linear algebra

2 Vectorizations
using numpy.vectorize
using numpy.where

3 Particle Movements
basic version of the simulation
vectorized implementation
the game of life of John Conway

MCS 507 Lecture 4
Mathematical, Statistical and Scientific Software

Jan Verschelde, 28 August 2023

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 1 / 37

numpy, linear algebra, vectorization

1 NumPy and Linear Algebra
arrays and matrices
linear algebra

2 Vectorizations
using numpy.vectorize
using numpy.where

3 Particle Movements
basic version of the simulation
vectorized implementation
the game of life of John Conway

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 2 / 37

Lists and Arrays

Lists are versatile data structures in Python:
have variable length, and
heterogeneous, its item may not be of same type.

Arrays are
sequences of fixed length, and
filled with objects of the same type.

Compared to lists, arrays are
more memory efficient, and
allow for faster access.

Python has limited support for arrays in the module array,
but does not support matrices or multi-dimensional arrays,
and does not provide any linear algebra operations.

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 3 / 37

NumPy

From www.numpy.org: NumPy is the fundamental package for
scientific computing with Python.

Some literature about NumPy:
Travis E. Oliphant: Guide to Numpy. 2nd edition, 7 Dec 2006.
http://web.mit.edu/dvp/Public/numpybook.pdf
371 pages

Eli Bressert: SciPy and NumPy. O’Reilly, 2013. 57 pages

Robert Johansson. Numerical Python: Scientific Computing
and Data Science Applications with Numpy, SciPy and
Matplotlib. 2nd ed. Edition, Apress, 2018. 700 pages

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 4 / 37

numpy, linear algebra, vectorization

1 NumPy and Linear Algebra
arrays and matrices
linear algebra

2 Vectorizations
using numpy.vectorize
using numpy.where

3 Particle Movements
basic version of the simulation
vectorized implementation
the game of life of John Conway

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 5 / 37

eigenvalues and eigenvectors

In an interactive Python session:

>>> import numpy as np
>>> A = np.random.randint(0, 10, (2, 2))
>>> A
array([[8, 8],

[3, 6]])
>>> [L, V] = np.linalg.eig(A)
>>> L
array([12., 2.])
>>> V
array([[0.89442719, -0.8],

[0.4472136 , 0.6]])

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 6 / 37

verifying the first eigenvalue and eigenvector
To check Av = λv, we need matrix types:

>>> M = np.matrix(A)
>>> v1 = V[:, 0]
>>> v1
array([0.89442719, 0.4472136])
>>> v1t = np.matrix(v1).transpose()
>>> v1t
matrix([[0.89442719],

[0.4472136]])
>>> M*v1t
matrix([[10.73312629],

[5.36656315]])
>>> L[0]*v1t
matrix([[10.73312629],

[5.36656315]])

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 7 / 37

matrix decompositions

>>> W = np.matrix(V)
>>> W
matrix([[0.89442719, -0.8],

[0.4472136 , 0.6]])
>>> K = np.diag(L)
>>> K
array([[12., 0.],

[0., 2.]])
>>> M*W
matrix([[10.73312629, -1.6],

[5.36656315, 1.2]])
>>> W*K
matrix([[10.73312629, -1.6],

[5.36656315, 1.2]])

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 8 / 37

a spectral decomposition of A

If eigenvectors of A are in the columns of V
and the eigenvalues on the diagonal of Λ,
then AV = VΛ or A = VΛV−1.

M*W == W*K ⇒ M == W*K*W**(-1)

>>> M
matrix([[8, 8],

[3, 6]])
>>> W*K*W**(-1)
matrix([[8., 8.],

[3., 6.]])

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 9 / 37

other decompositions

Three other decompositions of matrices:

1 LU factorization, L is lower, U is upper triangular
scipy.linalg.lu

2 QR factorization, Q is orthogonal, R is upper triangular
numpy.linalg.qr or scipy.linalg.qr
We can use both in the same session:
>>> from numpy.linalg import qr as npqr
>>> from scipy.linalg import qr as spqr

With npqr we then use numpy.linalg.qr,
with spqr the scipy.linalg.qr is called.

3 SVD, or the singular value decomposition
numpy.linalg.svd or scipy.linalg.svd

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 10 / 37

a first exercise

Exercise 1:
1 Generate random 3-by-3 integer matrix A with numbers in [0,9].

Let x be a vector three ones and set b = Ax ,
so Ax = b has as solution vector a vector of ones.

1 Compute a LU factorization of A and
recover the solution x from the factors L and U.

2 Compute a QR factorization of A and
recover the solution x for the factors Q and R.

3 Compute a SVD of A and
recover the solution x for the outcome of the SVD.

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 11 / 37

numpy, linear algebra, vectorization

1 NumPy and Linear Algebra
arrays and matrices
linear algebra

2 Vectorizations
using numpy.vectorize
using numpy.where

3 Particle Movements
basic version of the simulation
vectorized implementation
the game of life of John Conway

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 12 / 37

default vectorizations

By default, functions defined with numpy
accept vectors as arguments:

>>> from numpy import exp, sin, linspace
>>> f = lambda x: exp(-x**2)*sin(x)
>>> a = linspace(0,1,1000)
>>> b = f(a)
>>> print b[10:12]
[0.01000884 0.01100945]

Functions that take vectors as arguments are slow when applied to
scalar arguments, because the loop runs in Python.
Vectorized versions apply optimized array index arithmetic.

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 13 / 37

with math.exp and math.sin

>>> import math
>>> g = lambda x: math.exp(-x**2)*math.sin(x)
>>> a = linspace(0, 1, 1000)
>>> b = g(a)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 1, in <lambda>

TypeError: only length-1 arrays can be converted to Python scalars
>>> for i in range(1000): b[i] = g(a[i])
...
>>>

The for i in range(1000) will be much slower compared
to the vectorized version.

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 14 / 37

numpy.vectorize

>>> from numpy import vectorize
>>> vg = vectorize(g)
>>> c = vg(a)
>>> type(vg)
<class ’numpy.lib.function_base.vectorize’>
>>> print vg(a[10:12])
[0.01000884 0.01100945]

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 15 / 37

an exercise

Exercise 2:
2 Evaluate x2 + 2x − 1 = (x + 2)x − 1 at a,

where a = numpy.linspace(0,1,1000)
with inplace arithmetic defined by

y = a; y += 2; y *= a; y -= 1.

Wrap the inplace arithmetic sequence for x2 + 2x − 1
in a function and compare the execution time to the
vectorized version of (x + 2)x − 1.

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 16 / 37

numpy, linear algebra, vectorization

1 NumPy and Linear Algebra
arrays and matrices
linear algebra

2 Vectorizations
using numpy.vectorize
using numpy.where

3 Particle Movements
basic version of the simulation
vectorized implementation
the game of life of John Conway

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 17 / 37

function with branchings

Recall the inline if-else statement:

>>> import math
>>> logpos = lambda x: \
(0.0 if x <= 0 else math.log(x))
>>> logpos(-1)
0.0
>>> logpos(10)
2.3025850929940459

We would like to vectorize the if-else.

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 18 / 37

using where

>>> vlogpos = lambda x: \
np.where(x > 0, np.log(x), 0.0)
>>> a = np.linspace(-1,1,100)
>>> b = vlogpos(a)
>>> print b[49:51]
[0. -4.59511985]

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 19 / 37

numpy, linear algebra, vectorization

1 NumPy and Linear Algebra
arrays and matrices
linear algebra

2 Vectorizations
using numpy.vectorize
using numpy.where

3 Particle Movements
basic version of the simulation
vectorized implementation
the game of life of John Conway

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 20 / 37

particle movements

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 21 / 37

designing the simulation

All particles originate at (0,0).

For every particle, for every time step do:
1 generate a random integer d ∈ {1,2,3,4},

2 move according to the value of d :
1 if d = 1: move particle north
2 if d = 2: move particle south
3 if d = 3: move particle east
4 if d = 4: move particle west

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 22 / 37

the script walk.py

import numpy as np
import random
import matplotlib
import matplotlib.pyplot as plt

def particles(npa, nst, pls):
"""
Shows random particle movement with
npa : number of particles,
nst : number of time steps,
pls : how many steps for next plot.
"""

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 23 / 37

every particle starts at (0,0)

xpa = np.zeros(npa)
ypa = np.zeros(npa)
xymax = 3*np.sqrt(nst)
xymin = -xymax
plt.ion()
fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_xlim(xymin, xymax)
ax.set_ylim(xymin, xymax)
dots, = ax.plot(x, y,’bo’)
strtitle = ’animating %d particles’ % npa
ax.set_title(strtitle)
fig.canvas.draw()
plt.pause(0.00001)

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 24 / 37

moving at random in the main loop

For as many steps as the value of nst,
and for every particle, we roll a four sided die
to determine whether to move north, south, east, or west.

for step in range(nst):
for i in range(npa):

die = random.randint(1, 4)
if die == 1:

ypa[i] += 1 # north
elif die == 2:

ypa[i] -= 1 # south
elif die == 3:

xpa[i] += 1 # east
elif die == 4:

xpa[i] -= 1 # west

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 25 / 37

plotting and the main function

if(step+1) % pls == 0:
dots.set_xdata(x); dots.set_ydata(y)
strtitle = ’%d particles after %d steps’ \

% (npa, step+1)
ax.set_title(strtitle)
fig.canvas.draw()
plt.pause(0.00001)

def main():
"""
Fixes the seed for the random numbers
and starts the particle simulation.
"""
random.seed(10)
particles(3000, 4000, 20)

→ will run a simulation of 3000 particles
over 4000 stages plotted every 20 time steps.

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 26 / 37

numpy, linear algebra, vectorization

1 NumPy and Linear Algebra
arrays and matrices
linear algebra

2 Vectorizations
using numpy.vectorize
using numpy.where

3 Particle Movements
basic version of the simulation
vectorized implementation
the game of life of John Conway

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 27 / 37

vectorization

Vectorization: replace the Python for loops
by NumPy operations on arrays.

To speed up the simulation:

1 generate all random directions at once,

2 use where to update coordinates.

The built-in function where has the syntax

numpy.where(condition, [x, y])

and returns elements either from x or y (optional)
depending on condition.

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 28 / 37

generating all moves

In the code listing below, the initial plot is omitted.

def particles(npa, nst, pls):
"""
Shows random particle movement with
npa : number of particles,
nst : number of time steps,
pls : how many steps for next plot.
"""
xpa = np.zeros(npa)
ypa = np.zeros(npa)
xymax = 3*np.sqrt(nst)
xymin = -xymax
moves = np.random.randint(1, 5, nst*npa)
moves.shape = (nst, npa)

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 29 / 37

script walkvector.py continued

for step in range(nst):
this_move = moves[step, :]
ypa += np.where(this_move == 1, 1, 0)
ypa -= np.where(this_move == 2, 1, 0)
xpa += np.where(this_move == 3, 1, 0)
xpa -= np.where(this_move == 4, 1, 0)
if(step+1) % pls == 0:

dots.set_xdata(xpa)
dots.set_ydata(ypa)
strtitle = ’%d particles after %d steps’ \

% (npa, step+1)
ax.set_title(strtitle)
fig.canvas.draw()
plt.pause(0.00001)

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 30 / 37

running on a MacBook Pro

$ time python3 walk.py

real 0m30.829s
user 0m30.037s
sys 0m0.577s

$ time python3 walkvector.py

real 0m11.154s
user 0m10.319s
sys 0m0.621s
$

The vectorized version is almost three times faster.

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 31 / 37

numpy, linear algebra, vectorization

1 NumPy and Linear Algebra
arrays and matrices
linear algebra

2 Vectorizations
using numpy.vectorize
using numpy.where

3 Particle Movements
basic version of the simulation
vectorized implementation
the game of life of John Conway

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 32 / 37

simulating cellular growth

The game of life is a discovery of John Conway.

Consider a rectangular grid of cells with rules:
1 An empty cell is born when it has 3 neighbors.
2 A living cell can either die or survive, as follows:

1 die by loneliness, if the cell has one or no neighbors;
2 die by overpopulation, if the cell has ≥ 4 neighbors;
3 survive, if the cell has two or three neighbors.

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 33 / 37

design of the code

Three ingredients:
1 The rectangular grid is represented by a NumPy matrix A

▶ of integers: Ai,j ∈ {0,1},
▶ Ai,j = 0: cell (i , j) is dead,
▶ Ai,j = 1: cell (i , j) is alive.

2 We update the matrix applying the rules,
running over all pairs of indices (i , j).

3 The grid can be plotted with the spy method.

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 34 / 37

visualizing a matrix with a spy plot

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 35 / 37

the script to make a spy plot

import numpy as np
from scipy import sparse
import matplotlib.pyplot as plt

R = 0.1 # ratio of nonzeroes
N = 100 # dimension of the matrix
A = np.random.rand(N, N)
A = np.matrix(A < R, int)
print(A)
S = sparse.coo_matrix(A)
print(’number of nonzeros :’, S.nnz)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.spy(A, markersize=1, color=’red’)
plt.show()

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 36 / 37

code for the game of life

Exercise 3:
2 Write a Python script to visualize the game of life,

by a simple application of the rules of the game.

Exercise 4:
3 To vectorize the script for the game of life,

write the rules of the game with matrix operations.
Observe that the count of live neighbors can happen
by adding a matrix with one column shifted.
Compare the running time of the vectorized game
with your original formulation of the previous exercise.

Scientific Software (MCS 507) numpy, linear algebra, vectorization L-4 28 August 2023 37 / 37

	NumPy and Linear Algebra
	arrays and matrices
	linear algebra

	Vectorizations
	using numpy.vectorize
	using numpy.where

	Particle Movements
	basic version of the simulation
	vectorized implementation
	the game of life of John Conway

