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processors and processes

A parallel program is a collection of concurrent processes.
A process (also called a job or task) is a sequence of instructions.

Usually, there is a 1-to-1 map between processes and processors.
If there are more processes than processors,
then processes are executed in a time sharing environment.

We use the SPMD model: Single Program, Multiple Data.

Every node executes the same program.
Every node has a unique identification number (id)
— the root node has number zero —
and code can be executed depending on the id.

The root node is the manager, the other nodes are workers.
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MPI = Message Passing Interface

MPI = Message Passing Interface
is a standard specification for interprocess communication
for which several implementations exist.

Start a C program with

#include <mpi.h>

to use the functionality of MPI.

Open MPI is an open source implementation www.open-mpi.org
of all features of the MPI-3.1 standard.

In this lecture we use MPI in simple interactive programs, e.g.:
as mpicc and mpirun are available on laptop computers.
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running mpi_hello_world

We use a makefile to compile, and then run with 10 processes:

$ make mpi_hello_world
mpicc mpi_hello_world.c -o /tmp/mpi_hello_world

$ mpirun -np 10 /tmp/mpi_hello_world
Hello world from processor 2 out of 10.
Hello world from processor 8 out of 10.
Hello world from processor 0 out of 10.
Hello world from processor 1 out of 10.
Hello world from processor 3 out of 10.
Hello world from processor 4 out of 10.
Hello world from processor 5 out of 10.
Hello world from processor 6 out of 10.
Hello world from processor 9 out of 10.
Hello world from processor 7 out of 10.
$
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mpi_hello_world.c

#include <stdio.h>
#include <mpi.h>

int main ( int argc, char *argv[] )
{

int i,p;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&p);
MPI_Comm_rank(MPI_COMM_WORLD,&i);

printf("Hello world from processor %d out of %d.\n",
i,p);

MPI_Finalize();

return 0;
}
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initializing and cleaning up

#include <mpi.h>

int main ( int argc, char *argv[] )
{

MPI_Init(&argc,&argv);
MPI_Finalize();
return 0;

}

The MPI_Init processes command line arguments:
1 argc is the number of arguments,
2 argv contains the arguments,
argv[0] is the name of the program.

MPI_Finalize() cleans up the environment.
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the universe

MPI_COMM_WORLD is a predefined named constant handle
to refer to the universe of p processors with labels from 0 to p − 1.

MPI_Comm_size returns the number of processors.
MPI_Comm_rank returns the label of a node.

For example:

int i,p;

MPI_Comm_size(MPI_COMM_WORLD,&p);
MPI_Comm_rank(MPI_COMM_WORLD,&i);
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broadcasting an integer

Many parallel programs follow a manager/worker model.

As an example, we broadcast an integer:

1 Node with id 0 (manager) prompts for an integer.

2 The integer is broadcasted over the network:
→ the number is sent to all processors in the universe.

3 Every worker node prints the number to screen.

Application: broadcast dimension of data before sending the data.

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 11 / 40



running the program

$ make broadcast_integer
mpicc broadcast_integer.c -o /tmp/broadcast_integer

$ mpirun -np 3 /tmp/broadcast_integer
Type an integer number...
123
Node 1 writes the number n = 123.
Node 2 writes the number n = 123.
$

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 12 / 40



MPI_Bcast

An example of the MPI_Bcast command:

int n;
MPI_Bcast(&n,1,MPI_INT,0,MPI_COMM_WORLD);

There are five arguments:
1 address of the element(s) to broadcast,
2 number of elements that will be broadcasted,
3 type of all the elements,
4 message label,
5 universe.
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headers and subroutine declarations

#include <stdio.h>
#include <mpi.h>

void manager ( int *n );
/* code executed by the manager node 0,

* prompts the user for an integer number n */

void worker ( int i, int n );
/* code executed by the i-th worker node,

* who will write the integer number n to screen */

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 14 / 40



the main program

int main ( int argc, char *argv[] )
{

int myid,numbprocs,n;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numbprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

if (myid == 0) manager(&n);

MPI_Bcast(&n,1,MPI_INT,0,MPI_COMM_WORLD);

if (myid != 0) worker(myid,n);

MPI_Finalize();

return 0;
}
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code for the subroutines

void manager ( int *n )
{

printf("Type an integer number... \n");
scanf("%d",n);

}

void worker ( int i, int n )
{

printf("Node %d writes the number n = %d.\n",i,n);
}
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before broadcasting the dimension

Before broadcasting the dimension n to all nodes
on a 4-processor distributed memory computer.
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before array allocation

Before allocating an array of 3 doubles
on a 4-processor distributed memory computer.
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after array allocation

After allocating an array of 3 doubles
on a 4-processor distributed memory computer.
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before the broadcast

Before broadcasting an array of 3 doubles
on a 4-processor distributed memory computer.

p0 p1 p2 p3

n 3

d r
?

1.0
2.0
3.0

n 3

d r
?

n 3

d r
?

n 3

d r
?

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 21 / 40



after the broadcast

After broadcasting an array of 3 doubles
on a 4-processor distributed memory computer.
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headers and subroutine declarations

#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

void define_doubles ( int n, double *d );
/* defines the values of the n doubles in d */

void write_doubles ( int myid, int n, double *d );
/* node with id equal to myid

writes the n doubles in d */

We include stdlib.h for memory allocation.
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broadcasting the dimension

int main ( int argc, char *argv[] )
{

int myid,numbprocs,n;
double *data;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numbprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

if (myid == 0)
{

printf("Type the dimension ...\n");
scanf("%d",&n);

}
MPI_Bcast(&n,1,MPI_INT,0,MPI_COMM_WORLD);
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allocating memory

The main program continues:

data = (double*)calloc(n,sizeof(double));

Every node must allocate memory!

if (myid == 0) define_doubles(n,data);

MPI_Bcast(data,n,MPI_DOUBLE,0,MPI_COMM_WORLD);

if (myid != 0) write_doubles(myid,n,data);

MPI_Finalize();
return 0;

}
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subroutine definitions

void define_doubles ( int n, double *d )
{

int i;

printf("defining %d doubles ...\n", n);
for(i=0; i < n; i++) d[i] = (double)i;

}

void write_doubles ( int myid, int n, double *d )
{

int i;

printf("Node %d writes %d doubles : \n", myid,n);
for(i=0; i < n; i++) printf("%lf\n",d[i]);

}
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Message Passing Interface for Python
MPI for Python provides bindings of MPI for Python,
allowing any Python program to exploit multiple processors.

object oriented interface follows closely MPI-2 C++ bindings;
supports point-to-point and collective communications

I of any pickable Python object,
I as well as numpy arrays and builtin bytes, strings.

mpi4py gives the standard MPI “look and feel” in Python scripts
to develop parallel programs.

Often, only a small part of the code needs the efficiency of a compiled
language. Python handles memory, errors, and user interaction.

Available at github, installs with pip,
the current version is 3.1.4, Nov 2, 2022.
L. Dalcin, R. Paz, and M. Storti: MPI for Python.
Journal of Parallel and Distributed Computing, 65(9):1108–1115, 2005.
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hello world with mpi4py

from mpi4py import MPI

SIZE = MPI.COMM_WORLD.Get_size()
RANK = MPI.COMM_WORLD.Get_rank()
NAME = MPI.Get_processor_name()

MESSAGE = "Hello from %d of %d on %s." \
% (RANK, SIZE, NAME)

print MESSAGE
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running the script

Programs that run with MPI are executed with mpiexec.

To run mpi4py_hello_world.py by 3 processes:

$ mpiexec -n 3 python mpi4py_hello_world.py
Hello from 0 of 3 on ...
Hello from 2 of 3 on ...
Hello from 1 of 3 on ...
$

Three Python interpreters are launched.

Each interpreter executes the script,
printing the hello message.
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some basic MPI concepts and commands

MPI.COMM_WORLD is a predefined intracommunicator.
An intracommunicator is a group of processes.
All processes within an intracommunicator have a unique number.

Methods of the intracommunicator MPI.COMM_WORLD:
Get_size() returns the number of processes.
Get_rank() returns rank of executing process.

Even though every process runs the same script,
the test if MPI.COMM_WORLD.Get_rank() == i:
allows to specify particular code for the i-th process.

MPI.Get_processor_name()
returns the name of the calling processor.
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broadcasting data

A collective communication involves every process
in the intracommunicator.

A broadcast is a collective communication in which
one process sends the same data to all processes,
all processes receive the same data.

In mpi4py, a broadcast is done with the bcast method.

An example:

$ mpiexec -n 3 python mpi4py_broadcast.py
0 has data {’pi’: 3.1415926535897931, ’e’: 2.7182818284590451}
1 has data {’pi’: 3.1415926535897931, ’e’: 2.7182818284590451}
2 has data {’pi’: 3.1415926535897931, ’e’: 2.7182818284590451}
$
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the script mpi4py_broadcast.py

from mpi4py import MPI

COMM = MPI.COMM_WORLD
RANK = COMM.Get_rank()

if(RANK == 0):
DATA = {’e’ : 2.7182818284590451,

’pi’ : 3.1415926535897931 }
else:

DATA = None # DATA must be defined

DATA = COMM.bcast(DATA, root=0)
print(RANK, ’has data’, DATA)
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MPI wrappers for Julia

MPI.jl is a Julia interface to MPI, inspired by mpi4py.

Available at https://github.com/JuliaParallel.

Its installation requires a shared binary installation
of a C MPI library, supporting the MPI 3.0 standard or later.

The MPI.jl is a Julia package, install as using MPI.

Simon Byrne, Lucas C. Wilcox, and Valentin Churavy:
MPI.jl: Julia bindings for the Message Passing Interface.
In JuliaCon Proceedings, 1(1), 68, 2021.
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the Julia program mpi_hello_world.jl

Adapted from JuliaParallel/MPI.jl, from the docs/examples:

using MPI
MPI.Init()

comm = MPI.COMM_WORLD
myid = MPI.Comm_rank(comm)
size = MPI.Comm_size(comm)

print("Hello from $myid of $size.\n")

MPI.Barrier(comm)

Run with mpiexecjl, locate and adjust path.
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Summary + Exercises

Visit http://www.mpi-forum.org/docs/

the original MPI book is available at
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html

Exercises: (use C, Python, or Julia)
0 Install MPI and/or mpi4py, MPI.jl on your own computer.
1 Adjust hello world so that after you type in your name once,

when prompted by the manager node, every node salutes you,
using the name you typed in.

2 We measure the wall clock time using time mpirun in the
broadcasting of an array of doubles. To avoid typing in the
dimension n, either define n as a constant in the program or
redirect the input from a file that contains n. For increasing number
of processes and n, investigate how the wall clock time grows.
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