
Basics of MPI
1 Message Passing Interface

one program to code manager/worker model
hello world!
broadcasting an integer

2 Moving Data from Manager to Workers
broadcasting an array of doubles
code to broadcast an array of doubles

3 MPI for Python
bindings of MPI for Python
hello world with mpi4py
broadcasting data
MPI wrappers for Julia

MCS 572 Lecture 4
Introduction to Supercomputing

Jan Verschelde, 4 September 2024

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 1 / 40

Basics of MPI

1 Message Passing Interface
one program to code manager/worker model
hello world!
broadcasting an integer

2 Moving Data from Manager to Workers
broadcasting an array of doubles
code to broadcast an array of doubles

3 MPI for Python
bindings of MPI for Python
hello world with mpi4py
broadcasting data
MPI wrappers for Julia

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 2 / 40

processors and processes

A parallel program is a collection of concurrent processes.
A process (also called a job or task) is a sequence of instructions.

Usually, there is a 1-to-1 map between processes and processors.
If there are more processes than processors,
then processes are executed in a time sharing environment.

We use the SPMD model: Single Program, Multiple Data.

Every node executes the same program.
Every node has a unique identification number (id)
— the root node has number zero —
and code can be executed depending on the id.

The root node is the manager, the other nodes are workers.

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 3 / 40

MPI = Message Passing Interface

MPI = Message Passing Interface
is a standard specification for interprocess communication
for which several implementations exist.

Start a C program with

#include <mpi.h>

to use the functionality of MPI.

Open MPI is an open source implementation www.open-mpi.org
of all features of the MPI-3.1 standard.

In this lecture we use MPI in simple interactive programs, e.g.:
as mpicc and mpirun are available on laptop computers.

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 4 / 40

Basics of MPI

1 Message Passing Interface
one program to code manager/worker model
hello world!
broadcasting an integer

2 Moving Data from Manager to Workers
broadcasting an array of doubles
code to broadcast an array of doubles

3 MPI for Python
bindings of MPI for Python
hello world with mpi4py
broadcasting data
MPI wrappers for Julia

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 5 / 40

running mpi_hello_world

We use a makefile to compile, and then run with 10 processes:

$ make mpi_hello_world
mpicc mpi_hello_world.c -o /tmp/mpi_hello_world

$ mpirun -np 10 /tmp/mpi_hello_world
Hello world from processor 2 out of 10.
Hello world from processor 8 out of 10.
Hello world from processor 0 out of 10.
Hello world from processor 1 out of 10.
Hello world from processor 3 out of 10.
Hello world from processor 4 out of 10.
Hello world from processor 5 out of 10.
Hello world from processor 6 out of 10.
Hello world from processor 9 out of 10.
Hello world from processor 7 out of 10.
$

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 6 / 40

mpi_hello_world.c

#include <stdio.h>
#include <mpi.h>

int main (int argc, char *argv[])
{

int i,p;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&p);
MPI_Comm_rank(MPI_COMM_WORLD,&i);

printf("Hello world from processor %d out of %d.\n",
i,p);

MPI_Finalize();

return 0;
}

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 7 / 40

initializing and cleaning up

#include <mpi.h>

int main (int argc, char *argv[])
{

MPI_Init(&argc,&argv);
MPI_Finalize();
return 0;

}

The MPI_Init processes command line arguments:
1 argc is the number of arguments,
2 argv contains the arguments,
argv[0] is the name of the program.

MPI_Finalize() cleans up the environment.

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 8 / 40

the universe

MPI_COMM_WORLD is a predefined named constant handle
to refer to the universe of p processors with labels from 0 to p − 1.

MPI_Comm_size returns the number of processors.
MPI_Comm_rank returns the label of a node.

For example:

int i,p;

MPI_Comm_size(MPI_COMM_WORLD,&p);
MPI_Comm_rank(MPI_COMM_WORLD,&i);

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 9 / 40

Basics of MPI

1 Message Passing Interface
one program to code manager/worker model
hello world!
broadcasting an integer

2 Moving Data from Manager to Workers
broadcasting an array of doubles
code to broadcast an array of doubles

3 MPI for Python
bindings of MPI for Python
hello world with mpi4py
broadcasting data
MPI wrappers for Julia

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 10 / 40

broadcasting an integer

Many parallel programs follow a manager/worker model.

As an example, we broadcast an integer:

1 Node with id 0 (manager) prompts for an integer.

2 The integer is broadcasted over the network:
→ the number is sent to all processors in the universe.

3 Every worker node prints the number to screen.

Application: broadcast dimension of data before sending the data.

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 11 / 40

running the program

$ make broadcast_integer
mpicc broadcast_integer.c -o /tmp/broadcast_integer

$ mpirun -np 3 /tmp/broadcast_integer
Type an integer number...
123
Node 1 writes the number n = 123.
Node 2 writes the number n = 123.
$

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 12 / 40

MPI_Bcast

An example of the MPI_Bcast command:

int n;
MPI_Bcast(&n,1,MPI_INT,0,MPI_COMM_WORLD);

There are five arguments:
1 address of the element(s) to broadcast,
2 number of elements that will be broadcasted,
3 type of all the elements,
4 message label,
5 universe.

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 13 / 40

headers and subroutine declarations

#include <stdio.h>
#include <mpi.h>

void manager (int *n);
/* code executed by the manager node 0,

* prompts the user for an integer number n */

void worker (int i, int n);
/* code executed by the i-th worker node,

* who will write the integer number n to screen */

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 14 / 40

the main program

int main (int argc, char *argv[])
{

int myid,numbprocs,n;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numbprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

if (myid == 0) manager(&n);

MPI_Bcast(&n,1,MPI_INT,0,MPI_COMM_WORLD);

if (myid != 0) worker(myid,n);

MPI_Finalize();

return 0;
}

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 15 / 40

code for the subroutines

void manager (int *n)
{

printf("Type an integer number... \n");
scanf("%d",n);

}

void worker (int i, int n)
{

printf("Node %d writes the number n = %d.\n",i,n);
}

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 16 / 40

Basics of MPI

1 Message Passing Interface
one program to code manager/worker model
hello world!
broadcasting an integer

2 Moving Data from Manager to Workers
broadcasting an array of doubles
code to broadcast an array of doubles

3 MPI for Python
bindings of MPI for Python
hello world with mpi4py
broadcasting data
MPI wrappers for Julia

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 17 / 40

before broadcasting the dimension

Before broadcasting the dimension n to all nodes
on a 4-processor distributed memory computer.

p0 p1 p2 p3

n 3

d r
?

n

d r
?

n

d r
?

n

d r
?

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 18 / 40

before array allocation

Before allocating an array of 3 doubles
on a 4-processor distributed memory computer.

p0 p1 p2 p3

n 3

d r
?

n 3

d r
?

n 3

d r
?

n 3

d r
?

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 19 / 40

after array allocation

After allocating an array of 3 doubles
on a 4-processor distributed memory computer.

p0 p1 p2 p3

n 3

d r
?

n 3

d r
?

n 3

d r
?

n 3

d r
?

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 20 / 40

before the broadcast

Before broadcasting an array of 3 doubles
on a 4-processor distributed memory computer.

p0 p1 p2 p3

n 3

d r
?

1.0
2.0
3.0

n 3

d r
?

n 3

d r
?

n 3

d r
?

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 21 / 40

after the broadcast

After broadcasting an array of 3 doubles
on a 4-processor distributed memory computer.

p0 p1 p2 p3

n 3

d r
?

1.0
2.0
3.0

n 3

d r
?

1.0
2.0
3.0

n 3

d r
?

1.0
2.0
3.0

n 3

d r
?

1.0
2.0
3.0

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 22 / 40

Basics of MPI

1 Message Passing Interface
one program to code manager/worker model
hello world!
broadcasting an integer

2 Moving Data from Manager to Workers
broadcasting an array of doubles
code to broadcast an array of doubles

3 MPI for Python
bindings of MPI for Python
hello world with mpi4py
broadcasting data
MPI wrappers for Julia

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 23 / 40

headers and subroutine declarations

#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

void define_doubles (int n, double *d);
/* defines the values of the n doubles in d */

void write_doubles (int myid, int n, double *d);
/* node with id equal to myid

writes the n doubles in d */

We include stdlib.h for memory allocation.

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 24 / 40

broadcasting the dimension

int main (int argc, char *argv[])
{

int myid,numbprocs,n;
double *data;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numbprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

if (myid == 0)
{

printf("Type the dimension ...\n");
scanf("%d",&n);

}
MPI_Bcast(&n,1,MPI_INT,0,MPI_COMM_WORLD);

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 25 / 40

allocating memory

The main program continues:

data = (double*)calloc(n,sizeof(double));

Every node must allocate memory!

if (myid == 0) define_doubles(n,data);

MPI_Bcast(data,n,MPI_DOUBLE,0,MPI_COMM_WORLD);

if (myid != 0) write_doubles(myid,n,data);

MPI_Finalize();
return 0;

}

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 26 / 40

subroutine definitions

void define_doubles (int n, double *d)
{

int i;

printf("defining %d doubles ...\n", n);
for(i=0; i < n; i++) d[i] = (double)i;

}

void write_doubles (int myid, int n, double *d)
{

int i;

printf("Node %d writes %d doubles : \n", myid,n);
for(i=0; i < n; i++) printf("%lf\n",d[i]);

}

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 27 / 40

Basics of MPI

1 Message Passing Interface
one program to code manager/worker model
hello world!
broadcasting an integer

2 Moving Data from Manager to Workers
broadcasting an array of doubles
code to broadcast an array of doubles

3 MPI for Python
bindings of MPI for Python
hello world with mpi4py
broadcasting data
MPI wrappers for Julia

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 28 / 40

Message Passing Interface for Python
MPI for Python provides bindings of MPI for Python,
allowing any Python program to exploit multiple processors.

object oriented interface follows closely MPI-2 C++ bindings;
supports point-to-point and collective communications

I of any pickable Python object,
I as well as numpy arrays and builtin bytes, strings.

mpi4py gives the standard MPI “look and feel” in Python scripts
to develop parallel programs.

Often, only a small part of the code needs the efficiency of a compiled
language. Python handles memory, errors, and user interaction.

Available at github, installs with pip,
the current version is 3.1.4, Nov 2, 2022.
L. Dalcin, R. Paz, and M. Storti: MPI for Python.
Journal of Parallel and Distributed Computing, 65(9):1108–1115, 2005.

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 29 / 40

Basics of MPI

1 Message Passing Interface
one program to code manager/worker model
hello world!
broadcasting an integer

2 Moving Data from Manager to Workers
broadcasting an array of doubles
code to broadcast an array of doubles

3 MPI for Python
bindings of MPI for Python
hello world with mpi4py
broadcasting data
MPI wrappers for Julia

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 30 / 40

hello world with mpi4py

from mpi4py import MPI

SIZE = MPI.COMM_WORLD.Get_size()
RANK = MPI.COMM_WORLD.Get_rank()
NAME = MPI.Get_processor_name()

MESSAGE = "Hello from %d of %d on %s." \
% (RANK, SIZE, NAME)

print MESSAGE

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 31 / 40

running the script

Programs that run with MPI are executed with mpiexec.

To run mpi4py_hello_world.py by 3 processes:

$ mpiexec -n 3 python mpi4py_hello_world.py
Hello from 0 of 3 on ...
Hello from 2 of 3 on ...
Hello from 1 of 3 on ...
$

Three Python interpreters are launched.

Each interpreter executes the script,
printing the hello message.

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 32 / 40

some basic MPI concepts and commands

MPI.COMM_WORLD is a predefined intracommunicator.
An intracommunicator is a group of processes.
All processes within an intracommunicator have a unique number.

Methods of the intracommunicator MPI.COMM_WORLD:
Get_size() returns the number of processes.
Get_rank() returns rank of executing process.

Even though every process runs the same script,
the test if MPI.COMM_WORLD.Get_rank() == i:
allows to specify particular code for the i-th process.

MPI.Get_processor_name()
returns the name of the calling processor.

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 33 / 40

Basics of MPI

1 Message Passing Interface
one program to code manager/worker model
hello world!
broadcasting an integer

2 Moving Data from Manager to Workers
broadcasting an array of doubles
code to broadcast an array of doubles

3 MPI for Python
bindings of MPI for Python
hello world with mpi4py
broadcasting data
MPI wrappers for Julia

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 34 / 40

broadcasting data

A collective communication involves every process
in the intracommunicator.

A broadcast is a collective communication in which
one process sends the same data to all processes,
all processes receive the same data.

In mpi4py, a broadcast is done with the bcast method.

An example:

$ mpiexec -n 3 python mpi4py_broadcast.py
0 has data {’pi’: 3.1415926535897931, ’e’: 2.7182818284590451}
1 has data {’pi’: 3.1415926535897931, ’e’: 2.7182818284590451}
2 has data {’pi’: 3.1415926535897931, ’e’: 2.7182818284590451}
$

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 35 / 40

the script mpi4py_broadcast.py

from mpi4py import MPI

COMM = MPI.COMM_WORLD
RANK = COMM.Get_rank()

if(RANK == 0):
DATA = {’e’ : 2.7182818284590451,

’pi’ : 3.1415926535897931 }
else:

DATA = None # DATA must be defined

DATA = COMM.bcast(DATA, root=0)
print(RANK, ’has data’, DATA)

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 36 / 40

Basics of MPI

1 Message Passing Interface
one program to code manager/worker model
hello world!
broadcasting an integer

2 Moving Data from Manager to Workers
broadcasting an array of doubles
code to broadcast an array of doubles

3 MPI for Python
bindings of MPI for Python
hello world with mpi4py
broadcasting data
MPI wrappers for Julia

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 37 / 40

MPI wrappers for Julia

MPI.jl is a Julia interface to MPI, inspired by mpi4py.

Available at https://github.com/JuliaParallel.

Its installation requires a shared binary installation
of a C MPI library, supporting the MPI 3.0 standard or later.

The MPI.jl is a Julia package, install as using MPI.

Simon Byrne, Lucas C. Wilcox, and Valentin Churavy:
MPI.jl: Julia bindings for the Message Passing Interface.
In JuliaCon Proceedings, 1(1), 68, 2021.

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 38 / 40

the Julia program mpi_hello_world.jl

Adapted from JuliaParallel/MPI.jl, from the docs/examples:

using MPI
MPI.Init()

comm = MPI.COMM_WORLD
myid = MPI.Comm_rank(comm)
size = MPI.Comm_size(comm)

print("Hello from $myid of $size.\n")

MPI.Barrier(comm)

Run with mpiexecjl, locate and adjust path.

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 39 / 40

Summary + Exercises

Visit http://www.mpi-forum.org/docs/

the original MPI book is available at
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html

Exercises: (use C, Python, or Julia)
0 Install MPI and/or mpi4py, MPI.jl on your own computer.
1 Adjust hello world so that after you type in your name once,

when prompted by the manager node, every node salutes you,
using the name you typed in.

2 We measure the wall clock time using time mpirun in the
broadcasting of an array of doubles. To avoid typing in the
dimension n, either define n as a constant in the program or
redirect the input from a file that contains n. For increasing number
of processes and n, investigate how the wall clock time grows.

Introduction to Supercomputing (MCS 572) Basics of MPI L-4 4 September 2024 40 / 40

	Message Passing Interface
	one program to code manager/worker model
	hello world!
	broadcasting an integer

	Moving Data from Manager to Workers
	broadcasting an array of doubles
	code to broadcast an array of doubles

	MPI for Python
	bindings of MPI for Python
	hello world with mpi4py
	broadcasting data
	MPI wrappers for Julia

