Case Study: Advanced MRI Reconstruction

0 an Application Case Study
@ magnetic resonance imaging (MRI)
@ iterative reconstruction

© Acceleration on GPU

determining the kernel parallelism structure
@ loop splitting

@ loop interchange

@ using registers to reduce memory accesses
°

°

chunking data to fit into constant memory
using hardware trigonometry functions

MCS 572 Lecture 37
Introduction to Supercomputing
Jan Verschelde, 20 November 2024

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024 1/34

Advanced MRI Reconstruction

0 an Application Case Study
@ magnetic resonance imaging (MRI)

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024 2/34

magnetic resonance imaging

Magnetic Resonance Imaging (MRI) is a safe and noninvasive probe of

the structure and function of tissues in the body.
MRI consists of two phases:

@ Acquisition or scan: the scanner samples data in
the spatial-frequency domain along a predefined trajectory.
© Reconstruction of the samples into an image.

Limitations: noise, imaging artifacts, long acquisition times.
Three often conflicting goals:

@ Short scan time to reduce patient discomfort.

@ High resolution and fidelity for early detection.

@ High signal-to-noise ratio (SNR).
Massively parallel computing provides a disruptive breakthrough.

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024

3/34

reconstructed images

S.S. Stone et al. / J. Parallel Distrib. Comput. 68 (2008) 1307-1318

(a) Gridded Reconstructions. Left to right: GRE, SE1, and SE2.

Main computational result [S.S. Stone et al., 2008]:
@ reconstruction time of 23 min on a quad-core CPU,
@ reduced to just over 1 min on Quadro FX 5600.

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024 4/34

problem formulation

The reconstructed image m(r) is
m(r) = W(kj)s(k;)e?™"
i
where

@ s(k) is the measured k-space data; and

@ W(Kk) is the weighting function to account
for nonuniform sampling.

The reconstruction is an inverse fast Fourier transform on s(k).

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024

5/34

Cartesian trajectory with FFT reconstruction

Reconstructing MR Images

Cartesian Scan Data
4:%..
kx
=0
*—o—

}

FFT

Cartesian scan data + FFT:
Slow scan, fast reconstruction, images may be poor

© David Kirk /NVIDIA and Wen-mei W. Hwu, 2007-2009 1
University of lllinois, Urbana-Champaign

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024

6/34

spiral trajectory, gridding to enable FFT

Reconstructing MR Images
Spiral Scan Data

Aty
Gridding' 7 !

Aky 2o kx
' D)
L’_’;

/ kx

Spiral scan data + Gridding + FFT:
Fast scan, fast reconstruction, better images

"Based on Fig 1 of Lustig et al, Fast Spiral Fourier Transform for Iterative MR Image Reconstruction, IEEE Intl Symp. on Biomedical Imaging, 2004

FFT

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 3
University of Illinois, Urbana-Champaign

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024

7/34

spiral trajectory with linear solver reconstruction

Reconstructing MR Images
Spiral Scan Data

Ay

Least-Squares (LS)

Spiral scan data + LS
Superior images at expense of significantly more computation

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 7
University of Illinois, Urbana-Champaign

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024

8/34

sodium is much less abundant than water

Courtesy of Keith Thulborn and lan Atkinson, Center for MR Research, University of llinois at Chicago

FIGURE 8.2

The use of non-Cartesian k-space sample trajectory and accurate linear-solver-based reconstruction has resulted in new MRI
modalities with exciting medical applications. The improved SNR allows reliable collection of in vivo concentration data on
such chemical substances as sodium in human tissues. The variation or shifting of sodium concentration is an early sign of
disease development or tissue death; for example, the sodium map of a human brain can provide an early indication of brain
tumor tissue responsiveness to chemotherapy protocols, thus enabling individualized medicine.

Introduction to Supercomputing (MCS 572)

L-37 20 November 2024 9/34

Advanced MRI Reconstruction

0 an Application Case Study

@ iterative reconstruction

Introduction to Supercomputing (MCS 572)

Advanced MRI Reconstruction

a linear least squares problem

A quasi-Bayesian estimation problem:

~ . 2 2
p = arg min |[Fp —dl[5 + [[Wpl[3,
P N e N e

data fidelity prior info

where
@ p contains voxel values for reconstructed image,
@ the matrix F models the imaging process,
@ dis a vector of data samples, and
@ the matrix W incorporates prior information, derived from
reference images.
The solution to this linear least squares problem is

- (FHF+WHW>_1 FHd.

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024 11/34

an iterative linear solver

| (FHE+AWHW)p = FHd

Introduction to Supercomputing (MCS 572) L-37 20 November 2024 12/34

three primary computations

The advanced reconstruction algorithm consists of

° Q(Xn Z ‘QS |2 i2mKm-Xn

where ¢(-) |s the Fourier transform of the voxel basis function.

RS-

Q The conjugate gradient solver performs the matrix inversion to
solve (FF + WHW) p = F/d.

The calculation for Fd is an excellent candidate for acceleration on
the GPU because of its substantial data parallelism.

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024 13/34

structured matrices

Concerning the left of
(FHF + W"W) p — F'd

observe that
@ the matrix W is sparse, and

@ F"F has a convolutional structure
which enables efficient matrix multiplication via the FFT.

It is faster to compute F/Fp via matrix-vector multiplications,
instead of forming the matrix F/F.

Therefore, the GPU acceleration has its focus on F"d.

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024

14 /34

Advanced MRI Reconstruction

© Acceleration on GPU
@ determining the kernel parallelism structure

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024 15/34

computing FFd

for(m = 0; m < M; m++)

{
rMu[m] = rPhi[m]+*rD[m] + iPhi[m]
iMu [m] rPhi[m]*iD[m] — iPhi[m]
for(n = 0; n < N; n++)
{

expFHd = 2+PIx* (kx[m]#*x[n]
+ ky[m]xy[n]
+ kz[m]*xz[n]);
cArg = cos (expFHd) ;
sArg = sin (expFHd);

* %

rFHd[n] += rMu[m]*cArg - iMu[m]*sArg;
iFHd[n] += iMu[m]*cArg + rMu[m]x*xsArg;

Consider the Compute to Global Memory Access (CGMA) ratio.

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction

L-37 20 November 2024

16/34

the CGMA ratio of the beginning of the loop

The Compute to Global Memory Access (CGMA) ratio is
the #floating-point operations performed for each memory access.

Consider the beginning of the loop:
for(m = 0; m < M; m++)

{

rMu [m]

rPhi[m]*rD[m] + iPhi[m]*iD[m];
iMu[m] = rPhi[m]*iD[m] - iPhi[m]*rD[m];

4
4

}

For each m, we count

@ 4 multiplications, one addition, one subtraction;
© 10 memory accesses.
So the CGMA ratio is 6/10.

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024 17 /34

a first version of the kernel

__global___ void cmpFHd (floatx rPhi, iPhi, phiMag,
kx, ky, kz, x, y, z, rMu, iMu, int N)

int m = blockIdx.x*FHd_THREADS_PER_BLOCK + threadIdx.x;

rMu[m] = rPhi[m]*rD[m] + iPhi[m]+iD[m];
iMu[m] = rPhi[m]*iD[m] - iPhi[m]*rD[m];
for(n = 0; n < N; n++)

{
expFHd = 2+PIx (kx[m]*x[n] + ky[m]lxy[n] + kz[m]*z[n]l);
carg = cos (expFHd); sArg = sin(expFHd);
rFHd[n] += rMu[m]*cArg - iMu[m] *sArg;
iFHd[n] += iMu[m]*cArg + rMu[m]=xsArg;

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024 18/34

Advanced MRI Reconstruction

© Acceleration on GPU

@ loop splitting

Introduction to Supercomputing (MCS 572)

Advanced MRI Reconstruction

splitting the outer loop

for(m = 0; m < M; m++)

{
rMu[m] = rPhi[m]*rD[m] + iPhi[m]*i
iMu [m] rPhi[m]*iD[m] — iPhi[m]x*r

for(m = 0; m < M; m++)
for(n = 0; n < N; n++)

expFHd = 2+PIx* (kx[m]#*x[n]
+ ky[m]*y[n]
+ kz[m]*xz[n]);
cArg = cos (expFHd) ;
sArg = sin (expFHJd);
rFHd[n] += rMu[m]*cArg - iMu[m] *sSArg;
iFHd[n] += iMu[m]*cArg + rMul[m]=xsArg;

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024

20/34

a kernel for the first loop

We convert the first loop into a CUDA kernel:

__global___ void cmpMu (float #*rPhi,iPhi, rD,iD, rMu, iMu)

{

int m = blockIdx = MU_THREADS_PER_BLOCK + threadIdx.x;

rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];
rPhi[m]*iD[m] - iPhi[m]*rD[m];

iMu [m]

}

Because M can be very big, we will have many threads.

For example, if M = 65,536, with 512 threads per block,
we have 65,536/512 = 128 blocks.

To improve the CGMA ratio of 0.6,
use registers and/or shared memory.

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024

21/34

a kernel for the second loop

__global___ void cmpFHd (floatx rPhi, iPhi, PhiMag,
kx, ky, kz, x, v, z, rMu, iMu, int N)
{

int m = blockIdx.x*FHd_THREADS_PER_BLOCK + threadIdx.x;

for (n

{

0; n < N; n++)

float expFHd = 2xPIx (kx[m]xx[n]+ky[m]*y[n]
+kz[m]*z[n]);

float cArg = cos (expFHd);

float sArg = sin (expFHd);

rFHd[n] += rMu[m]*cArg - iMu[m] *sArg;
iFHd[n] += iMu[m]*cArg + rMu[m]=xsArg;

}

For the computation of the CGMA ratio, assumptions must be made for
the #floating-point operations for cos (expFHd) and sin (expFHA) .

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024 22/34

Advanced MRI Reconstruction

© Acceleration on GPU

@ |oop interchange

Introduction to Supercomputing (MCS 572)

Advanced MRI Reconstruction

thread m computes n-th data element

__global__ void cmpFHd (floatx rPhi, iPhi, PhiMag,
kx, ky, kz, x, vy, z, rMu, iMu, int N)

int m blockIdx.x*FHd_THREADS_PER_BLOCK + threadIdx.x;
for(n = 0; n < N; n++)
{
float expFHd = 2%PIx* (kx[m]x*x[n]+ky[m]*y[n]
+kz[m]*z[n]);

float cArg cos (expFHAd) ;
float sArg = sin (expFHd);

rFHd[n] += rMu[m]*cArg - iMu[m] *sArg;
iFHd[n] += iMu[m]*cArg + rMu[m]=*sArg;

}

A conflict between different threads i and 5 arises
when they write in the same memory locations.

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024 24/34

loop interchange

To avoid conflicts between threads,

we interchange the inner and the outer loops:

for (m=0; m<M; m++)
{
for (n=0; n<N; n++)
{
expFHd = 2%PI* (kx[m]*x[n
+ky[m] *y[n]
+kz[m]*z[n
cArg = cos (expFHd) ;
sArg = sin (expFHAd);
rFHd[n] += rMu[m]x*cArg
- iMu[m] *sArg;
iFHd[n] += iMu[m]*cArg
+ rMu[m] *sArg;

for (n=

{

0; n<N; n++)

for (m=0; m<M; m++)

{

expFHd = 2xPIx (kx[m]#*x[n]
+ky [m]xy[n]
+ky [m]xy[n]);

cArg = cos (expFHd) ;
sArg = sin (expFHAd);
rFHd[n] += rMu[m]*cArg
— iMu[m] *sArg;
rFHd[n] += iMu[m]*cArg
+ rMul[m] *sArg;

In the new kernel, the n-th element will be computed by the n-th thread.

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024

25/34

a new kernel

__global___ void cmpFHd (floatx rPhi, iPhi, phiMag,
kx, ky, kz, x, vy, z, rMu, iMu, int M)

int n = blockIdx.x*FHD_THREAD_PER_BLOCK + threadIdx.x;

for (m

{

0; m < M; m++)

float expFHd = 24PIx (kx[m]*x[n]+ky[m]*y[n]
+kz[m]*z[n]);
float cArg = cos (expFHd);
float sArg sin (expFHAd) ;
]
1

rFHd[n] += rMu[m]*cArg - iMu[m] *sSArg;
iFHd[n] += iMu[m]*cArg + rMu[m]*sArg;

}

For a 1283 image, there are (27)% = 2,097, 152 threads.
For higher resolutions, e.g.: 5123, multiple kernels may be needed.

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024 26/34

Advanced MRI Reconstruction

© Acceleration on GPU

@ using registers to reduce memory accesses

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024 27/34

using registers to reduce memory accesses

__global___ void cmpFHd (floatx rPhi, iPhi, phiMag,
kx, ky, kz, x, v, z, rMu, iMu, int M)

int n = blockIdx.x+xFHD_THREAD_PER_BLOCK + threadIdx.x;
float xn = x[n]; float yn = y[n]; float zn = z[n];
float rFHdn = rFHd[n]; float iFHdn = iFHd[n];
for(m = 0; m < M; m++)
{
float expFHd = 2#PIx (kx[m]*xntky[m]*yn+kz[m]*zn);
float cArg = cos (expFHd);
float sArg = sin (expFHd);
rFHdn += rMu[m]*cArg - iMu[m]*sArg;
iFHdn += iMu[m]*cArg + rMu[m]=*sArg;
}
rFHd[n] = rFHdn; iFHd[n] = iFHdn;

Consider the improved Compute to Memory Access (CGMA) ratio.

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024 28/34

Advanced MRI Reconstruction

© Acceleration on GPU

@ chunking data to fit into constant memory

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024 29/34

chunking k-space data into constant memory

Using constant memory we use cache more efficiently.
Limited in size to 64KB, we need to invoke the kernel multiple times.

__constant___ float kx[CHUNK_SZ],ky[CHUNK_SZ], kz [CHUNK_SZ];
// code omitted
for(i = 0; k < M/CHUNK_SZ; i++)
{
cudaMemcpy (kx, &kx [1 *CHUNK_SZ], 4*CHUNK_SZ,
cudaMemCpyHostToDevice) ;
cudaMemcpy (ky, &ky [1*CHUNK_SZ], 4*CHUNK_SZ,
cudaMemCpyHostToDevice) ;
cudaMemcpy (kz, &kz [1*CHUNK_SZ], 4*CHUNK_SZ,
cudaMemCpyHostToDevice) ;
// code omitted
cmpFHD<<<FHd_THREADS_PER_BLOCK,
N/FHJ_THREADS_PER_BLOCK>>>
(rPhi, iPhi, phiMag, x,v, z, rMu, iMu, M) ;

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024 30/34

adjusting the memory layout

Due to size limitations of constant memory and cache, instead of

storing the components of k-space data in three separate arrays,
we use an array of structs:

struct kdata
{

float x, float y, float z;
}

__constant struct kdata k[CHUNK_SZ];

and then in the kernel we use k [m] . x, k[m] .y, and k [m] . z.

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024 31/34

Advanced MRI Reconstruction

© Acceleration on GPU

@ using hardware trigopnometry functions

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024 32/34

using hardware trigonometry functions

Instead of cos and sin as implemented in software, the hardware
versions __cos and ___sin provide a much higher throughput.

The __cos and __sin are implemented as hardware instructions
executed by the special function units.

We need to be careful about a loss of accuracy.
The validation involves a “perfect” image:

@ areverse process to generate “scanned” data;
@ metrics: mean square error & signal-to-noise ratios.

The last stage is the experimental performance tuning.

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024 33/34

references

This lecture is based on Chapter 8 (first edition; or Chapter 11 for the
second edition) in the book of Kirk & Hwu.

@ A. Lu, I.C. Atkinson, and K.R. Thulborn. Sodium Magnetic
Resonance Imaging and its Bioscale of Tissue Sodium
Concentration. Encyclopedia of Magnetic Resonance, John
Wiley & Sons, 2010.

@ S.S. Stone, J.P. Haldar, S.C. Tsao, W.-m.W. Hwu, B.P. Sutton, and
Z.-P. Liang. Accelerating advanced MRI reconstructions on
GPUs. Journal of Parallel and Distributed Computing 68(10):
1307-1318, 2008.

@ The IMPATIENT MRI Toolset, open source software available at

http://impact.crhc.illinois.edu/mri/mri_toolset.aspx.

Introduction to Supercomputing (MCS 572) Advanced MRI Reconstruction L-37 20 November 2024 34/34

	an Application Case Study
	magnetic resonance imaging (MRI)
	iterative reconstruction

	Acceleration on GPU
	determining the kernel parallelism structure
	loop splitting
	loop interchange
	using registers to reduce memory accesses
	chunking data to fit into constant memory
	using hardware trigonometry functions

