
The Crew of Threads Model
1 The Work Crew Model

programming shared memory parallel computers
multiple threads cooperating on a queue of jobs
a crew of workers with Julia

2 Processing a Queue of Jobs
the sequential setup
sharing data between threads
processing the jobs with OpenMP

3 the POSIX Threads Programming Interface
our first program with Pthreads
attributes, Pthread creating and joining
implementing a critical section with mutex

MCS 572 Lecture 11
Introduction to Supercomputing

Jan Verschelde, 20 September 2024

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 1 / 44

The Crew of Threads Model

1 The Work Crew Model
programming shared memory parallel computers
multiple threads cooperating on a queue of jobs
a crew of workers with Julia

2 Processing a Queue of Jobs
the sequential setup
sharing data between threads
processing the jobs with OpenMP

3 the POSIX Threads Programming Interface
our first program with Pthreads
attributes, Pthread creating and joining
implementing a critical section with mutex

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 2 / 44

processes and threads

A thread is a single sequential flow within a process.

Multiple threads within one process share heap storage,
static storage, and code.
Each thread has its own registers and stack.

Threads share the same single address space and synchronization is
needed when threads access same memory locations.

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 3 / 44

single threaded process

process

memory

code

static

heap

registers

stack

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 4 / 44

multithreaded process

process thread

memory

code

static

heap

registers

stack

thread

registers

stack

thread

registers

stack

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 5 / 44

processes and threads

A thread is a single sequential flow within a process.

Multiple threads within one process share
heap storage, for dynamic allocation and deallocation,
static storage, fixed space,
code.

Each thread has its own registers and stack.

Difference between the stack and the heap:
stack: Memory is allocated by reserving a block of fixed size on
top of the stack. Deallocation is adjusting the pointer to the top.
heap: Memory can be allocated at any time and of any size.

Threads share the same single address space and synchronization is
needed when threads access same memory locations.

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 6 / 44

The Crew of Threads Model

1 The Work Crew Model
programming shared memory parallel computers
multiple threads cooperating on a queue of jobs
a crew of workers with Julia

2 Processing a Queue of Jobs
the sequential setup
sharing data between threads
processing the jobs with OpenMP

3 the POSIX Threads Programming Interface
our first program with Pthreads
attributes, Pthread creating and joining
implementing a critical section with mutex

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 7 / 44

the work crew model

Instead of the manager/worker model where one node is responsible
for the distribution of the jobs and the other nodes are workers,
with threads we can apply a more collaborative model.

A computation performed by three threads in a work crew model:

- time

set up
thread 0
thread 1
thread 2

clean up

If the computation is divided into many jobs stored in a queue,
then the threads grab the next job, compute the job,
and push the result onto another queue or data structure.

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 8 / 44

processing a queue of jobs

We will simulate a work crew model:

Suppose we have a queue with n jobs.
Each job has a certain work load (computational cost).
There are p threads working on the n jobs.

To distribute the jobs among the threads:
either each worker has its own queue of jobs,
or idle workers do to the next job in the shared queue,
or idle workers with empty job queues steal jobs.

We will consider the second type of distributing jobs.

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 9 / 44

The Crew of Threads Model

1 The Work Crew Model
programming shared memory parallel computers
multiple threads cooperating on a queue of jobs
a crew of workers with Julia

2 Processing a Queue of Jobs
the sequential setup
sharing data between threads
processing the jobs with OpenMP

3 the POSIX Threads Programming Interface
our first program with Pthreads
attributes, Pthread creating and joining
implementing a critical section with mutex

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 10 / 44

a crew of workers with Julia

% julia -t 3 workcrew.jl
The jobs : [4, 5, 5, 2, 4, 6, 3, 6, 6, 4]
the number of threads : 3
Worker 1 is ready.
Worker 3 is ready.
Worker 2 is ready.
Worker 3 spends 5 seconds on job 2 ...
Worker 1 spends 4 seconds on job 1 ...
Worker 2 spends 5 seconds on job 3 ...
Worker 1 spends 2 seconds on job 4 ...
Worker 3 spends 6 seconds on job 6 ...
Worker 2 spends 4 seconds on job 5 ...
Worker 1 spends 3 seconds on job 7 ...
Worker 2 spends 6 seconds on job 8 ...
Worker 1 spends 6 seconds on job 9 ...
Worker 3 spends 4 seconds on job 10 ...
Jobs done : [1, 3, 2, 1, 2, 3, 1, 2, 1, 3]

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 11 / 44

the setup: generating a queue of jobs

using Base.Threads

nbr = 10
jobs = rand((2, 3, 4, 5, 6), nbr)
println("The jobs : ", jobs)

nt = nthreads()
println("the number of threads : ", nt)

@threads for i=1:nt
println("Worker ", threadid(), " is ready.")

end

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 12 / 44

the job index is an Atomic variable

jobidx = Atomic{Int}(1)
@threads for i=1:nt

println("Worker ", threadid(), " is ready.")
while true

myjob = atomic_add!(jobidx, 1)
if myjob > nbr

break
end
println("Thread ", threadid(),

" spends ", jobs[myjob], " seconds",
" on job ", myjob, " ...")

sleep(jobs[myjob])
jobs[myjob] = threadid()

end
end
println("Jobs done : ", jobs)

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 13 / 44

using an Atomic variable

The job index is accessed in a thread safe manner
using an Atomic variable.

The job index is declared and initialized to one:
jobidx = Atomic{Int}(1)

Incrementing the job index:
myjob = atomic_add!(jobidx, 1)

returns the current value of jobidx and
increments the value of jobidx by one.

The thread safe manner means that accessing the value of
the job index can done by only one thread at the same time.

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 14 / 44

The Crew of Threads Model

1 The Work Crew Model
programming shared memory parallel computers
multiple threads cooperating on a queue of jobs
a crew of workers with Julia

2 Processing a Queue of Jobs
the sequential setup
sharing data between threads
processing the jobs with OpenMP

3 the POSIX Threads Programming Interface
our first program with Pthreads
attributes, Pthread creating and joining
implementing a critical section with mutex

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 15 / 44

processing a queue of jobs

The jobs we consider can be executed independently.

In the simulation, the queue is an array of integers.

Every job in the queue
1 has a unique job number; and
2 a computational cost, defined by an integer.

Job j has cost wj . We execute sleep(wj), to wait wj seconds.

In the sequential processing of N jobs, we do

for(int j=0; j<N; j++) sleep(w[j]);

Typically, N is much larger than the number of threads.

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 16 / 44

representing a job queue

The state of the job queue is defined by
1 the number of jobs,
2 the index to the next job to be executed,
3 the work to be done by every job.

Variables in a program can be values or references to values.

work r -

0 1 2 3 4 5 6 7

nextjob r - 3

nb 8

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 17 / 44

values and references to values

Variables in a program can be values or references to values.

work r -

0 1 2 3 4 5 6 7

nextjob r - 3

nb 8

In C, the above picture is realized by the statements:

int nb = 8;
int *nextjob;
int *work;

*nextjob = 3;
work = (int*)calloc(nb, sizeof(int));

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 18 / 44

The Crew of Threads Model

1 The Work Crew Model
programming shared memory parallel computers
multiple threads cooperating on a queue of jobs
a crew of workers with Julia

2 Processing a Queue of Jobs
the sequential setup
sharing data between threads
processing the jobs with OpenMP

3 the POSIX Threads Programming Interface
our first program with Pthreads
attributes, Pthread creating and joining
implementing a critical section with mutex

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 19 / 44

encapsulating references to shared data
Every thread has as values

1 its thread identification number id; and
2 the number of jobs nb.

The shared data are
1 the reference to the next job; and
2 the cost for every job.

jobs r -

work

nextjob

nb

id

r -

r -

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 20 / 44

definition of the job queue

jobs r -

work

nextjob

nb

id

r -

r -

typedef struct
{

int id; /* identification label */
int nb; /* number of jobs */
int *nextjob; /* index of next job */
int *work; /* array of nb jobs */

} jobqueue;

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 21 / 44

sharing data between three threads

q r
-

r

-

r

-

3 0
1
2
3
4
5
6
7

id
0

nb
8

nextjobr -workr -

id
1

nb
8

nextjobr

-

workr

-

id
2

nb
8

nextjobr

-

workr

-

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 22 / 44

accessing shared data

q
ir r

-

r
3 0

1
2
3
4
5
6
7

id
i

nb
8

nextjobr -workr -

Thread i takes on input q[i]:
1 q[i].id = i ,
2 q[i].nb = 8,
3 *q[i].nextjob = 3,
4 q[i].work[3] defines the next job.

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 23 / 44

processing the jobs
void do_job (jobqueue *q)
{

int jobtodo;
do
{

jobtodo = -1;
int *j = q->nextjob;
if(*j < q->nb) jobtodo = (*j)++;
if(jobtodo == -1) break;

The q->nextjob is equivalent to (*q).nextjob.
The jobtodo = (*j)++ dereferences j, assigns, and increments.

int w = q->work[jobtodo];
sleep(w);

}
while (jobtodo != -1);

}
Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 24 / 44

The Crew of Threads Model

1 The Work Crew Model
programming shared memory parallel computers
multiple threads cooperating on a queue of jobs
a crew of workers with Julia

2 Processing a Queue of Jobs
the sequential setup
sharing data between threads
processing the jobs with OpenMP

3 the POSIX Threads Programming Interface
our first program with Pthreads
attributes, Pthread creating and joining
implementing a critical section with mutex

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 25 / 44

processing the jobs with OpenMP
void do_job (jobqueue *q)
{

int jobtodo;
do
{

jobtodo = -1;
int *j = q->nextjob;

#pragma omp critical
if(*j < q->nb) jobtodo = (*j)++;

if(jobtodo == -1) break;
int w = q->work[jobtodo];
sleep(w);

}
while (jobtodo != -1);

}
Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 26 / 44

defining the parallel region
int process_jobqueue (jobqueue *jobs, int nbt)
{

jobqueue q[nbt];
int i;

for(i=0; i<nbt; i++)
{

q[i].nb = jobs->nb;
q[i].id = i;
q[i].nextjob = jobs->nextjob;
q[i].work = jobs->work;

}
#pragma omp parallel
{

i = omp_get_thread_num();
do_job(&q[i]);

}
return *(jobs->nextjob);

}

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 27 / 44

the main program

int main (int argc, char* argv[])
{

int njobs,done,nbthreads;
jobqueue *jobs;

/* prompt for njobs and nbthreads */

jobs = make_jobqueue(njobs);

omp_set_num_threads(nbthreads);

done = process_jobqueue(jobs,nbthreads);

printf("done %d jobs\n", jobs->nb);

return 0;
}

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 28 / 44

The Crew of Threads Model

1 The Work Crew Model
programming shared memory parallel computers
multiple threads cooperating on a queue of jobs
a crew of workers with Julia

2 Processing a Queue of Jobs
the sequential setup
sharing data between threads
processing the jobs with OpenMP

3 the POSIX Threads Programming Interface
our first program with Pthreads
attributes, Pthread creating and joining
implementing a critical section with mutex

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 29 / 44

POSIX threads
For UNIX systems, a standardized C language threads programming
interface has been specified by the IEEE POSIX 1003.1c standard.

POSIX = Portable Operating System Interface
Implementations of this POSIX threads programming interface are
referred to as POSIX threads, or Pthreads.

$ gcc -v
... output omitted ...
Thread model: posix
... output omitted ...

In a C program we just insert

#include <pthread.h>

and compilation may require the switch -pthread

$ gcc -pthread program.c

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 30 / 44

the function each thread executes

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void *say_hi (void *args);
/*
* Every thread executes say_hi.

* The argument contains the thread id. */

int main (int argc, char* argv[]) { ... }

void *say_hi (void *args)
{

int *i = (int*) args;
printf("hello world from thread %d!\n",*i);
return NULL;

}

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 31 / 44

running hello_pthreads

$ make hello_pthreads
gcc -o hello_pthreads hello_pthreads.c

$./hello_pthreads
How many threads ? 5
creating 5 threads ...
waiting for threads to return ...
hello world from thread 0!
hello world from thread 2!
hello world from thread 3!
hello world from thread 1!
hello world from thread 4!
$

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 32 / 44

the main program
int main (int argc, char* argv[]) {

printf("How many threads ? ");
int n; scanf("%d",&n);
{

pthread_t t[n];
pthread_attr_t a;
int i,id[n];
printf("creating %d threads ...\n",n);
for(i=0; i<n; i++)
{

id[i] = i;
pthread_attr_init(&a);
pthread_create(&t[i],&a,say_hi,(void*)&id[i]);

}
printf("waiting for threads to return ...\n");
for(i=0; i<n; i++) pthread_join(t[i],NULL);

}
return 0;

}

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 33 / 44

avoiding sharing of data between threads

To each thread we pass its unique identification label.
To say_hi we pass the address of the label.

With the array id[n] we have n distinct addresses:

pthread_t t[n];
pthread_attr_t a;
int i,id[n];
for(i=0; i<n; i++)
{

id[i] = i;
pthread_attr_init(&a);
pthread_create(&t[i],&a,say_hi,(void*)&id[i]);

}

Passing &i instead of &id[i] gives to every thread the same
address, and thus the same identification label.

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 34 / 44

The Crew of Threads Model

1 The Work Crew Model
programming shared memory parallel computers
multiple threads cooperating on a queue of jobs
a crew of workers with Julia

2 Processing a Queue of Jobs
the sequential setup
sharing data between threads
processing the jobs with OpenMP

3 the POSIX Threads Programming Interface
our first program with Pthreads
attributes, Pthread creating and joining
implementing a critical section with mutex

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 35 / 44

using Pthreads in 3 steps

1 Declare threads of type pthread_t
and attribute(s) of type pthread_attri_t.

2 Initialize the attribute a as pthread_attr_init(&a);
and create the threads with pthreads_create providing

1 the address of each thread,
2 the address of an attribute,
3 the function each thread executes, and
4 an address with arguments for the function.

Variables are shared between threads if the same address is
passed as argument to the function the thread executes.

3 The creating thread waits for all threads to finish
using pthread_join.

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 36 / 44

The Crew of Threads Model

1 The Work Crew Model
programming shared memory parallel computers
multiple threads cooperating on a queue of jobs
a crew of workers with Julia

2 Processing a Queue of Jobs
the sequential setup
sharing data between threads
processing the jobs with OpenMP

3 the POSIX Threads Programming Interface
our first program with Pthreads
attributes, Pthread creating and joining
implementing a critical section with mutex

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 37 / 44

using mutex

Three steps to use a mutex (mutual exclusion):

1 initialization

pthread_mutex_t L = PTHREAD_MUTEX_INITIALIZER;

2 request a lock

pthread_mutex_lock(&L);

3 release the lock

pthread_mutex_unlock(&L);

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 38 / 44

processing jobs with pthreads

pthread_mutex_t read_lock = PTHREAD_MUTEX_INITIALIZER;

int main (int argc, char* argv[])
{

printf("How many jobs ? ");
int njobs; scanf("%d",&njobs);
jobqueue *jobs = make_jobqueue(njobs);
if(v > 0) write_jobqueue(jobs);

printf("How many threads ? ");
int nthreads; scanf("%d",&nthreads);
int done = process_jobqueue(jobs,nthreads);
printf("done %d jobs\n",done);
if(v>0) write_jobqueue(jobs);

return 0;
}

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 39 / 44

the function do_job

void *do_job (void *args)
{

jobqueue *q = (jobqueue*) args;
int dojob;
do
{

dojob = -1;
/* code omitted */

} while (dojob != -1);

if(v>0) printf("thread %d is finished\n",q->id);

return NULL;
}

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 40 / 44

the do while loop

do
{

dojob = -1;
if(v > 0) printf("thread %d requests lock ...\n",q->id);
pthread_mutex_lock(&read_lock);
int *j = q->nextjob;
if(*j < q->nb) dojob = (*j)++;
if(v>0) printf("thread %d releases lock\n",q->id);
pthread_mutex_unlock(&read_lock);
if(dojob == -1) break;
if(v>0) printf("*** thread %d does job %d ***\n",

q->id,dojob);
int w = q->work[dojob];
if(v>0) printf("thread %d sleeps %d seconds\n",q->id,w);
q->work[dojob] = q->id; /* mark job with thread label */
sleep(w);

} while (dojob != -1);

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 41 / 44

Bibliography

Online documents on Pthreads:

Guide to the POSIX Threads Library, April 2001,
by Compaq Computer Corporation, Houston Texas.

Threading Programming Guide,
Mac OS X Developer Library, 2010.

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 42 / 44

Summary + Exercises

We covered dynamic load assignment for multitreaded programs.

Exercises:
1 Modify the hello world! program with Pthreads so that the

master thread prompts the user for a name which is used in the
greeting displayed by thread 5. Note that only one thread, the one
with number 5, greets the user.

2 Consider the Monte Carlo simulations we have developed with
MPI for the estimation of π. Write a version with Julia, or OpenMP,
or Pthreads and examine the speedup.

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 43 / 44

two extra exercises

3 Consider the computation of the Mandelbrot set as implemented
in the program mandelbrot.c of lecture 7. Write code (with
Julia, or OpenMP, or Pthreads) for a work crew model of threads
to compute the grayscales. Does the grain size matter?
Compare the running time of your program with your MPI
implementation.

4 For some number N, array x, function f, consider:
#pragma omp parallel
#pragma omp for schedule(dynamic)
{

for(i=0; i<N; i++) x[i] = f(i);
}

Define the simulation of the dynamic load balancing with the job
queue using schedule(dynamic).

Introduction to Supercomputing (MCS 572) the crew of threads model L-11 20 September 2024 44 / 44

	The Work Crew Model
	programming shared memory parallel computers
	multiple threads cooperating on a queue of jobs
	a crew of workers with Julia

	Processing a Queue of Jobs
	the sequential setup
	sharing data between threads
	processing the jobs with OpenMP

	the POSIX Threads Programming Interface
	our first program with Pthreads
	attributes, Pthread creating and joining
	implementing a critical section with mutex

