
Data Partitioning; Fan Out Data
1 Data Partitioning

functional and domain decomposition
2 Parallel Summation

applying divide and conquer
fanning out an array of data
fanning out with MPI
fanning in the results

3 An Application
computing hexadecimal expansions for π

4 Nonblocking Point-to-Point Communication
immediate send and receive
query the status of a communication

MCS 572 Lecture 9
Introduction to Supercomputing

Jan Verschelde, 16 September 2024

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 1 / 34

Data Partitioning; Fan Out Data

1 Data Partitioning
functional and domain decomposition

2 Parallel Summation
applying divide and conquer
fanning out an array of data
fanning out with MPI
fanning in the results

3 An Application
computing hexadecimal expansions for π

4 Nonblocking Point-to-Point Communication
immediate send and receive
query the status of a communication

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 2 / 34

functional and domain decomposition

To turn a sequential algorithm into a parallel one,
we distinguish between functional and domain decomposition:

Functional decomposition: distribute arithmetical operations among
several processors.

Example: Monte Carlo simulations.

Domain decomposition: distribute data among several processors.

Example: Mandelbrot set computation.

Problem solving by parallel computers: the entire data set is often too
large to fit into the memory of one computer.

Example: game tree for four in a row.

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 3 / 34

divide-and-conquer methods

Divide and conquer used to solve problems:
break the problem in smaller parts,
solve the smaller parts,
assemble the partial solutions.

Often, divide and conquer is applied in a recursive setting
where the smallest nontrivial problem is the base case.

Examples in sorting: mergesort and quicksort.

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 4 / 34

Data Partitioning; Fan Out Data

1 Data Partitioning
functional and domain decomposition

2 Parallel Summation
applying divide and conquer
fanning out an array of data
fanning out with MPI
fanning in the results

3 An Application
computing hexadecimal expansions for π

4 Nonblocking Point-to-Point Communication
immediate send and receive
query the status of a communication

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 5 / 34

summing numbers with divide and conquer

7∑
k=0

xk = (x0 + x1 + x2 + x3) + (x4 + x5 + x6 + x7)

= ((x0 + x1) + (x2 + x3)) + ((x4 + x5) + (x6 + x7))

n+```
``

n+H
H

�
� n+H

H
�
�

n+ n+ n+ n+@ � @ � @ � @ �

x0 x1 x2 x3 x4 x5 x6 x7

With 4 processors, the summation of 8 numbers in done in 3 steps.

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 6 / 34

making partial sums

The size of the problem is n, where S =
n−1∑
k=0

xk .

Assume we have 8 processors to make 8 partial sums:

S = (S0 + S1 + S2 + S3) + (S4 + S5 + S6 + S7)

= ((S0 + S1) + (S2 + S3)) + ((S4 + S5) + (S6 + S7))

where m =
n − 1

8
and Si =

m∑
k=0

xk+im

The communication pattern goes along divide and conquer:
the numbers xk are scattered in a fan out fashion,
summing the partial sums happens in a fan in mode.

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 7 / 34

Data Partitioning; Fan Out Data

1 Data Partitioning
functional and domain decomposition

2 Parallel Summation
applying divide and conquer
fanning out an array of data
fanning out with MPI
fanning in the results

3 An Application
computing hexadecimal expansions for π

4 Nonblocking Point-to-Point Communication
immediate send and receive
query the status of a communication

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 8 / 34

fanning out data

0- 1
- 3
- 7

- 2
- 6

- 5

- 4?

- time

step
node 0 1 2 3

0 [0...7] [0...3] [0...1] [0]
1 [4...7] [4...5] [4]
2 [2...3] [2]
3 [6...7] [6]
4 [1]
5 [5]
6 [3]
7 [7]

Algorithm: at step k , 2k processors have data, and execute:

for j from 0 to 2k − 1 do

processor j sends
data
2k+1 to processor j + 2k ;

processor j + 2k receives
data
2k+1 from processor j .

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 9 / 34

refining the algorithm

In fanning out, we want to use the same array for all nodes,
and use only one send/recv statement.
Observe the bit patterns in nodes and data locations:

step
node 0 1 2 3 data
000 [0...7] [0...3] [0...1] [0] 000
001 [4...7] [4...5] [4] 100
010 [2...3] [2] 010
011 [6...7] [6] 110
100 [1] 001
101 [5] 101
110 [3] 011
111 [7] 111

At step 3, the node with label in binary expansion b2b1b0
has data starting at index b0b1b2.

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 10 / 34

Data Partitioning; Fan Out Data

1 Data Partitioning
functional and domain decomposition

2 Parallel Summation
applying divide and conquer
fanning out an array of data
fanning out with MPI
fanning in the results

3 An Application
computing hexadecimal expansions for π

4 Nonblocking Point-to-Point Communication
immediate send and receive
query the status of a communication

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 11 / 34

running with 8 processes

$ mpirun -np 8 ./fan_out_integers
stage 0, d = 1 :
0 sends 40 integers to 1 at 40, start 40
1 received 40 integers from 0 at 40, start 40
stage 1, d = 2 :
0 sends 20 integers to 2 at 20, start 20
2 received 20 integers from 0 at 20, start 20
1 sends 20 integers to 3 at 60, start 60
3 received 20 integers from 1 at 60, start 60
stage 2, d = 4 :
0 sends 10 integers to 4 at 10, start 10
7 received 10 integers from 3 at 70, start 70
3 sends 10 integers to 7 at 70, start 70
4 received 10 integers from 0 at 10, start 10
1 sends 10 integers to 5 at 50, start 50
2 sends 10 integers to 6 at 30, start 30
6 received 10 integers from 2 at 30, start 30
5 received 10 integers from 1 at 50, start 50

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 12 / 34

run continued

data at all nodes :
1 has 10 integers starting at 40 with 40, 41, 42
2 has 10 integers starting at 20 with 20, 21, 22
7 has 10 integers starting at 70 with 70, 71, 72
5 has 10 integers starting at 50 with 50, 51, 52
0 has 10 integers starting at 0 with 0, 1, 2
6 has 10 integers starting at 30 with 30, 31, 32
3 has 10 integers starting at 60 with 60, 61, 62
4 has 10 integers starting at 10 with 10, 11, 12

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 13 / 34

MPI_Barrier to synchronize printing

To synchronize across all members of a group we apply

MPI_Barrier(comm)

where comm is the communicator (MPI_COMM_WORLD).

MPI_Barrier blocks the caller until all group members
have called the statement.

The call returns at any process only after all group members
have entered the call.

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 14 / 34

computing the offset

int parity_offset (int n, int s);
/* returns the offset of node with label n

* for data of size s based on parity of n */

int parity_offset (int n, int s)
{

int offset = 0;
s = s/2;
while(n > 0)
{

int d = n % 2;
if(d > 0) offset += s;
n = n/2;
s = s/2;

}
return offset;

}

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 15 / 34

start of the main program

/* include headers omitted */
#define size 80 /* size of the problem */
#define tag 100 /* tag of send/recv */
#define v 1 /* verbose flag */

int main (int argc, char *argv[])
{

int myid,p,s,i,j,d,b;
int A[size];

MPI_Status status;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&p);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

if(myid == 0) /* manager initializes */
for(i=0; i<size; i++) A[i] = i;

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 16 / 34

the main loop

s = size;
for(i=0,d=1; i<3; i++,d*=2) /* A is fanned out */
{

s = s/2;
if(v>0) MPI_Barrier(MPI_COMM_WORLD);
if(myid == 0)

if(v > 0) printf("stage %d, d = %d :\n",i,d);
if(v>0) MPI_Barrier(MPI_COMM_WORLD);
for(j=0; j<d; j++)
{

b = parity_offset(myid,size);

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 17 / 34

the inner loop

for(j=0; j<d; j++){
b = parity_offset(myid,size);
if(myid == j){

if(v>0)
printf("%d sends %d integers to %d at %d, \

start %d\n",j,s,j+d,b+s,A[b+s]);
MPI_Send(&A[b+s],s,MPI_INT,j+d,tag,MPI_COMM_WORLD);

}
else if(myid == j+d){

MPI_Recv(&A[b],s,MPI_INT,j,tag,
MPI_COMM_WORLD,&status);

if(v>0)
printf("%d received %d integers from %d at %d, \

start %d\n",j+d,s,j,b,A[b]);
}

}

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 18 / 34

the end of the program

}
if(v > 0) MPI_Barrier(MPI_COMM_WORLD);
if(v > 0) if(myid == 0) printf("data at all nodes :\n");
if(v > 0) MPI_Barrier(MPI_COMM_WORLD);
printf("%d has %d integers starting at %d with %d, %d, \

%d\n", myid,size/p,b,A[b],A[b+1],A[b+2]);
MPI_Finalize();
return 0;

}

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 19 / 34

using mpi4py and numpy

import numpy as np
from mpi4py import MPI
COMM = MPI.COMM_WORLD
SIZE = 80 # size of the problem

def main(verbose=True):
"""
Fans out 80 integers to 8 processors.
"""
myid = COMM.Get_rank()
p = COMM.Get_size()
manager initializes, workers allocate space
if myid == 0:

data = np.arange(SIZE, dtype=’i’)
else:

data = np.empty(SIZE, dtype=’i’)

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 20 / 34

code without verbose statements

d = 1 # depth
s = SIZE # size of a slice
b = 0 # begin index
for i in range(3): # in 3 steps for 8 nodes

s = s//2
for j in range(d):

b = parity_offset(myid, SIZE);
if myid == j:

slice = data[b+s: b+2*s]
COMM.Send([slice, MPI.INT], dest=j+d)

elif myid == j+d:
slice = data[b: b+s]
COMM.Recv([slice, MPI.INT], source=j)

d = 2*d

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 21 / 34

fanning out with MPI.jl

The Python code translates directly into Julia,
see the program fan_out_integers.jl.

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 22 / 34

Data Partitioning; Fan Out Data

1 Data Partitioning
functional and domain decomposition

2 Parallel Summation
applying divide and conquer
fanning out an array of data
fanning out with MPI
fanning in the results

3 An Application
computing hexadecimal expansions for π

4 Nonblocking Point-to-Point Communication
immediate send and receive
query the status of a communication

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 23 / 34

fanning in results

0-1
3 6

7 6
2

6 6

5

4

6

- time

Algorithm: at step k , 2k processors send results and execute:

for j from 0 to 2k − 1 do
processor j + 2k sends the result to processor j ;
processor j receives the result from processor j + 2k .

We run the algorithm for decreasing values of k : k = 2,1,0.

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 24 / 34

Data Partitioning; Fan Out Data

1 Data Partitioning
functional and domain decomposition

2 Parallel Summation
applying divide and conquer
fanning out an array of data
fanning out with MPI
fanning in the results

3 An Application
computing hexadecimal expansions for π

4 Nonblocking Point-to-Point Communication
immediate send and receive
query the status of a communication

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 25 / 34

the BBP algorithm for π

Computing π to trillions of digits
is a benchmark problem for supercomputers.

One of the remarkable discoveries made by the PSLQ Algorithm
(PSLQ = Partial Sum of Least Squares, or integer relation detection)
is a simple formula that allows to calculating any binary digit
of π without calculating the digits preceding it:

π =
∞∑

i=0

1
16i

(
4

8i + 1
− 2

8i + 4
− 1

8i + 5
− 1

8i + 6

)
.

BBP stands for Bailey, Borwein and Plouffe.

Instead of adding numbers, we concatenate strings.

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 26 / 34

some readings on calculations for π

David H. Bailey, Peter B. Borwein and Simon Plouffe: On the
Rapid Computation of Various Polylogarithmic Constants.
Mathematics of Computation 66(218): 903–913, 1997.
David H. Bailey: the BBP Algorithm for Pi. September 17, 2006.
http://crd-legacy.lbl.gov/∼dhbailey/dhbpapers/.
Daisuke Takahashi: Parallel implementation of
multiple-precision arithmetic and 2, 576, 980, 370, 000
decimal digits of pi calculation.
Parallel Computing 36(8): 439-448, 2010.

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 27 / 34

Data Partitioning; Fan Out Data

1 Data Partitioning
functional and domain decomposition

2 Parallel Summation
applying divide and conquer
fanning out an array of data
fanning out with MPI
fanning in the results

3 An Application
computing hexadecimal expansions for π

4 Nonblocking Point-to-Point Communication
immediate send and receive
query the status of a communication

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 28 / 34

nonblocking point-to-point communication

The MPI_SEND and MPI_RECV are blocking:
The sender must wait till the message is received.
The receiver must wait till the message is sent.

For synchronized computations, this is desirable.

To overlap the communication with the computation,
we may prefer the use of nonblocking communication operations:

MPI_ISEND for the Immediate send; and
MPI_IRECV for the Immediate receive.

The status of the immediate send/receive
can be queried with MPI_TEST; or
we can wait for its completion with MPI_WAIT.

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 29 / 34

MPI_ISEND specification

MPI_ISEND(buf, count, datatype, dest,
tag, comm, request)

parameter description
buf address of the send buffer
count number of elements in send buffer
datatype datatype of each send buffer element
dest rank of the destination
tag message tag
comm communicator
request communication request (output)

The sender should not modify any part of the send buffer after a
nonblocking send operation is called, until the send completes.

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 30 / 34

MPI_IRECV specification

MPI_IRECV (buf, count, datatype, source,
tag, comm, request)

parameter description
buf address of the receive buffer
count number of elements in receive buffer
datatype datatype of each receive buffer element
source rank of source or MPI_ANY_SOURCE
tag message tag or MPI_ANY_TAG
comm communicator
request communication request (output)

The receiver should not access any part of the receive buffer after a
nonblocking receive operation is called, until the receive completes.

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 31 / 34

Data Partitioning; Fan Out Data

1 Data Partitioning
functional and domain decomposition

2 Parallel Summation
applying divide and conquer
fanning out an array of data
fanning out with MPI
fanning in the results

3 An Application
computing hexadecimal expansions for π

4 Nonblocking Point-to-Point Communication
immediate send and receive
query the status of a communication

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 32 / 34

waiting for a nonblocking communication
After the call to MPI_ISEND or MPI_IRECV, the request can be used
to query the status of the communication or wait for its completion.
To wait for the completion of a nonblocking communication:

MPI_WAIT (request, status)
parameter description
request communication request
status status object

To test the status of the communication:

MPI_TEST (request, flag, status)
parameter description
request communication request
flag true if operation completed
status status object

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 33 / 34

Summary + Exercises

The material in this lecture is based on chapter 4
of the text book by Wilkinson and Allen.

Exercises:
1 Adjust the fanning out of the array of integers so it works for any

number p of processors where p = 2k for some k .
You may take the size of the array as an integer multiple of p.

2 Run the program of the previous exercise on the supercomputer,
for p = 8,16,32,64, and 128.
For each run, report the wall clock time.

3 Complete the summation and the fanning in of the partial sums,
extending the program. You may leave p = 8.

Introduction to Supercomputing (MCS 572) Data Partitioning; Fan Out Data L-9 16 September 2024 34 / 34

	Data Partitioning
	functional and domain decomposition

	Parallel Summation
	applying divide and conquer
	fanning out an array of data
	fanning out with MPI
	fanning in the results

	An Application
	computing hexadecimal expansions for

	Nonblocking Point-to-Point Communication
	immediate send and receive
	query the status of a communication

