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data storage on a graphics card

Before we launch a kernel, we have
@ to allocate memory on the device,
@ to transfer data from the host to the device.

By default, memory on the device is global memory.
Global memory on a GPU
plays the same role as the Random Access Memory on a CPU.
In addition to global memory, we distinguish between
@ regqisters for storing local variables,

@ shared memory for all threads in a block,
@ constant memory for all blocks on a grid.

Introduction to Supercomputing (MCS 572) | Device Memories & Matrix Multiplication L-20 11 October 2024

3/39



compute to global memory access (CGMA) ratio

The importance of understanding different memories is
in the calculation of the expected performance level of kernel code.

Definition (CGMA ratio)

The Compute to Global Memory Access (CGMA) ratio
is the number of floating-point calculations performed for
each access to the global memory within a region of a CUDA program.

If the CGMA ratio is 1.0, then the memory clock rate determines the
upper limit for the performance.

While memory bandwidth on a GPU is superior to that of a CPU,
we will miss the theoretical peak performance by a factor of ten.
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CUDA device memory types
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registers

Registers are allocated to individual threads.
Each thread can access only its own registers.

A kernel function typically uses registers to hold frequently accessed
variables that are private to each thread.
Number of 32-bit registers available per block:

@ 8,192 on the GeForce 9400M,

@ 32,768 on the Tesla C2050/C2070,

@ 65,536 on the K20C, the P100, V100, and A100.

A typical CUDA kernel may launch thousands of threads.

However, having too many local variables in a kernel function may
prevent all blocks from running in parallel.
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shared memory

Like registers, shared memory is an on-chip memory.

Variables residing in registers and shared memory can be accessed at
very high speed in a highly parallel manner.

Unlike registers, which are private to each thread,
all threads in the same block have access to shared memory.
Amount of shared memory per block:

@ 16,384 byes on the GeForce 9400M,

@ 49,152 bytes on the Tesla C2050/C2070,

@ 49,152 bytes on the K20c, the P100, V100, and A100.
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constant, global, and cache memory

The constant memory supports short-latency, high-bandwidth,
read-only access by the device when all threads simultaneously
access the same location.

Global memory is similar to RAM on the CPU.

GPU constant global L2 cache
GeForce 9400M | 65,536 b 254 Mb
Tesla C2050 | 65,536 b 2,687 Mb 786,432 b
Kepler K20C | 65,536 b 4,800 Mb 1,310,720 b
Pascal P100 | 65,536 b 16,276 Mb 4,194,304 b
Volta V100 | 65,536 b 32,505 Mb 6,291,456 b
Ampere A100 | 65,536 b 81,038 Mb 41,943,040 b
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a quick refresher

Thread
§ per-Thread Private
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copied from the NVIDIA Whitepaper on Kepler GK110
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@ Device Memories

@ CUDA variable type qualifiers
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variables in memory, scope, and lifetime

Each variable is stored in a particular type of memory,
has a scope and a lifetime.
Scope is the range of threads that can access the variable.

@ If the scope of a variable is a single thread, then a private version
of that variable exists for every single thread.

@ Each thread can access only its private version of the variable.

Lifetime specifies the portion of the duration of the program execution
when the variable is available for use.

@ If a variable is declared in the kernel function body, then that
variable is available for use only by the code of the kernel.

@ If the kernel is invoked several times, then the contents of that
variable will not be maintained across these invocations.
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CUDA variable type qualifiers

We distinguish between five different variable declarations,
based on their memory location, scope, and lifetime.

variable declaration memory | scope | lifetime
atomic variables # arrays register | thread | kernel
array variables local thread | kernel
__device_ . shared_ .int v shared block | kernel
__device__.int v global grid program
__device__.__constant__.int v || constant | grid program
The __device__infrontof __shared__is optional.
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Device Memories and Matrix Multiplication

@ Matrix Multiplication
@ an application of tiling
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the CGMA ratio

In our simple matrix-matrix multiplication C = A - B,
we have the statement

Cli] += (x (pA++))* (xpB);

where
@ Cis afloat array; and
@ pA and pB are pointers to elements in a float array.

For the statement above, the CGMA ratio is 2/3:
@ for one addition and one multiplication,
@ we have three memory accesses.

14/39

Introduction to Supercomputing (MCS 572) | Device Memories & Matrix Multiplication L-20 11 October 2024



an application of tiling

For Ae R™™and B € R™*P, the product C = A- B € R"*P,
Assume that n, m, and p are multiples of some w, e.g.: w = 8.

We compute C in tiles of size w x w:
@ Every block computes one tile of C.
@ All threads in one block operate on submatrices:

m/w

Cij= Z Aik - By,
k=1

@ The submatrices A; x and By ; are loaded
from global memory into shared memory of the block.
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matrix multiplication with shared memory
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Device Memories and Matrix Multiplication

@ Matrix Multiplication

@ running matrixMul in the GPU Computing SDK
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the matrixMul in the GPU Computing SDK

The matrix-matrix multiplication is explained in great detail
in the CUDA programming guide.

One of the examples in the GPU Computing SDK is mat rixMul.

We run it on the GeForce 9400M, the Tesla C2050/C2070,
the Tesla K20c (on kepler), P100 (on pascal),
and A100 (on ampere).
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on the GeForce 9400M

/Developer/GPU Computing/C/bin/darwin/release $ ./matrixMul
[matrixMul] starting...

[ matrixMul ]

./matrixMul

Starting (CUDA and CUBLAS tests)...

Device 0: "GeForce 9400M" with Compute 1.1 capability

Using Matrix Sizes: A(160 x 320), B(160 x 320), C(160 x 320)

Runing Kernels...

> CUBLAS 7.2791 GFlop/s, Time = 0.00225 s, Size

16384000 Ops

> CUDA matrixMul 5.4918 GFlop/s, Time = 0.00298 s, Size = 16384000 Ops, \
NumDevsUsed = 1, Workgroup = 256

Comparing GPU results with Host computation...

Comparing CUBLAS & Host results
CUBLAS compares OK

Comparing CUDA matrixMul & Host results
CUDA matrixMul compares OK

[matrixMul] test results...
PASSED

u]
]
I
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i
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on the Tesla C2050/C2070

/usr/local/cuda/sdk/C/bin/linux/release jan$ ./matrixMul
[matrixMul] starting...

[ matrixMul ]

./matrixMul Starting (CUDA and CUBLAS tests)...

Device 0: "Tesla C2050 / C2070" with Compute 2.0 capability
Using Matrix Sizes: A (640 x 960), B(640 x 640), C(640 x 960

Runing Kernels...

> CUBLAS Throughput = 424.8840 GFlop/s, Time = 0.00185 s, \
Size = 786432000 Ops

> CUDA matrixMul Throughput = 186.7684 GFlop/s, Time = 0.00421 s, \
Size = 786432000 Ops, NumDevsUsed = 1, Workgroup = 1024

Comparing GPU results with Host computation...

Comparing CUBLAS & Host results
CUBLAS compares OK

Comparing CUDA matrixMul & Host results
CUDA matrixMul compares OK

[matrixMul] test results...
PASSED

to Supercomputing (MCS 572) | Device Memories & Matrix Multiplicati L-20 11 October 2024

20/39



on Kepler K20c

$ /usr/local/cuda/samples/0_Simple/matrixMul/matrixMul
[Matrix Multiply Using CUDA] - Starting...

GPU Device 0: "Tesla K20c" with compute capability 3.5

MatrixA (320,320), MatrixB(640,320)

Computing result using CUDA Kernel...

done

Performance= 246.13 GFlop/s, Time= 0.533 msec, Size= 131072000 Ops,
WorkgroupSize= 1024 threads/block

Checking computed result for correctness: Result = PASS

Note: For peak performance, please refer to the matrixMulCUBLAS \
example.

$

The theoretical peak performance of the K20c is 1.17 TFlop/s double precision,
and 3.52 TFlop/s single precision.

The matrices that are multiplied have single float as type.
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going for peak performance with CUBLAS

$ /usr/local/cuda/samples/0_Simple/matrixMulCUBLAS/matrixMulCUBLAS
[Matrix Multiply CUBLAS] - Starting...
/usr/bin/nvidia-modprobe: unrecognized option: "-u"

GPU Device 0: "Tesla K20c" with compute capability 3.5

MatrixA (320,640), MatrixB(320,640), MatrixC(320,640)

Computing result using CUBLAS...done.

Performance= 1171.83 GFlop/s, Time= 0.112 msec, Size= 131072000 Ops
Computing result using host CPU...done.

Comparing CUBLAS Matrix Multiply with CPU results: PASS

$

The theoretical peak performance of the K20c is 1.17 TFlop/s double precision,
and 3.52 TFlop/s single precision.

The matrices that are multiplied have single float as type.
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on Pascal P100

$ /usr/local/cuda/samples/0_Simple/matrixMul/matrixMul
[Matrix Multiply Using CUDA] - Starting...
GPU Device 0: "Tesla P100-PCIE-16GB" with compute capability 6.0

MatrixA (320,320), MatrixB(640,320)

Computing result using CUDA Kernel...

done

Performance= 1909.26 GFlop/s, Time= 0.069 msec, Size= 131072000 Ops
WorkgroupSize= 1024 threads/block

Checking computed result for correctness: Result = PASS

NOTE: The CUDA Samples are not meant for performance measurements.
Results may vary when GPU Boost is enabled.

$

The theoretical peak performance (with GPU Boost):
18.7 TFlop/s (half), 9.3 TFlop/s (single), 4.7 TFlop/s (double).
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running CUBLAS on P100

$ /usr/local/cuda/samples/0_Simple/matrixMulCUBLAS/matrixMulCUBLAS
[Matrix Multiply CUBLAS] - Starting...
GPU Device 0: "Tesla P100-PCIE-16GB" with compute capability 6.0

MatrixA (640,480), MatrixB(480,320), MatrixC(640,320)

Computing result using CUBLAS...done.

Performance= 3089.82 GFlop/s, Time= 0.064 msec, Size= 196608000 Ops
Computing result using host CPU...done.

Comparing CUBLAS Matrix Multiply with CPU results: PASS

NOTE: The CUDA Samples are not meant for performance measurements.
Results may vary when GPU Boost is enabled.

$
A second run gave the following:
Performance= 3106.43 GFlop/s, Time= 0.063 msec, Size= 196608000 Ops

For single floats, the theoretical peak performance is 9.3 TFlop/s.
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on Volta V100

$ /usr/local/cuda/samples/bin/x86_64/1linux/release/matrixMul
[Matrix Multiply Using CUDA] - Starting...
GPU Device 0: "Quadro GV100" with compute capability 7.0

MatrixA (320,320), MatrixB(640,320)

Computing result using CUDA Kernel...

done

Performance= 2974.46 GFlop/s, Time= 0.044 msec, Size= 131072000 Ops
WorkgroupSize= 1024 threads/block

Checking computed result for correctness: Result = PASS

NOTE: The CUDA Samples are not meant for performancemeasurements.
Results may vary when GPU Boost is enabled.

$

Observe the performance of 2.9 TFlop/s.

The theoretical peak performance (with GPU Boost):
29.6 TFlop/s (half), 14.8 TFlop/s (single), 7.9 TFlop/s (double).
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running CUBLAS on V100

$ /usr/local/cuda/samples/bin/x86_64/1linux/release/matrixMulCUBLAS
[Matrix Multiply CUBLAS] - Starting...
GPU Device 0: "Quadro GV100" with compute capability 7.0

GPU Device 0: "Quadro GV100" with compute capability 7.0

MatrixA (640,480), MatrixB(480,320), MatrixC(640,320)

Computing result using CUBLAS...done.

Performance= 7146.40 GFlop/s, Time= 0.028 msec, Size= 196608000 Ops
Computing result using host CPU...done.

Comparing CUBLAS Matrix Multiply with CPU results: PASS

NOTE: The CUDA Samples are not meant for performance measurements.
Results may vary when GPU Boost is enabled.

[jan@volta release]$ pwd
/usr/local/cuda/samples/bin/x86_64/linux/release

$

Observe the performance of 7.1 TFlop/s.
For single floats, the theoretical peak precision is 14.8 Tflop/s with GPU Boost.
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on Ampere A100

$ /usr/local/cuda/samples/bin/x86_64/1linux/release/matrixMul
[Matrix Multiply Using CUDA] - Starting...
GPU Device 0: "Ampere" with compute capability 8.0

MatrixA (320,320), MatrixB(640,320)
Computing result using CUDA Kernel...

done

Performance= 4303.49 GFlop/s, Time= 0.030 msec, Size= 131072000 Ops
WorkgroupSize= 1024 threads/block

Checking computed result for correctness: Result = PASS
NOTE: The CUDA Samples are not meant for performance measurements.

Results may vary when GPU Boost is enabled.

Observe the 4.303 TFlop/S performance.

The theoretical peak performance (with GPU Boost):
78 TFlop/s (half), 19.5 TFlop/s (single), 9.7 TFlop/s (double).
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running CUBLAS on A100

$ /usr/local/cuda/samples/bin/x86_64/1linux/release/matrixMulCUBLAS
[Matrix Multiply CUBLAS] - Starting...
GPU Device 0: "Ampere" with compute capability 8.0

GPU Device 0: "NVIDIA Al100 80GB PCIe" with compute capability 8.0
MatrixA (640,480), MatrixB(480,320), MatrixC(640,320)

Computing result using CUBLAS...done.

Performance= 11076.92 GFlop/s, Time= 0.018 msec, Size= 196608000 Op
Computing result using host CPU...done.

Comparing CUBLAS Matrix Multiply with CPU results: PASS

NOTE: The CUDA Samples are not meant for performance measurements.

Results may vary when GPU Boost is enabled.

Observe the 11.076 TFlop/s performance.

For single floats, the theoretical peak precision is 17.6 TFlop/s,
or 19.5 TFlop/s with GPU Boost.
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matrixMul performance evolution

The table below summarizes the experiments, on four GPUs:

GPU || matrixMul CUBLAS | peak performance
units GFlop/s TFlop/s
K20C 264 1,171 3.5

P100 1,909 3,089 9.3

V100 2,974 7,146 14.8

A100 4,303 11,076 19.5

Observe the steady progress of teraflop performance.
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@ Matrix Multiplication

@ the kernel of matrixMul

Introduction to Supercomputing (MCS 572) | Device Memories & Matrix Multiplication



the kernel of matrixMul

template <int BLOCK_SIZE> _ _global__ void
matrixMul ( floatx C, floatx A, floatx B, int wA, int wB)
{
int bx = blockIdx.x; // Block index
int by = blockIdx.y;
int tx = threadIdx.x; // Thread index
int ty = threadIdx.y;
// Index of the first sub-matrix of A processed by the block
int aBegin = wA % BLOCK_SIZE x by;
// Index of the last sub-matrix of A processed by the block

int aEnd = aBegin + wA - 1;
// Step size used to iterate through the sub-matrices of A
int aStep = BLOCK_SIZE;

// Index of the first sub-matrix of B processed by the block
int bBegin = BLOCK_SIZE = bx;

// Step size used to iterate through the sub-matrices of B
int bStep = BLOCK_SIZE * wB;
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the submatrices

// Csub is used to store the element of the block sub-matrix
// that is computed by the thread
float Csub = 0;

// Loop over all the sub-matrices of A and B
// required to compute the block sub-matrix
for (int a = aBegin, b = bBegin;

a <= aknd;

a += aStep, b += bStep) {

// Declaration of the shared memory array As used to
// store the sub-matrix of A
__shared_ float As[BLOCK_SIZE] [BLOCK_SIZE];

// Declaration of the shared memory array Bs used to
// store the sub-matrix of B
__shared__ float Bs[BLOCK_SIZE] [BLOCK_SIZE];
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loading and multiplying

// Load the matrices from device memory
// to shared memory; each thread loads
// one element of each matrix

AS(ty, tx) = Ala + wA * ty + tx];
BS(ty, tx) = B[b + wB % ty + tx];

// Synchronize to make sure the matrices are loaded
__syncthreads () ;

// Multiply the two matrices together;
// each thread computes one element
// of the block sub-matrix
#pragma unroll
for (int k = 0; k < BLOCK_SIZE; ++k)
Csub += AS(ty, k) * BS(k, tx);

// Synchronize to make sure that the preceding
// computation is done before loading two new

// sub-matrices of A and B in the next iteration
__syncthreads () ;
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the end of the kernel

// Write the block sub-matrix to device memory;
// each thread writes one element

int ¢ = wB x BLOCK_SIZE % by + BLOCK_SIZE x bx;
Clc + wB * ty + tx] = Csub;

The emphasis in this lecture is on

@ the use of device memories; and
@ data organization (tiling) and transfer.

In the next lecture we will come back to this code,
and cover thread scheduling

@ the use of blockIdx; and
@ thread synchronization.
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© cupaj
@ using shared memory
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compute a dot product with shared memory
adapted from the CUDA.jl documentation

using CUDA

nmmwn

function dot(a,b,c, N, threadsPerBlock, blocksPerGrid)

computes the dot product of two vectors a and b of length N
and places the result in ¢, using shared memory.

nmmn

function dot (a,b,c, N, threadsPerBlock, blocksPerGrid)

# Set up shared memory cache for this current block.
cache = @cuDynamicSharedMem (Int64, threadsPerBlock)

n
The kernel computes ¢; = Z ai by, where n equals the number of threads per
k=1
block. The main program adds up the ¢; for each block.
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use of shared memory in the sum

The cache is used in the reduction:

i::Int = blockDim() .x/2
while 1!=0
if cachelIndex < i

cache[cacheIndex+1l] += cache[cacheIndex+i+1]

end
sync_threads ()
i=1/2

end

At the end of the kernel:

if cachelIndex ==

c[blockIdx () .x] = cachel[l]
end
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launching the kernel

We start with the dimensions:

N::Int6d4 = 33 » 1024
threadsPerBlock::Int64 = 256
blocksPerGrid::Int64 = min (32,

(N + threadsPerBlock — 1) / threadsPerBlock)

Then comes the setup of the data (omitted).
The launching of the kernels happens as

@cuda blocks = blocksPerGrid

threads = threadsPerBlock

shmem = (threadsPerBlock * sizeof (Into6d))
dot (a,b,c, N, threadsPerBlock, blocksPerGrid)

See (and execute!) the posted code.
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summary and exercises

Vasily Volkov and James W. Demmel: Benchmarking GPUs to tune
dense linear algebra. In Proceedings of the 2008 ACM/IEEE
conference on Supercomputing. |IEEE Press, 2008. Article No. 31.

We covered more of chapter 3 in the book of Kirk & Hwu,
and also several concepts explained in chapter 5.

@ Compile the mat rixMul of the GPU Computing SDK on your
laptop and desktop and run the program.

@ Consider the matrix multiplication code of last lecture and
compute the CGMA ratio.

© Adjust the code for matrix multiplication we discussed last time to
use shared memory.
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