
Evaluating Parallel Performance

1 Metrics
time metrics and derived metrics

2 Isoefficiency
efficiency and scalability
an illustration of isoefficiency

3 Task Graph Scheduling
mapping tasks to threads
critical path analysis

4 The Roofline Model
arithmetic intensity

MCS 572 Lecture 14
Introduction to Supercomputing

Jan Verschelde, 27 September 2024

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 1 / 33



Evaluating Parallel Performance

1 Metrics
time metrics and derived metrics

2 Isoefficiency
efficiency and scalability
an illustration of isoefficiency

3 Task Graph Scheduling
mapping tasks to threads
critical path analysis

4 The Roofline Model
arithmetic intensity

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 2 / 33



time metrics

The goal is to characterize parallel performance.

Metrics are determined from performance measures.

Time metrics are obtained from time measurements.

Time measurements are
1 execution time

▶ CPU time and system time
▶ I/O time

2 overhead time
▶ communication
▶ synchronization

The wall clock time measures execution time plus overhead time.

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 3 / 33



derived metrics

Time metrics come directly from time measurements.

Derived metrics are results of arithmetical metric expressions.
flops are the number of floating-point operations per second:

number of floating-point operations done
execution time

communication-to-computation ratio:

communication time
execution time

memory access-to-computation ratio:

time spent on memory operations
execution time

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 4 / 33



parallelism metrics and use of metrics

Speedup and efficiency depend on the number of processors
and are called parallelism metrics.

Metrics used in performance evaluation:
Peak speed is the maximum flops a computer can attain.
Fast Graphics Processing Units achieve teraflop performance.

Benchmark metrics use representative applications.
The LINPACK benchmark ranks the Top 500 supercomputers.

Tuning metrics include bottleneck analysis.

For task-based parallel programs,
the application of critical path analysis techniques finds
the longest path in the execution of a parallel program.

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 5 / 33



Evaluating Parallel Performance

1 Metrics
time metrics and derived metrics

2 Isoefficiency
efficiency and scalability
an illustration of isoefficiency

3 Task Graph Scheduling
mapping tasks to threads
critical path analysis

4 The Roofline Model
arithmetic intensity

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 6 / 33



efficiency and scalability

For p processors:

Speedup =
serial time

parallel time
= S(p) → p

Efficiency =
Speedup

p
=

S(p)
p

= E(p) → 1

Let Ts denote the serial time, Tp the parallel time, and TO the
overhead, then: pTp = Ts + TO.

E(p) =
Ts

pTp
=

Ts

Ts + TO
=

1
1 + TO/Ts

The scalability analysis of a parallel algorithm measures its capacity to
effectively utilize an increasing number of processors.

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 7 / 33



relating efficiency to work and overhead

Let W be the problem size.

The overhead TO depends on W and p: TO = TO(W ,p).

The parallel time equals Tp =
W + TO(W ,p)

p

Speedup S(p) =
W
Tp

=
Wp

W + TO(W ,p)
.

Efficiency E(p) =
S(p)

p
=

W
W + TO(W ,p)

=
1

1 + TO(W ,p)/W
.

The goal is for E(p) → 1 as p → ∞.

The algorithm scales badly if W must grow exponentially to keep
efficiency from dropping. If W needs to grow only moderately to keep
the overhead in check, then the algorithm scales well.

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 8 / 33



isoefficiency relates work to overhead

E =
1

1 + TO(W ,p)/W
⇒ 1

E
=

1 + TO(W ,p)/W
1

⇒ 1
E

− 1 =
TO(W ,p)

W

⇒ 1 − E
E

=
TO(W ,p)

W
.

Definition (the isoefficiency function)
For problem size W , number of processors p, efficiency E , and
overhead TO(W ,p), the isoefficiency function is

W =

(
E

1 − E

)
TO(W ,p) or W = K TO(W ,p).

Keeping K constant, isoefficiency relates W to TO.

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 9 / 33



isoefficiency related to Amdahl and Gustafson

The isoefficiency function is

W =

(
E

1 − E

)
TO(W ,p) or W = K TO(W ,p).

Keeping K constant, isoefficiency relates W to TO.

Amdahl’s Law: keep W fixed and let p grow.

Speedup S(p) ≤ 1
R + 1−R

p

,

where R is fraction of time done sequentially.

Gustafson’s Law: keep p fixed and let W grow.

Scaled speedup Ss(p) ≤ p + (1 − p)s,

where s is fraction of time done sequentially.

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 10 / 33



Evaluating Parallel Performance

1 Metrics
time metrics and derived metrics

2 Isoefficiency
efficiency and scalability
an illustration of isoefficiency

3 Task Graph Scheduling
mapping tasks to threads
critical path analysis

4 The Roofline Model
arithmetic intensity

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 11 / 33



isoefficiency applied to parallel FFT

The isoefficiency function: W = K TO(W ,p).

For FFT: Ts = n log(n)tc ,
where tc is the time for complex multiplication and adding a pair.

Let ts denote the startup cost and tw denote the time to transfer a word.

Time for a parallel FFT:

Tp = tc

(
n
p

)
log(n)︸ ︷︷ ︸

computation time

+ ts log(p)︸ ︷︷ ︸
start up time

+ tw

(
n
p

)
log(p)︸ ︷︷ ︸

transfer time

.

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 12 / 33



start up cost versus computation

Using the expression for Tp in the efficiency E(p):

E(p) =
Ts

pTp
=

n log(n)tc
n log(n)tc + p log(p)ts + n log(p)tw

=
Wtc

Wtc + p log(p)ts + n log(p)tw
, W = n log(n).

Assume tw = 0 (shared memory): E(p) =
Wtc

Wtc + p log(p)ts
.

We want to express K =
E

1 − E
, using

1
K

=
1 − E

E
=

1
E

− 1:

1
K

=
Wtc + p log(p)ts

Wtc
− Wtc

Wtc
⇒ W = K

(
ts
tc

)
p log(p).

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 13 / 33



isoefficiency for shared memory

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 14 / 33



transfer cost versus computation

Taking another look at the efficiency E(p):

E(p) =
Wtc

Wtc + p log(p)ts + n log(p)tw
, W = n log(n).

Assume ts = 0 (no start up): E(p) =
Wtc

Wtc + n log(p)tw
.

We want to express K =
E

1 − E
, using

1
K

=
1 − E

E
=

1
E

− 1:

1
K

=
Wtc + n log(p)tw

Wtc
− Wtc

Wtc
⇒ W = K

(
tw
tc

)
n log(p).

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 15 / 33



efficiency plot for distributed memory

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 16 / 33



Evaluating Parallel Performance

1 Metrics
time metrics and derived metrics

2 Isoefficiency
efficiency and scalability
an illustration of isoefficiency

3 Task Graph Scheduling
mapping tasks to threads
critical path analysis

4 The Roofline Model
arithmetic intensity

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 17 / 33



task graph scheduling

A task graph is a Directed Acyclic Graph (DAG):
nodes are tasks, and
edges are precedence constraints between tasks.

Task graph scheduling or DAG scheduling maps the task graph
onto a target platform.

The scheduler
1 takes a task graph as input,
2 decides which processor will execute what task,
3 with the objective to minimize the total execution time.

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 18 / 33



an example: forward substitution

Consider Lx = b, an n-by-n lower triangular linear system,
where L = [ℓi,j ] ∈ Rn×n, ℓi,i ̸= 0, ℓi,j = 0, for j > i .

For n = 3:

ℓ1,1x1 = b1 ⇒ x1 := b1/ℓ1,1
ℓ2,1x1 + ℓ2,2x2 = b2 ⇒ x2 := (b2 − ℓ2,1x1)/ℓ2,2
ℓ3,1x1 + ℓ3,2x2 + ℓ3,3x3 = b3 ⇒ x3 := (b3 − ℓ3,1x1 − ℓ3,2x2)/ℓ3,3

Pseudo code with tasks labeled for each instruction:

task T1,1: x1 := b1/ℓ1,1
for i from 2 to n do

for j from 1 to i − 1 do
task Ti,j : bi := bi − ℓi,jxj

task Ti,i : xi := bi/ℓi,i

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 19 / 33



applying Bernstein’s conditions

Each task T has an input set in(T ), and an output set out(T ).

Tasks T1 and T2 are independent if

in(T1) ∩ out(T2) = ∅,
out(T1) ∩ in(T2) = ∅,

out(T1) ∩ out(T2) = ∅.

Applied to forward substitution:

task T1,1: x1 := b1/ℓ1,1 in(T1,1) = {b1, ℓ1,1}, out(T1,1) = {x1}
for i from 2 to n do

for j from 1 to i − 1 do
task Ti,j : bi := bi − ℓi,jxj in(Ti,j) = {xj ,bi , ℓi,j}, out(Ti,j) = {bi}

task Ti,i : xi := bi/ℓi,i in(Ti,i) = {bi , ℓi,i}, out(Ti,i) = {xi}

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 20 / 33



the task graph of forward substitution

task T1,1: x1 := b1/ℓ1,1 in(T1,1) = {b1, ℓ1,1}, out(T1,1) = {x1}
for i from 2 to n do

for j from 1 to i − 1 do
task Ti,j : bi := bi − ℓi,jxj in(Ti,j) = {xj ,bi , ℓi,j}, out(Ti,j) = {bi}

task Ti,i : xi := bi/ℓi,i in(Ti,i) = {bi , ℓi,i}, out(Ti,i) = {xi}

The task graph for n = 4:

T1,1 -

@
@RA

A
A
AAU

T2,1 -

T3,1 -

T4,1 -

T2,2
@
@RA

A
A
AAU

T3,2 -

T4,2 -

T3,3
@
@R

T4,3 -T4,4

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 21 / 33



Evaluating Parallel Performance

1 Metrics
time metrics and derived metrics

2 Isoefficiency
efficiency and scalability
an illustration of isoefficiency

3 Task Graph Scheduling
mapping tasks to threads
critical path analysis

4 The Roofline Model
arithmetic intensity

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 22 / 33



one critical path

In the task graph, a critical path is colored in red.

T1,1 -

@
@RA

A
A
AAU

T2,1 -

T3,1 -

T4,1 -

T2,2
@
@RA

A
A
AAU

T3,2 -

T4,2 -

T3,3
@
@R

T4,3 -T4,4

Recall that Ti,i computes xi .

The length of a critical path limits the speedup.
For the above example, a sequential execution

T1,1,T2,1,T3,1,T4,1,T2,2,T3,2,T4,2,T3,3,T4,3,T4,4

takes 10 steps. The length of a critical path is 7.
At most three threads can compute simultaneously.

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 23 / 33



the DAG for n = 5

In the task graph, a critical path is colored in red.

T1,1 -

@
@RA

A
A
AAU

B
B
B
B
B
B
B
BN

T2,1 -

T3,1 -

T4,1 -

T5,1 -

T2,2
@
@RA

A
A
AAU

B
B
B
B
B
B
B
BN

T3,2 -

T4,2 -

T5,2 -

T3,3
@
@RA

A
A
AAU

T4,3 -

T5,3 -

T4,4
@
@R

T5,4 -T5,5

For n = 4, we found 7. For n = 5, the length of the critical path is 9.

For any n, the length of the critical path is 2n − 1.
At most n − 1 threads can compute simultaneously.

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 24 / 33



recommended reading

Alan D. Malony: Metrics. In Encycopedia of Parallel Computing,
edited by David Padua, pages 1124–1130, Springer 2011.
Yves Robert: Task Graph Scheduling.
In Encycopedia of Parallel Computing, edited by David Padua,
pages 2013–2024, Springer 2011.
Vipin Kumar and Anshul Gupta: Analyzing Scalability of Parallel
Algorithms and Architectures. Journal of Parallel and
Distributed Computing 22: 379–391, 1994.
Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar:
Introduction to Parallel Computing. 2nd edition, Pearson 2003.
Chapter 13 is devoted to the Fast Fourier Transform.
Thomas Decker and Werner Krandick: On the Isoefficiency of
the Parallel Descartes Method. In Symbolic Algebraic Methods
and Verification Methods 2001, pages 55–67, Springer 2001.

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 25 / 33



Evaluating Parallel Performance

1 Metrics
time metrics and derived metrics

2 Isoefficiency
efficiency and scalability
an illustration of isoefficiency

3 Task Graph Scheduling
mapping tasks to threads
critical path analysis

4 The Roofline Model
arithmetic intensity

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 26 / 33



arithmetic intensity

Performance is measured in flops:
the number of floating-point operations per second.

Definition (arithmetic intensity)
The arithmetic intensity of a computation
is the number of floating-point operations per byte.

Example: z := x + y , assign x + y to z.
One floating point operation involving 64-bit doubles, and
each double occupies 8 bytes,

so the arithmetic intensity is 1/24.

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 27 / 33



memory bound and compute bound

Do you want faster memory or faster processors?

Definition (memory bound)
A computation is memory bound
if the peak memory bandwidth determines the performance.

Memory bandwidth is the number of bytes per second
that can be read or stored in memory.

Definition (compute bound)
A computation is compute bound
if the peak floating-point performance determines the performance.

A high arithmetic intensity is needed for a compute bound computation.

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 28 / 33



the roofline model

copied from S. Williams, A. Waterman, and D. Patterson:
Roofline: an insightful visual performance model for multicore
architectures. Communications of the ACM, 52(4):65–76, 2009.

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 29 / 33



the formula for attainable performance

attainable
GFlops/sec

= min


peak floating point performance

peak memory bandwidth × operational intensity

Observe the difference between arithmetic and operational intensity:
arithmetic intensity measures the number of floating point
operations per byte,
operational intensity measures the number of operations per byte.

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 30 / 33



applying the roofline model

1 The horizontal line is the theoretical peak performance,
expressed in gigaflops per second, the units of the vertical axis.

2 The units of the horizontal coordinate axis are flops per byte.

The ridge point is the ratio of the theoretical peak performance
and the memory bandwidth.

3 For any particular computation, record the pair (x , y)
1 x is the arithmetic intensity, number of flops per byte,
2 y is the performance defined by the number of flops per second.

If (x , y) lies under the horizontal part of the roof,
then the computation is compute bound,
otherwise, the computation is memory bound.

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 31 / 33



memory bound or compute bound?
from tutorial slides by Charlene Yang, LBNL, 16 Jun 2019

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 32 / 33



Summary and Exercises

We covered metrics to evaluate parallel performance, derived
isoefficiency, and studied an example of a critical path analysis.

Exercises:
1 Consider the isoefficiency formulas we derived for a parallel

version of the FFT. Suppose an efficiency of 0.6 is desired.
For values tc = 1, ts = 25 and tw = 4, make plots of the speedup
for increasing values of n, taking p = 64. Interpret the plots
relating to the particular choices of the parameters tc , ts, tw , and
the desired efficiency.

2 Apply the Bernstein conditions to justify the DAG presented for
n = 4 in the forward substitution example. In particular,

1 demonstrate the need for every edge in the DAG; and
2 for nodes in the DAG that can be executed independently,

verify that Bernstein’s conditions are met.

Introduction to Supercomputing (MCS 572) Evaluating Parallel Performance L-14 27 September 2024 33 / 33


	Metrics
	time metrics and derived metrics

	Isoefficiency
	efficiency and scalability
	an illustration of isoefficiency

	Task Graph Scheduling
	mapping tasks to threads
	critical path analysis

	The Roofline Model
	arithmetic intensity


