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high-level parallel programming

What is high-level parallel programming?

Some characteristics:
familiar: no new language needed,
interactive: quick feedback,
personal: no supercomputer.

Rapid prototyping can decide if parallelism is feasible
for a particular computation in an application.
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the HLPP conference series

The 17th international symposium on High-Level Parallel Programming
and Applications (HLPP 2024), was held in Pisa, Italy, July 4-5, 2024.

Some of the topics include
high-level programming and performance models,
software synthesis, automatic code generation,
applications using high-level languages and tools,
formal models of verification.

While “high-level” also covers abstract and formal,
there is a need for practical software and tools,
so the “high-level” is not the opposite of technical.
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computations with Python

Advantages of the scripting language Python:
educational, good for novice programmers;
packages for scientific computing: NumPy, SciPy, SymPy.

SageMath, a free open source mathematics software system,
uses Python to interface many open source software packages.

Our example:
∫ 1

0

√
1− x2dx =

π

4
.

We will use the Simpson rule (available in SciPy)
as a relatively computational intensive example.
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interactive computing
In a Powershell window:

Python 3.10.1 (tags/v3.10.1:2cd268a, Dec 6 2021,
19:10:37) MSC v.1929 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license"
for more information.
>>> from scipy.integrate import simps
>>> from numpy import linspace
>>> from numpy.lib.scimath import sqrt
>>> f = lambda x: sqrt(1-x**2)
>>> r = linspace(0,1,1000)
>>> y = f(r)
>>> I = simps(y,r)
>>> 4*I
3.1415703366671104
>>>
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the script simpson4pi.py

from scipy.integrate import simps
from numpy import linspace, pi
from numpy.lib.scimath import sqrt

f = lambda x: sqrt(1-x**2)

for k in range(2,9):
x = linspace(0,1,10**k);
y = f(x);
I = 4*simps(y,x)
print(’10^%d’ % k, \

’%.16e’ % I, \
’%.2e’ % abs(I - pi))
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running the script simpson4pi.py

The output on screen:

10^2 3.1408763613344828e+00 7.16e-04
10^3 3.1415703366671104e+00 2.23e-05
10^4 3.1415919488981889e+00 7.05e-07
10^5 3.1415926313087348e+00 2.23e-08
10^6 3.1415926528852145e+00 7.05e-10
10^7 3.1415926535675127e+00 2.23e-11
10^8 3.1415926535890946e+00 6.99e-13

Getting the execution times:
on Linux and Mac: time python simpson4pi.py

on Windows: Measure-Command {python simpson4pi.py}
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timing on Windows

Measure-Command {python simpson4pi.py}

Days : 0
Hours : 0
Minutes : 0
Seconds : 5
Milliseconds : 785
Ticks : 57852572
TotalDays : 6.69589953703704E-05
TotalHours : 0.00160701588888889
TotalMinutes : 0.0964209533333333
TotalSeconds : 5.7852572
TotalMilliseconds : 5785.2572

Intel i9-9880H CPU at 2.30Ghz, 8 cores, 16 logical processors,
32.0 GB internal memory, Microsoft Windows 11.
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timing a run of the script simpson4pi1.py

Isolating the last run:

from scipy.integrate import simps
from numpy import linspace, pi
from numpy.lib.scimath import sqrt
f = lambda x: sqrt(1-x**2)
r = linspace(0, 1, 10**8)
y = f(r)
I = 4*simps(y, r)
print(’%.16e’ % I, ’%.2e’ % abs(I - pi))

Measure-Command {python simpson4pi1.py}
reports 5.200 seconds.

Can we improve this?
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multiprocessing, parallelism versus concurrency

With multiprocessing we run multiple processes simultaneously.

Each process acts as a separate program.
The multiprocessing module of python enables

I the launching of processes,
I interprocess communication.

The multithreading in Python supports concurrency
— think of the polite dinner conversation —
not true parallelism, because of the interpreter lock.
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using multiprocessing

from multiprocessing import Process
import os
from time import sleep

def say_hello(name, t):
"""
Process with name says hello.
"""
print(’hello from’, name)
print(’parent process :’, os.getppid())
print(’process id :’, os.getpid())
print(name, ’sleeps’, t, ’seconds’)
sleep(t)
print(name, ’wakes up’)
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creating the processes

The script continues:

pA = Process(target=say_hello, args = (’A’,2,))
pB = Process(target=say_hello, args = (’B’,1,))
pA.start(); pB.start()
print(’waiting for processes to wake up...’)
pA.join(); pB.join()
print(’processes are done’)
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running the script

The output of python multiprocess.py is

waiting for processes to wake up...
hello from A
parent process : 737
process id : 738
A sleeps 2 seconds
hello from B
parent process : 737
process id : 739
B sleeps 1 seconds
B wakes up
A wakes up
processes are done
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numerical integration with multiple processes

We apply domain partitioning:

∫ b

a
f (x)dx =

p−1∑
i=0

∫ a+(i+1)∆

a+i∆
f (x)dx

where
∆ =

b − a
p

, p ≥ 1.
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the script simpson4pi2.py

from multiprocessing import Process, Queue
from scipy.integrate import simps
from numpy import linspace, pi
from numpy.lib.scimath import sqrt

def call_simpson(fun, a, b, n, q):
"""
Calls Simpson rule to integrate fun
over [a, b] using n intervals.
Adds the result to the queue q.
"""
x = linspace(a, b, n)
y = fun(x)
I = simps(y, x)
q.put(I)
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the main program

def main():
"""
The number of processes is given at the command line.
"""
from sys import argv
if len(argv) < 2:

print(’Enter the number of processes’)
print(’at the command line.’)
return

npr = int(argv[1])

We want to run the script as

python simpson4pi2.py 4

to time the running of the script with 4 processes.
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defining processes and queues

crc = lambda x: sqrt(1-x**2)
nbr = 10**8
nbrsam = nbr//npr
intlen = 1.0/npr
queues = [Queue() for _ in range(npr)]
procs = []
(left, right) = (0, intlen)
for k in range(1, npr+1):

procs.append(Process(target=call_simpson, \
args = (crc, left, right, nbrsam, queues[k-1])))

(left, right) = (right, right+intlen)
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starting processes and collecting results

for process in procs:
process.start()

for process in procs:
process.join()

app = 4*sum([q.get() for q in queues])
print(’%.16e’ % app, ’%.2e’ % abs(app - pi))
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checking for speedup

Measure-Command {python3 simpson4pi1.py}
resulted in 5.200 seconds.

Now we run

Measure-Command {python simpson4pi2.py 2}
Measure-Command {python simpson4pi2.py 4}
Measure-Command {python simpson4pi2.py 8}

to find 3.985, 3.491, and 3.518 respectively.

Computing the speedups:
1 5.200/3.985 ≈ 1.30 with p = 2,
2 5.200/3.985 ≈ 1.49 with p = 4,
3 5.200/3.985 ≈ 1.48 with p = 8.
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running times and speedups on a fast workstation
Times in seconds obtained as time python3 simpson4pi2.py p
for p = 2, 4, 8, 16, and 32,
on two 22-core Intel Xeon E5-2699v4 Broadwell at 2.20GHz,
with 256GB of internal memory at 2400MHz.

For p = 1, time python3 simpson4pi1.py was used.

p real user sys speedup
1 6.586 7.766 14.135
2 3.513 7.377 12.589 1.87
4 2.011 7.154 11.701 3.27
8 1.275 8.043 12.920 5.17

16 0.953 10.095 12.893 6.91
32 0.904 14.154 13.915 7.29

Speedups are computed as
real time with p = 1

real time with p tasks
.
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the Julia programming language
picture of Software Engineering Daily web site

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 26 / 37



High Level Parallel Processing

1 High-Level Parallel Programming
models and tools

2 Multiprocessing in Python
scripting in computational science
the multiprocessing module
numerical integration with multiple processes

3 Multithreading with Julia
a fresh approach to numerical computing
parallel matrix matrix multiplication
parallel numerical integration

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 27 / 37



Parallel Numerical Linear Algebra

We apply multithreading in a Jupyter notebook,
in a kernel installed with the environment variable set to 16 threads.

julia> using IJulia
julia> installkernel("Julia (16 threads)",

env = Dict("JULIA_NUM_THREADS"=>"16"))

The matrix-matrix multiplication is executed by mul!() of BLAS,
where BLAS stands for the Basic Linear Algebra Subroutines.

Two issues we must consider.
1 Choose the size of the matrices large enough.
2 The time should not include the compilation time.
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Parallel Matrix Matrix Multiplication
The instructions in code cells of a Jupyter notebook:

using LinearAlgebra
n = 8000
A = rand(n, n);
B = rand(n, n);
C = rand(n, n);
BLAS.set_num_threads(2)
@time mul!(C, A, B)

10.722 seconds (2.87 M allocations, 5.13% compilation time)
Redo, the second time: 10.359 seconds.

BLAS.set_num_threads(4)
@time mul!(C, A, B)

6.080 seconds.
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Numerical Integration

We can estimate π, via the area of the unit disk:∫ 1

0

√
1− x2dx =

π

4 -

6

&%
'$

1 Generate random uniformly distributed points with coordinates
(x , y) ∈ [0,+1]× [0,+1].

2 We count a success when x2 + y2 ≤ 1.

By the law of large numbers,
the average of the observed successes converges to the expected
value or mean, as the number of experiments increases.
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a Julia function

A dedicated random number generator is applied:

myrand(x::Int64) = (1103515245x + 12345) % 2^31

The specification of the function is below:

"""
function estimatepi(n)

Runs a simple Monte Carlo method
to estimate pi with n samples.
"""
function estimatepi(n)
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the function estimatepi(n)

function estimatepi(n)
r = threadid()
count = 0
for i=1:n

r = myrand(r)
x = r/2^31
r = myrand(r)
y = r/2^31
count += (x^2 + y^2) <= 1

end
return 4*count/n

end
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running in a notebook with 16 threads

Observe the parallel for loop:

nt = nthreads()
estimates = zeros(nt)
import Statistics
timestart = time()

@threads for i=1:nt
estimates[i] = estimatepi(10_000_000_000/nt)

end

estpi = Statistics.mean(estimates)
elapsed16 = time() - timestart

5.387
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running on many threads on a fast workstation

Running version 1.4.0-DEV.364 (2019-10-22) on
two 22-core 2.2 GHz Intel Xeon E5-2699 processors
in a CentOS Linux workstation with 256 GB RAM.

p wall clock time elapsed time
1 1m 2.313s 62.060s
2 32.722s 32.418s
3 22.471s 22.190s
4 17.343s 17.042s
5 14.170s 13.896s
6 12.300s 11.997s
7 10.702s 10.442s
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summary

Supercomputing is for everyone as most modern software provides
options and tools to run on parallel machines.

Python is a good prototyping language to define and try
parallel algorithms on multicore workstations.

Julia is a new programming language for scientific computing
designed for performance.

Ivo Balbaert, Avik Sengupta, Malcom Sherrington:
Julia: High Performance Programming. Leverage the power
of Julia to design and develop high performing programs.
Packt Publishing, 2016.

This lecture had its focus on multiprocessing and multithreading;
Python and Julia support distributed memory parallel computing.
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Exercises

1 A Monte Carlo method to estimate π/4 generates random tuples
(x , y), with x and y uniformly distributed in [0,1]. The ratio of the
number of tuples inside the unit circle over the total number of
samples approximates π/4.

>>> from random import uniform as u
>>> X = [u(0,1) for i in xrange(1000)]
>>> Y = [u(0,1) for i in xrange(1000)]
>>> Z = zip(X,Y)
>>> F = filter(lambda t: t[0]**2 + t[1]**2 <= 1, Z)
>>> len(F)/250.0
3.1440000000000001

Use the multiprocessing module to write a parallel version, letting
processes take samples independently. Compute the speedup.

2 Develop a parallel Julia version for the simpson4pi code.

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 37 / 37


	High-Level Parallel Programming
	models and tools

	Multiprocessing in Python
	scripting in computational science
	the multiprocessing module
	numerical integration with multiple processes

	Multithreading with Julia
	a fresh approach to numerical computing
	parallel matrix matrix multiplication
	parallel numerical integration


