High-Level Parallel Programming

- High-Level Parallel Programming
 - models and tools

Multiprocessing in Python

- scripting in computational science
- the multiprocessing module
- numerical integration with multiple processes

Multithreading with Julia

- a fresh approach to numerical computing
- parallel matrix matrix multiplication
- parallel numerical integration

MCS 572 Lecture 3 Introduction to Supercomputing Jan Verschelde, 30 August 2024

High Level Parallel Processing

High-Level Parallel Programming models and tools

Multiprocessing in Pythor

- scripting in computational science
- the multiprocessing module
- numerical integration with multiple processes

3 Multithreading with Julia

- a fresh approach to numerical computing
- parallel matrix matrix multiplication
- parallel numerical integration

high-level parallel programming

What is high-level parallel programming?

Some characteristics:

- familiar: no new language needed,
- interactive: quick feedback,
- personal: no supercomputer.

Rapid prototyping can decide if parallelism is feasible for a particular computation in an application.

the HLPP conference series

The 17th international symposium on High-Level Parallel Programming and Applications (HLPP 2024), was held in Pisa, Italy, July 4-5, 2024.

Some of the topics include

- high-level programming and performance models,
- software synthesis, automatic code generation,
- applications using high-level languages and tools,
- formal models of verification.

While "high-level" also covers abstract and formal, there is a need for practical software and tools, so the "high-level" is not the opposite of technical.

イロト イポト イラト イラト

High Level Parallel Processing

High-Level Parallel Programming models and tools

Multiprocessing in Python

scripting in computational science

- the multiprocessing module
- numerical integration with multiple processes

3 Multithreading with Julia

- a fresh approach to numerical computing
- parallel matrix matrix multiplication
- parallel numerical integration

computations with Python

Advantages of the scripting language Python:

- educational, good for novice programmers;
- packages for scientific computing: NumPy, SciPy, SymPy.

SageMath, a free open source mathematics software system, uses Python to interface many open source software packages.

Our example:
$$\int_0^1 \sqrt{1-x^2} dx = \frac{\pi}{4}$$
.

We will use the Simpson rule (available in SciPy) as a relatively computational intensive example.

< ロ > < 同 > < 回 > < 回 >

interactive computing

In a Powershell window:

```
Python 3.10.1 (tags/v3.10.1:2cd268a, Dec 6 2021,
19:10:37) MSC v.1929 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license"
for more information.
>>> from scipy.integrate import simps
>>> from numpy import linspace
>>> from numpy.lib.scimath import sqrt
>>> f = lambda x: sqrt(1-x*2)
>>> r = linspace(0, 1, 1000)
>>> y = f(r)
>>> I = simps(y,r)
>>> 4*T
3.1415703366671104
>>>
```

the script simpson4pi.py

from scipy.integrate import simps
from numpy import linspace, pi
from numpy.lib.scimath import sqrt

```
f = lambda x: sqrt(1-x**2)
```

running the script simpson4pi.py

The output on screen:

- 10^2 3.1408763613344828e+00 7.16e-04
- 10^3 3.1415703366671104e+00 2.23e-05
- 10^4 3.1415919488981889e+00 7.05e-07
- 10^5 3.1415926313087348e+00 2.23e-08
- 10^6 3.1415926528852145e+00 7.05e-10
- 10^7 3.1415926535675127e+00 2.23e-11
- 10^8 3.1415926535890946e+00 6.99e-13

Getting the execution times:

- on Linux and Mac: time python simpson4pi.py
- on Windows: Measure-Command {python simpson4pi.py}

< 口 > < 同 > < 回 > < 回 > < 回 > <

timing on Windows

Measure-Command {python simpson4pi.py}

Days	:	0
Hours	:	0
Minutes	:	0
Seconds	:	5
Milliseconds	:	785
Ticks	:	57852572
TotalDays	:	6.69589953703704E-05
TotalHours	:	0.00160701588888889
TotalMinutes	:	0.0964209533333333
TotalSeconds	:	5.7852572
TotalMilliseconds	:	5785.2572

Intel i9-9880H CPU at 2.30Ghz, 8 cores, 16 logical processors, 32.0 GB internal memory, Microsoft Windows 11.

Introduction to Supercomputing (MCS 572)

high level parallelism

timing a run of the script simpson4pi1.py

Isolating the last run:

```
from scipy.integrate import simps
from numpy import linspace, pi
from numpy.lib.scimath import sqrt
f = lambda x: sqrt(1-x**2)
r = linspace(0, 1, 10**8)
y = f(r)
I = 4*simps(y, r)
print('%.l6e' % I, '%.2e' % abs(I - pi))
```

Measure-Command {python simpson4pi1.py} reports 5.200 seconds.

Can we improve this?

High Level Parallel Processing

High-Level Parallel Programming models and tools

Multiprocessing in Python

- scripting in computational science
- the multiprocessing module
- numerical integration with multiple processes

3 Multithreading with Julia

- a fresh approach to numerical computing
- parallel matrix matrix multiplication
- parallel numerical integration

multiprocessing, parallelism versus concurrency

With multiprocessing we run multiple processes simultaneously.

- Each process acts as a separate program.
- The multiprocessing module of python enables
 - the launching of processes,
 - interprocess communication.

The multithreading in Python supports concurrency — think of the polite dinner conversation not true parallelism, because of the interpreter lock.

using multiprocessing

```
from multiprocessing import Process
import os
from time import sleep
def say_hello(name, t):
    .. .. ..
    Process with name says hello.
    ......
    print('hello from', name)
    print('parent process :', os.getppid())
    print('process id :', os.getpid())
    print(name, 'sleeps', t, 'seconds')
    sleep(t)
    print(name, 'wakes up')
```

creating the processes

The script continues:

```
pA = Process(target=say_hello, args = ('A',2,))
pB = Process(target=say_hello, args = ('B',1,))
pA.start(); pB.start()
print('waiting for processes to wake up...')
pA.join(); pB.join()
print('processes are done')
```

running the script

The output of python multiprocess.py is

```
waiting for processes to wake up...
hello from A
parent process : 737
process id : 738
A sleeps 2 seconds
hello from B
parent process : 737
process id : 739
B sleeps 1 seconds
B wakes up
A wakes up
processes are done
```

High Level Parallel Processing

High-Level Parallel Programming models and tools

Multiprocessing in Python

- scripting in computational science
- the multiprocessing module

numerical integration with multiple processes

3 Multithreading with Julia

- a fresh approach to numerical computing
- parallel matrix matrix multiplication
- parallel numerical integration

numerical integration with multiple processes

We apply domain partitioning:

$$\int_{a}^{b} f(x) dx = \sum_{i=0}^{p-1} \int_{a+i\Delta}^{a+(i+1)\Delta} f(x) dx$$

where

$$\Delta=\frac{b-a}{p}, \quad p\geq 1.$$

3 × 4 3

the script simpson4pi2.py

from multiprocessing import Process, Queue
from scipy.integrate import simps
from numpy import linspace, pi
from numpy.lib.scimath import sqrt

def call_simpson(fun, a, b, n, q):
 """
 Calls Simpson rule to integrate fun
 over [a, b] using n intervals.
 Adds the result to the queue q.
 """
 x = linspace(a, b, n)
 y = fun(x)
 I = simps(y, x)

```
q.put(I)
```

the main program

```
def main():
    """
    The number of processes is given at the command line.
    """
    from sys import argv
    if len(argv) < 2:
        print('Enter the number of processes')
        print('at the command line.')
        return
    npr = int(argv[1])</pre>
```

We want to run the script as

```
python simpson4pi2.py 4
```

to time the running of the script with 4 processes.

defining processes and queues

starting processes and collecting results

```
for process in procs:
    process.start()
for process in procs:
    process.join()
app = 4*sum([q.get() for q in queues])
print('%.16e' % app, '%.2e' % abs(app - pi))
```

э.

checking for speedup

Measure-Command {python3 simpson4pi1.py} resulted in 5.200 seconds.

Now we run

```
Measure-Command {python simpson4pi2.py 2}
Measure-Command {python simpson4pi2.py 4}
Measure-Command {python simpson4pi2.py 8}
```

to find 3.985, 3.491, and 3.518 respectively.

Computing the speedups:

- **1** 5.200/3.985 \approx 1.30 with p = 2,
- **2** 5.200/3.985 \approx 1.49 with p = 4,
- **3** 5.200/3.985 \approx 1.48 with p = 8.

running times and speedups on a fast workstation

Times in seconds obtained as time python3 simpson4pi2.py p for p = 2, 4, 8, 16, and 32,

on two 22-core Intel Xeon E5-2699v4 Broadwell at 2.20GHz, with 256GB of internal memory at 2400MHz.

For p = 1, time python3 simpson4pi1.py was used.

р	real	user	sys	speedup		
1	6.586	7.766	14.135			
2	3.513	7.377	12.589	1.87		
4	2.011	7.154	11.701	3.27		
8	1.275	8.043	12.920	5.17		
16	0.953	10.095	12.893	6.91		
32	0.904	14.154	13.915	7.29		
real time with $p = 1$						
Speedups are computed as $\frac{1000 \text{ time with p}}{1000 \text{ time with p tasks}}$.						

High Level Parallel Processing

High-Level Parallel Programming models and tools

Multiprocessing in Python

- scripting in computational science
- the multiprocessing module
- numerical integration with multiple processes

Multithreading with Julia

- a fresh approach to numerical computing
- parallel matrix matrix multiplication
- parallel numerical integration

the Julia programming language

picture of Software Engineering Daily web site

Introduction to Supercomputing (MCS 572)

high level parallelism

L-3 30 August 2024

26/37

High Level Parallel Processing

High-Level Parallel Programming models and tools

Multiprocessing in Python

- scripting in computational science
- the multiprocessing module
- numerical integration with multiple processes

Multithreading with Julia

- a fresh approach to numerical computing
- parallel matrix matrix multiplication
- parallel numerical integration

Parallel Numerical Linear Algebra

We apply multithreading in a Jupyter notebook, in a kernel installed with the environment variable set to 16 threads.

The matrix-matrix multiplication is executed by mul! () of BLAS, where BLAS stands for the Basic Linear Algebra Subroutines.

Two issues we must consider.

- Choose the size of the matrices large enough.
- In time should not include the compilation time.

Parallel Matrix Matrix Multiplication

The instructions in code cells of a Jupyter notebook:

```
using LinearAlgebra
n = 8000
A = rand(n, n);
B = rand(n, n);
C = rand(n, n);
BLAS.set_num_threads(2)
@time mul!(C, A, B)
```

10.722 seconds (2.87 M allocations, 5.13% compilation time) Redo, the second time: 10.359 seconds.

```
BLAS.set_num_threads(4)
@time mul!(C, A, B)
```

6.080 seconds.

High Level Parallel Processing

High-Level Parallel Programming models and tools

Multiprocessing in Python

- scripting in computational science
- the multiprocessing module
- numerical integration with multiple processes

Multithreading with Julia

- a fresh approach to numerical computing
- parallel matrix matrix multiplication
- parallel numerical integration

Numerical Integration

We can estimate π , via the area of the unit disk:

• Generate random uniformly distributed points with coordinates $(x, y) \in [0, +1] \times [0, +1].$

2 We count a success when $x^2 + y^2 \le 1$.

By the law of large numbers,

the average of the observed successes converges to the expected value or mean, as the number of experiments increases.

EN 4 EN

a Julia function

A dedicated random number generator is applied:

```
myrand(x::Int64) = (1103515245x + 12345) % 2^31
```

The specification of the function is below:

.....

function estimatepi(n)

Runs a simple Monte Carlo method to estimate pi with n samples. """

```
function estimatepi(n)
```

э.

A (10) A (10)

the function estimatepi(n)

```
function estimatepi(n)
   r = threadid()
   count = 0
   for i=1:n
       r = myrand(r)
       x = r/2^{31}
       r = myrand(r)
       y = r/2^{31}
       count += (x^2 + y^2) <= 1
   end
   return 4*count/n
end
```

3

4 3 5 4 3 5 5

running in a notebook with 16 threads

Observe the parallel for loop:

```
nt = nthreads()
estimates = zeros(nt)
import Statistics
timestart = time()
@threads for i=1:nt
    estimates[i] = estimatepi(10_000_000_000/nt)
end
```

```
estpi = Statistics.mean(estimates)
elapsed16 = time() - timestart
```

```
5.387
```

running on many threads on a fast workstation

Running version 1.4.0-DEV.364 (2019-10-22) on two 22-core 2.2 GHz Intel Xeon E5-2699 processors in a CentOS Linux workstation with 256 GB RAM.

р	wall clock time	elapsed time
1	1m 2.313s	62.060s
2	32.722s	32.418s
3	22.471s	22.190s
4	17.343s	17.042s
5	14.170s	13.896s
6	12.300s	11.997s
7	10.702s	10.442s

summary

Supercomputing is for everyone as most modern software provides options and tools to run on parallel machines.

- Python is a good prototyping language to define and try parallel algorithms on multicore workstations.
- Julia is a new programming language for scientific computing designed for performance.

Ivo Balbaert, Avik Sengupta, Malcom Sherrington: Julia: High Performance Programming. Leverage the power of Julia to design and develop high performing programs. Packt Publishing, 2016.

This lecture had its focus on multiprocessing and multithreading; Python and Julia support distributed memory parallel computing.

3

Exercises

A Monte Carlo method to estimate π/4 generates random tuples (x, y), with x and y uniformly distributed in [0, 1]. The ratio of the number of tuples inside the unit circle over the total number of samples approximates π/4.

```
>>> from random import uniform as u
>>> X = [u(0,1) for i in xrange(1000)]
>>> Y = [u(0,1) for i in xrange(1000)]
>>> Z = zip(X,Y)
>>> F = filter(lambda t: t[0]**2 + t[1]**2 <= 1, Z)
>>> len(F)/250.0
3.14400000000001
```

Use the multiprocessing module to write a parallel version, letting processes take samples independently. Compute the speedup.

Oevelop a parallel Julia version for the simpson4pi code.