
High-Level Parallel Programming

1 High-Level Parallel Programming
models and tools

2 Multiprocessing in Python
scripting in computational science
the multiprocessing module
numerical integration with multiple processes

3 Multithreading with Julia
a fresh approach to numerical computing
parallel matrix matrix multiplication
parallel numerical integration

MCS 572 Lecture 3
Introduction to Supercomputing

Jan Verschelde, 30 August 2024

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 1 / 37



High Level Parallel Processing

1 High-Level Parallel Programming
models and tools

2 Multiprocessing in Python
scripting in computational science
the multiprocessing module
numerical integration with multiple processes

3 Multithreading with Julia
a fresh approach to numerical computing
parallel matrix matrix multiplication
parallel numerical integration

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 2 / 37



high-level parallel programming

What is high-level parallel programming?

Some characteristics:
familiar: no new language needed,
interactive: quick feedback,
personal: no supercomputer.

Rapid prototyping can decide if parallelism is feasible
for a particular computation in an application.

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 3 / 37



the HLPP conference series

The 17th international symposium on High-Level Parallel Programming
and Applications (HLPP 2024), was held in Pisa, Italy, July 4-5, 2024.

Some of the topics include
high-level programming and performance models,
software synthesis, automatic code generation,
applications using high-level languages and tools,
formal models of verification.

While “high-level” also covers abstract and formal,
there is a need for practical software and tools,
so the “high-level” is not the opposite of technical.

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 4 / 37



High Level Parallel Processing

1 High-Level Parallel Programming
models and tools

2 Multiprocessing in Python
scripting in computational science
the multiprocessing module
numerical integration with multiple processes

3 Multithreading with Julia
a fresh approach to numerical computing
parallel matrix matrix multiplication
parallel numerical integration

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 5 / 37



computations with Python

Advantages of the scripting language Python:
educational, good for novice programmers;
packages for scientific computing: NumPy, SciPy, SymPy.

SageMath, a free open source mathematics software system,
uses Python to interface many open source software packages.

Our example:
∫ 1

0

√
1− x2dx =

π

4
.

We will use the Simpson rule (available in SciPy)
as a relatively computational intensive example.

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 6 / 37



interactive computing
In a Powershell window:

Python 3.10.1 (tags/v3.10.1:2cd268a, Dec 6 2021,
19:10:37) MSC v.1929 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license"
for more information.
>>> from scipy.integrate import simps
>>> from numpy import linspace
>>> from numpy.lib.scimath import sqrt
>>> f = lambda x: sqrt(1-x**2)
>>> r = linspace(0,1,1000)
>>> y = f(r)
>>> I = simps(y,r)
>>> 4*I
3.1415703366671104
>>>

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 7 / 37



the script simpson4pi.py

from scipy.integrate import simps
from numpy import linspace, pi
from numpy.lib.scimath import sqrt

f = lambda x: sqrt(1-x**2)

for k in range(2,9):
x = linspace(0,1,10**k);
y = f(x);
I = 4*simps(y,x)
print(’10^%d’ % k, \

’%.16e’ % I, \
’%.2e’ % abs(I - pi))

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 8 / 37



running the script simpson4pi.py

The output on screen:

10^2 3.1408763613344828e+00 7.16e-04
10^3 3.1415703366671104e+00 2.23e-05
10^4 3.1415919488981889e+00 7.05e-07
10^5 3.1415926313087348e+00 2.23e-08
10^6 3.1415926528852145e+00 7.05e-10
10^7 3.1415926535675127e+00 2.23e-11
10^8 3.1415926535890946e+00 6.99e-13

Getting the execution times:
on Linux and Mac: time python simpson4pi.py

on Windows: Measure-Command {python simpson4pi.py}

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 9 / 37



timing on Windows

Measure-Command {python simpson4pi.py}

Days : 0
Hours : 0
Minutes : 0
Seconds : 5
Milliseconds : 785
Ticks : 57852572
TotalDays : 6.69589953703704E-05
TotalHours : 0.00160701588888889
TotalMinutes : 0.0964209533333333
TotalSeconds : 5.7852572
TotalMilliseconds : 5785.2572

Intel i9-9880H CPU at 2.30Ghz, 8 cores, 16 logical processors,
32.0 GB internal memory, Microsoft Windows 11.

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 10 / 37



timing a run of the script simpson4pi1.py

Isolating the last run:

from scipy.integrate import simps
from numpy import linspace, pi
from numpy.lib.scimath import sqrt
f = lambda x: sqrt(1-x**2)
r = linspace(0, 1, 10**8)
y = f(r)
I = 4*simps(y, r)
print(’%.16e’ % I, ’%.2e’ % abs(I - pi))

Measure-Command {python simpson4pi1.py}
reports 5.200 seconds.

Can we improve this?

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 11 / 37



High Level Parallel Processing

1 High-Level Parallel Programming
models and tools

2 Multiprocessing in Python
scripting in computational science
the multiprocessing module
numerical integration with multiple processes

3 Multithreading with Julia
a fresh approach to numerical computing
parallel matrix matrix multiplication
parallel numerical integration

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 12 / 37



multiprocessing, parallelism versus concurrency

With multiprocessing we run multiple processes simultaneously.

Each process acts as a separate program.
The multiprocessing module of python enables

I the launching of processes,
I interprocess communication.

The multithreading in Python supports concurrency
— think of the polite dinner conversation —
not true parallelism, because of the interpreter lock.

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 13 / 37



using multiprocessing

from multiprocessing import Process
import os
from time import sleep

def say_hello(name, t):
"""
Process with name says hello.
"""
print(’hello from’, name)
print(’parent process :’, os.getppid())
print(’process id :’, os.getpid())
print(name, ’sleeps’, t, ’seconds’)
sleep(t)
print(name, ’wakes up’)

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 14 / 37



creating the processes

The script continues:

pA = Process(target=say_hello, args = (’A’,2,))
pB = Process(target=say_hello, args = (’B’,1,))
pA.start(); pB.start()
print(’waiting for processes to wake up...’)
pA.join(); pB.join()
print(’processes are done’)

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 15 / 37



running the script

The output of python multiprocess.py is

waiting for processes to wake up...
hello from A
parent process : 737
process id : 738
A sleeps 2 seconds
hello from B
parent process : 737
process id : 739
B sleeps 1 seconds
B wakes up
A wakes up
processes are done

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 16 / 37



High Level Parallel Processing

1 High-Level Parallel Programming
models and tools

2 Multiprocessing in Python
scripting in computational science
the multiprocessing module
numerical integration with multiple processes

3 Multithreading with Julia
a fresh approach to numerical computing
parallel matrix matrix multiplication
parallel numerical integration

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 17 / 37



numerical integration with multiple processes

We apply domain partitioning:

∫ b

a
f (x)dx =

p−1∑
i=0

∫ a+(i+1)∆

a+i∆
f (x)dx

where
∆ =

b − a
p

, p ≥ 1.

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 18 / 37



the script simpson4pi2.py

from multiprocessing import Process, Queue
from scipy.integrate import simps
from numpy import linspace, pi
from numpy.lib.scimath import sqrt

def call_simpson(fun, a, b, n, q):
"""
Calls Simpson rule to integrate fun
over [a, b] using n intervals.
Adds the result to the queue q.
"""
x = linspace(a, b, n)
y = fun(x)
I = simps(y, x)
q.put(I)

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 19 / 37



the main program

def main():
"""
The number of processes is given at the command line.
"""
from sys import argv
if len(argv) < 2:

print(’Enter the number of processes’)
print(’at the command line.’)
return

npr = int(argv[1])

We want to run the script as

python simpson4pi2.py 4

to time the running of the script with 4 processes.

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 20 / 37



defining processes and queues

crc = lambda x: sqrt(1-x**2)
nbr = 10**8
nbrsam = nbr//npr
intlen = 1.0/npr
queues = [Queue() for _ in range(npr)]
procs = []
(left, right) = (0, intlen)
for k in range(1, npr+1):

procs.append(Process(target=call_simpson, \
args = (crc, left, right, nbrsam, queues[k-1])))

(left, right) = (right, right+intlen)

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 21 / 37



starting processes and collecting results

for process in procs:
process.start()

for process in procs:
process.join()

app = 4*sum([q.get() for q in queues])
print(’%.16e’ % app, ’%.2e’ % abs(app - pi))

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 22 / 37



checking for speedup

Measure-Command {python3 simpson4pi1.py}
resulted in 5.200 seconds.

Now we run

Measure-Command {python simpson4pi2.py 2}
Measure-Command {python simpson4pi2.py 4}
Measure-Command {python simpson4pi2.py 8}

to find 3.985, 3.491, and 3.518 respectively.

Computing the speedups:
1 5.200/3.985 ≈ 1.30 with p = 2,
2 5.200/3.985 ≈ 1.49 with p = 4,
3 5.200/3.985 ≈ 1.48 with p = 8.

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 23 / 37



running times and speedups on a fast workstation
Times in seconds obtained as time python3 simpson4pi2.py p
for p = 2, 4, 8, 16, and 32,
on two 22-core Intel Xeon E5-2699v4 Broadwell at 2.20GHz,
with 256GB of internal memory at 2400MHz.

For p = 1, time python3 simpson4pi1.py was used.

p real user sys speedup
1 6.586 7.766 14.135
2 3.513 7.377 12.589 1.87
4 2.011 7.154 11.701 3.27
8 1.275 8.043 12.920 5.17

16 0.953 10.095 12.893 6.91
32 0.904 14.154 13.915 7.29

Speedups are computed as
real time with p = 1

real time with p tasks
.

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 24 / 37



High Level Parallel Processing

1 High-Level Parallel Programming
models and tools

2 Multiprocessing in Python
scripting in computational science
the multiprocessing module
numerical integration with multiple processes

3 Multithreading with Julia
a fresh approach to numerical computing
parallel matrix matrix multiplication
parallel numerical integration

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 25 / 37



the Julia programming language
picture of Software Engineering Daily web site

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 26 / 37



High Level Parallel Processing

1 High-Level Parallel Programming
models and tools

2 Multiprocessing in Python
scripting in computational science
the multiprocessing module
numerical integration with multiple processes

3 Multithreading with Julia
a fresh approach to numerical computing
parallel matrix matrix multiplication
parallel numerical integration

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 27 / 37



Parallel Numerical Linear Algebra

We apply multithreading in a Jupyter notebook,
in a kernel installed with the environment variable set to 16 threads.

julia> using IJulia
julia> installkernel("Julia (16 threads)",

env = Dict("JULIA_NUM_THREADS"=>"16"))

The matrix-matrix multiplication is executed by mul!() of BLAS,
where BLAS stands for the Basic Linear Algebra Subroutines.

Two issues we must consider.
1 Choose the size of the matrices large enough.
2 The time should not include the compilation time.

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 28 / 37



Parallel Matrix Matrix Multiplication
The instructions in code cells of a Jupyter notebook:

using LinearAlgebra
n = 8000
A = rand(n, n);
B = rand(n, n);
C = rand(n, n);
BLAS.set_num_threads(2)
@time mul!(C, A, B)

10.722 seconds (2.87 M allocations, 5.13% compilation time)
Redo, the second time: 10.359 seconds.

BLAS.set_num_threads(4)
@time mul!(C, A, B)

6.080 seconds.

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 29 / 37



High Level Parallel Processing

1 High-Level Parallel Programming
models and tools

2 Multiprocessing in Python
scripting in computational science
the multiprocessing module
numerical integration with multiple processes

3 Multithreading with Julia
a fresh approach to numerical computing
parallel matrix matrix multiplication
parallel numerical integration

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 30 / 37



Numerical Integration

We can estimate π, via the area of the unit disk:∫ 1

0

√
1− x2dx =

π

4 -

6

&%
'$

1 Generate random uniformly distributed points with coordinates
(x , y) ∈ [0,+1]× [0,+1].

2 We count a success when x2 + y2 ≤ 1.

By the law of large numbers,
the average of the observed successes converges to the expected
value or mean, as the number of experiments increases.

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 31 / 37



a Julia function

A dedicated random number generator is applied:

myrand(x::Int64) = (1103515245x + 12345) % 2^31

The specification of the function is below:

"""
function estimatepi(n)

Runs a simple Monte Carlo method
to estimate pi with n samples.
"""
function estimatepi(n)

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 32 / 37



the function estimatepi(n)

function estimatepi(n)
r = threadid()
count = 0
for i=1:n

r = myrand(r)
x = r/2^31
r = myrand(r)
y = r/2^31
count += (x^2 + y^2) <= 1

end
return 4*count/n

end

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 33 / 37



running in a notebook with 16 threads

Observe the parallel for loop:

nt = nthreads()
estimates = zeros(nt)
import Statistics
timestart = time()

@threads for i=1:nt
estimates[i] = estimatepi(10_000_000_000/nt)

end

estpi = Statistics.mean(estimates)
elapsed16 = time() - timestart

5.387

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 34 / 37



running on many threads on a fast workstation

Running version 1.4.0-DEV.364 (2019-10-22) on
two 22-core 2.2 GHz Intel Xeon E5-2699 processors
in a CentOS Linux workstation with 256 GB RAM.

p wall clock time elapsed time
1 1m 2.313s 62.060s
2 32.722s 32.418s
3 22.471s 22.190s
4 17.343s 17.042s
5 14.170s 13.896s
6 12.300s 11.997s
7 10.702s 10.442s

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 35 / 37



summary

Supercomputing is for everyone as most modern software provides
options and tools to run on parallel machines.

Python is a good prototyping language to define and try
parallel algorithms on multicore workstations.

Julia is a new programming language for scientific computing
designed for performance.

Ivo Balbaert, Avik Sengupta, Malcom Sherrington:
Julia: High Performance Programming. Leverage the power
of Julia to design and develop high performing programs.
Packt Publishing, 2016.

This lecture had its focus on multiprocessing and multithreading;
Python and Julia support distributed memory parallel computing.

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 36 / 37



Exercises

1 A Monte Carlo method to estimate π/4 generates random tuples
(x , y), with x and y uniformly distributed in [0,1]. The ratio of the
number of tuples inside the unit circle over the total number of
samples approximates π/4.

>>> from random import uniform as u
>>> X = [u(0,1) for i in xrange(1000)]
>>> Y = [u(0,1) for i in xrange(1000)]
>>> Z = zip(X,Y)
>>> F = filter(lambda t: t[0]**2 + t[1]**2 <= 1, Z)
>>> len(F)/250.0
3.1440000000000001

Use the multiprocessing module to write a parallel version, letting
processes take samples independently. Compute the speedup.

2 Develop a parallel Julia version for the simpson4pi code.

Introduction to Supercomputing (MCS 572) high level parallelism L-3 30 August 2024 37 / 37


	High-Level Parallel Programming
	models and tools

	Multiprocessing in Python
	scripting in computational science
	the multiprocessing module
	numerical integration with multiple processes

	Multithreading with Julia
	a fresh approach to numerical computing
	parallel matrix matrix multiplication
	parallel numerical integration


