
Introduction to CUDA

1 Our first GPU Program
running Newton’s method in complex arithmetic
examining the CUDA Compute Capability

2 CUDA Program Structure
steps to write code for the GPU
code to compute complex roots
the kernel function and main program
a scalable programming model

3 using CUDA.jl
vector addition with thread organization

MCS 572 Lecture 18
Introduction to Supercomputing

Jan Verschelde, 7 October 2024

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 1 / 38

Introduction to CUDA

1 Our first GPU Program
running Newton’s method in complex arithmetic
examining the CUDA Compute Capability

2 CUDA Program Structure
steps to write code for the GPU
code to compute complex roots
the kernel function and main program
a scalable programming model

3 using CUDA.jl
vector addition with thread organization

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 2 / 38

computing complex square roots

To compute
√

c for c ∈ C,
we apply Newton’s method on x2 − c = 0:

x0 := c, xk+1 := xk −
x2

k − c
2xk

, k = 0,1, . . .

Five iterations suffice to obtain an accurate value for
√

c.

Suitable on GPU?
Finding roots is relevant for scientific computing.
Data parallelism: compute for many different c’s.

Application: complex root finder for polynomials in one variable.

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 3 / 38

Introduction to CUDA

1 Our first GPU Program
running Newton’s method in complex arithmetic
examining the CUDA Compute Capability

2 CUDA Program Structure
steps to write code for the GPU
code to compute complex roots
the kernel function and main program
a scalable programming model

3 using CUDA.jl
vector addition with thread organization

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 4 / 38

CUDA Compute Capability

The compute capability of an NVIDIA GPU
is represented by a version number in the format x.y,
identifies the features supported by the hardware.

What does it mean for the programmer? Some examples:
1.3 : double-precision floating-point operations
2.0 : synchronizing threads
3.5 : dynamic parallelism
5.3 : half-precision floating-point operations
6.0 : atomic addition operation on 64-bit floats
8.0 : tensor cores supporting double float precision

The compute capability is not the same as the CUDA version.

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 5 / 38

checking the card with deviceQuery on pascal
$ /usr/local/cuda/samples/1_Utilities/deviceQuery/deviceQuery
/usr/local/cuda/samples/1_Utilities/deviceQuery/deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 2 CUDA Capable device(s)

Device 0: "Tesla P100-PCIE-16GB"
CUDA Driver Version / Runtime Version 11.0 / 8.0
CUDA Capability Major/Minor version number: 6.0
Total amount of global memory: 16276 MBytes (17066885120 bytes)
(56) Multiprocessors, (64) CUDA Cores/MP: 3584 CUDA Cores
GPU Max Clock rate: 405 MHz (0.41 GHz)
Memory Clock rate: 715 Mhz
Memory Bus Width: 4096-bit
L2 Cache Size: 4194304 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Enabled
Device supports Unified Addressing (UVA): Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 2 / 0
Compute Mode:

< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 6 / 38

running bandwidthTest on pascal
$ /usr/local/cuda/samples/1_Utilities/bandwidthTest/bandwidthTest
[CUDA Bandwidth Test] - Starting...
Running on...

Device 0: Tesla P100-PCIE-16GB
Quick Mode

Host to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers

Transfer Size (Bytes) Bandwidth(MB/s)
33554432 11530.1

Device to Host Bandwidth, 1 Device(s)
PINNED Memory Transfers

Transfer Size (Bytes) Bandwidth(MB/s)
33554432 12848.3

Device to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers

Transfer Size (Bytes) Bandwidth(MB/s)
33554432 444598.8

Result = PASS

$

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 7 / 38

checking the card with deviceQuery on ampere
$ /usr/local/cuda/samples/bin/x86_64/linux/release/deviceQuery
/usr/local/cuda/samples/bin/x86_64/linux/release/deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "NVIDIA A100 80GB PCIe"
CUDA Driver Version / Runtime Version 12.4 / 12.4
CUDA Capability Major/Minor version number: 8.0
Total amount of global memory: 81038 MBytes (84974239744 bytes)
(108) Multiprocessors, (064) CUDA Cores/MP: 6912 CUDA Cores
GPU Max Clock rate: 1410 MHz (1.41 GHz)
Memory Clock rate: 1512 Mhz
Memory Bus Width: 5120-bit
L2 Cache Size: 41943040 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total shared memory per multiprocessor: 167936 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 3 copy engine(s)
Run time limit on kernels: Yes
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Enabled
Device supports Unified Addressing (UVA): Yes
Device supports Managed Memory: Yes
Device supports Compute Preemption: Yes
Supports Cooperative Kernel Launch: Yes
Supports MultiDevice Co-op Kernel Launch: Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 202 / 0
Compute Mode:

< Default (multiple host threads can use ::cudaSetDevice() with device
simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 12.4, CUDA Runtime
Version = 12.4, NumDevs = 1
Result = PASS

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 8 / 38

running bandwidthTest on ampere
$ /usr/local/cuda/samples/bin/x86_64/linux/release/bandwidthTest
[CUDA Bandwidth Test] - Starting...
Running on...

Device 0: NVIDIA A100 80GB PCIe
Quick Mode

Host to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers

Transfer Size (Bytes) Bandwidth(GB/s)
32000000 25.2

Device to Host Bandwidth, 1 Device(s)
PINNED Memory Transfers

Transfer Size (Bytes) Bandwidth(GB/s)
32000000 26.3

Device to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers

Transfer Size (Bytes) Bandwidth(GB/s)
32000000 1313.8

Result = PASS

$

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 9 / 38

Introduction to CUDA

1 Our first GPU Program
running Newton’s method in complex arithmetic
examining the CUDA Compute Capability

2 CUDA Program Structure
steps to write code for the GPU
code to compute complex roots
the kernel function and main program
a scalable programming model

3 using CUDA.jl
vector addition with thread organization

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 10 / 38

steps to write code for the GPU

Five steps to get GPU code running:

1 C and C++ functions are labeled with CUDA keywords
__device__, __global__, or __host__.

2 Determine the data for each thread to work on.

3 Transferring data from/to host (CPU) to/from the device (GPU).

4 Statements to launch data-parallel functions, called kernels.

5 Compilation with nvcc.

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 11 / 38

the NVCC compilation process

C program with CUDA extension

NVCC compiler

host code device code

host C preprocessor,
compiler, linker

device just-in-time
compiler

heterogeneous computing platform with CPUs and GPUs

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 12 / 38

step 1: CUDA extensions to functions

Three keywords before a function declaration:
__host__ : The function will run on the host (CPU).
__device__ : The function will run on the device (GPU).
__global__ : The function is called from the host but

runs on the device. This function is called a kernel.

CUDA extensions to C function declarations:

executed on callable from
__device__ double D() device device
__global__ void K() device host
__host__ int H() host host

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 13 / 38

step 2: data for each thread

The grid consists of N blocks, with blockIdx.x ∈ {0,N − 1}.

Within each block, threadIdx.x ∈ {0,blockDim.x− 1}.

thread block 0︷ ︸︸ ︷
0 1 2 3 . . .

thread block 1︷ ︸︸ ︷
0 1 2 3 . . .

thread block 2︷ ︸︸ ︷
0 1 2 3 . . .

int threadId = blockIdx.x *
blockDim.x + threadIdx.x

...
float x = input[threadID]
float y = f(x)
output[threadID] = y
...

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 14 / 38

step 3: allocating and transferring data

cudaDoubleComplex *xhost = new cudaDoubleComplex[n];

// we copy n complex numbers to the device
size_t s = n*sizeof(cudaDoubleComplex);
cudaDoubleComplex *xdevice;
cudaMalloc((void**)&xdevice,s);

cudaMemcpy(xdevice,xhost,s,cudaMemcpyHostToDevice);

// allocate memory for the result
cudaDoubleComplex *ydevice;
cudaMalloc((void**)&ydevice,s);

// copy results from device to host
cudaDoubleComplex *yhost = new cudaDoubleComplex[n];

cudaMemcpy(yhost,ydevice,s,cudaMemcpyDeviceToHost);

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 15 / 38

step 4: launching the kernel

The kernel is declared as

__global__ void squareRoot
(int n, cudaDoubleComplex *x, cudaDoubleComplex *y)

// Applies Newton’s method to compute the square root
// of the n numbers in x and places the results in y.
{

int i = blockIdx.x*blockDim.x + threadIdx.x;
...

For frequency f, dimension n, and block size w, we do:

// invoke the kernel with n/w blocks per grid
// and w threads per block
for(int i=0; i<f; i++)

squareRoot<<<n/w,w>>>(n,xdevice,ydevice);

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 16 / 38

step 5: compiling with nvcc

If the makefile contains

runCudaComplexSqrt:
nvcc -ccbin /usr/bin/gcc -o run_cmpsqrt \

runCudaComplexSqrt.cu

typing make runCudaComplexSqrt at the command prompt does

nvcc -ccbin /usr/bin/gcc -o run_cmpsqrt runCudaComplexSqrt.cu

With -ccbin we define the location of the C compiler.

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 17 / 38

Introduction to CUDA

1 Our first GPU Program
running Newton’s method in complex arithmetic
examining the CUDA Compute Capability

2 CUDA Program Structure
steps to write code for the GPU
code to compute complex roots
the kernel function and main program
a scalable programming model

3 using CUDA.jl
vector addition with thread organization

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 18 / 38

defining complex numbers

#ifndef __CUDADOUBLECOMPLEX_CU__
#define __CUDADOUBLECOMPLEX_CU__

#include <cmath>
#include <cstdlib>
#include <iomanip>
#include <vector_types.h>
#include <math_functions.h>

typedef double2 cudaDoubleComplex;

We use the double2 of vector_types.h to define complex
numbers because double2 is a native CUDA type allowing for
coalesced memory access.

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 19 / 38

random complex numbers

__host__ cudaDoubleComplex randomDoubleComplex()
// Returns a complex number on the unit circle
// with angle uniformly generated in [0,2*pi].
{

cudaDoubleComplex result;
int r = rand();
double u = double(r)/RAND_MAX;
double angle = 2.0*M_PI*u;
result.x = cos(angle);
result.y = sin(angle);
return result;

}

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 20 / 38

calling sqrt of math_functions.h

__device__ double radius (const cudaDoubleComplex c)
// Returns the radius of the complex number.
{

double result;
result = c.x*c.x + c.y*c.y;
return sqrt(result);

}

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 21 / 38

overloading for output

__host__ std::ostream& operator<<
(std::ostream& os, const cudaDoubleComplex& c)

// Writes real and imaginary parts of c,
// in scientific notation with precision 16.
{

os << std::scientific << std::setprecision(16)
<< c.x << " " << c.y;

return os;
}

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 22 / 38

defining complex addition

__device__ cudaDoubleComplex operator+
(const cudaDoubleComplex a, const cudaDoubleComplex b)

// Returns the sum of a and b.
{

cudaDoubleComplex result;
result.x = a.x + b.x;
result.y = a.y + b.y;
return result;

}

The rest of the arithmetical operations are defined
in a similar manner.

All definitions related to complex numbers are stored
in the file cudaDoubleComplex.cu.

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 23 / 38

Introduction to CUDA

1 Our first GPU Program
running Newton’s method in complex arithmetic
examining the CUDA Compute Capability

2 CUDA Program Structure
steps to write code for the GPU
code to compute complex roots
the kernel function and main program
a scalable programming model

3 using CUDA.jl
vector addition with thread organization

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 24 / 38

the kernel function
#include "cudaDoubleComplex.cu"

__global__ void squareRoot
(int n, cudaDoubleComplex *x, cudaDoubleComplex *y)

// Applies Newton’s method to compute the square root
// of the n numbers in x and places the results in y.
{

int i = blockIdx.x*blockDim.x + threadIdx.x;
cudaDoubleComplex inc;
cudaDoubleComplex c = x[i];
cudaDoubleComplex r = c;
for(int j=0; j<5; j++)
{

inc = r + r;
inc = (r*r - c)/inc;
r = r - inc;

}
y[i] = r;

}

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 25 / 38

the main function — command line arguments
int main (int argc, char*argv[])
{

if(argc < 5)
{

cout << "call with 4 arguments : " << endl;
cout << "dimension, block size, frequency, and check (0 or 1)"

<< endl;
}
else
{

int n = atoi(argv[1]); // dimension
int w = atoi(argv[2]); // block size
int f = atoi(argv[3]); // frequency
int t = atoi(argv[4]); // test or not
// we generate n random complex numbers on the host
cudaDoubleComplex *xhost = new cudaDoubleComplex[n];
for(int i=0; i<n; i++) xhost[i] = randomDoubleComplex();

The main program generates n random complex numbers with radius 1.

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 26 / 38

transferring data and launching the kernel

// copy the n random complex numbers to the device
size_t s = n*sizeof(cudaDoubleComplex);
cudaDoubleComplex *xdevice;
cudaMalloc((void**)&xdevice,s);
cudaMemcpy(xdevice,xhost,s,cudaMemcpyHostToDevice);
// allocate memory for the result
cudaDoubleComplex *ydevice;
cudaMalloc((void**)&ydevice,s);
// invoke the kernel with n/w blocks per grid
// and w threads per block
for(int i=0; i<f; i++)

squareRoot<<<n/w,w>>>(n,xdevice,ydevice);
// copy results from device to host
cudaDoubleComplex *yhost = new cudaDoubleComplex[n];
cudaMemcpy(yhost,ydevice,s,cudaMemcpyDeviceToHost);

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 27 / 38

testing one random number

if(t == 1) // test the result
{

int k = rand() % n;
cout << "testing number " << k << endl;
cout << " x = " << xhost[k] << endl;
cout << " sqrt(x) = " << yhost[k] << endl;
cudaDoubleComplex z = Square(yhost[k]);
cout << "sqrt(x)^2 = " << z << endl;

}
}
return 0;

}

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 28 / 38

Introduction to CUDA

1 Our first GPU Program
running Newton’s method in complex arithmetic
examining the CUDA Compute Capability

2 CUDA Program Structure
steps to write code for the GPU
code to compute complex roots
the kernel function and main program
a scalable programming model

3 using CUDA.jl
vector addition with thread organization

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 29 / 38

a scalable programming model

?
block 6

block 4

block 2

block 0

block 7

block 5

block 3

block 1

core 1core 0

GPU with 2 cores

core 3core 2core 1core 0

GPU with 4 cores

?

block 0 block 1 block 2 block 3

block 4 block 5 block 6 block 7

multithreaded CUDA program

? ?

block 0 block 1 block 2 block 3 block 4 block 5 block 6 block 7

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 30 / 38

running the code on pascal
A test on the correctness:

$./run_cmpsqrt 1 1 1 1
testing number 0

x = 5.3682227446949737e-01 -8.4369535119816541e-01
sqrt(x) = 8.7659063264145631e-01 -4.8123680528950746e-01

sqrt(x)^2 = 5.3682227446949726e-01 -8.4369535119816530e-01

On 64,000 numbers, 32 threads in a block, doing it 10,000 times:

$ time ./run_cmpsqrt 64000 32 10000 1
testing number 50325

x = 7.9510606509728776e-01 -6.0647039931517477e-01
sqrt(x) = 9.4739275517002119e-01 -3.2007337822967424e-01

sqrt(x)^2 = 7.9510606509728765e-01 -6.0647039931517477e-01

real 0m0.302s
user 0m0.095s
sys 0m0.207s
$

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 31 / 38

changing #threads in a block
$ time ./run_cmpsqrt 128000 32 100000 0

real 0m1.639s
user 0m0.989s
sys 0m0.650s

$ time ./run_cmpsqrt 128000 64 100000 0

real 0m1.640s
user 0m1.001s
sys 0m0.639s

$ time ./run_cmpsqrt 128000 128 100000 0

real 0m1.652s
user 0m0.952s
sys 0m0.700s

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 32 / 38

Introduction to CUDA

1 Our first GPU Program
running Newton’s method in complex arithmetic
examining the CUDA Compute Capability

2 CUDA Program Structure
steps to write code for the GPU
code to compute complex roots
the kernel function and main program
a scalable programming model

3 using CUDA.jl
vector addition with thread organization

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 33 / 38

division of the work per thread

From the CUDA.jl tutorial:

Which is taken from the technical blog at
https://developer.nvidia.com/blog/even-easier-introduction-cuda
An Even Easier Introduction to CUDA, by Mark Harris.

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 34 / 38

copied from the CUDA.jl tutorial

https://cuda.juliagpu.org/stable/tutorials/introduction

using CUDA
using Test

function gpu_add3!(y, x)
index = (blockIdx().x - 1) * blockDim().x

+ threadIdx().x
stride = gridDim().x * blockDim().x
for i = index:stride:length(y)

@inbounds y[i] += x[i]
end
return

end

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 35 / 38

launching the kernel with 256 threads per block

N = 2^20
x_d = CUDA.fill(1.0f0, N) # N Float32 1.0 on GPU
y_d = CUDA.fill(2.0f0, N) # N Float32 2.0

run with 256 threads per block

numblocks = ceil(Int, N/256)
@cuda threads=256 blocks=numblocks gpu_add3!(y_d, x_d)
result = (@test all(Array(y_d) .== 3.0f0))

println(result)

prints Test Passed

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 36 / 38

summary and references

In five steps we wrote our first complete CUDA program in C.

We started chapter 3 of the textbook by Kirk & Hwu,
covering more of the CUDA Programming Guide.

Available in /usr/local/cuda/doc are
CUDA C Best Practices Guide
CUDA Programming Guide

Also available online at nvidia.com.

Many examples of CUDA applications are available in
/usr/local/cuda/samples.

Julia solves the two languages problem.

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 37 / 38

exercises

1 Instead of 5 Newton iterations in runCudaComplexSqrt.cu
use k iterations where k is entered by the user at the command
line. What is the influence of k on the timings?

2 Modify the kernel for the complex square root so it takes on input
an array of complex coefficients of a polynomial of degree d .
Then the root finder applies Newton’s method, starting at random
points. Test the correctness and experiment to find the rate of
success, i.e.: for polynomials of degree d how many random trials
are needed to obtain d/2 roots of the polynomial?

3 Use the kernel in a python script with PyCUDA.
4 Use CUDA.jl (or Metal.jl, oneAPI.jl, AMDGPU.jl on your GPU) for

the square roots example.

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 38 / 38

	Our first GPU Program
	running Newton's method in complex arithmetic
	examining the CUDA Compute Capability

	CUDA Program Structure
	steps to write code for the GPU
	code to compute complex roots
	the kernel function and main program
	a scalable programming model

	using CUDA.jl
	vector addition with thread organization

