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computing complex square roots

To compute
√

c for c ∈ C,
we apply Newton’s method on x2 − c = 0:

x0 := c, xk+1 := xk −
x2

k − c
2xk

, k = 0,1, . . .

Five iterations suffice to obtain an accurate value for
√

c.

Suitable on GPU?
Finding roots is relevant for scientific computing.
Data parallelism: compute for many different c’s.

Application: complex root finder for polynomials in one variable.
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CUDA Compute Capability

The compute capability of an NVIDIA GPU
is represented by a version number in the format x.y,
identifies the features supported by the hardware.

What does it mean for the programmer? Some examples:
1.3 : double-precision floating-point operations
2.0 : synchronizing threads
3.5 : dynamic parallelism
5.3 : half-precision floating-point operations
6.0 : atomic addition operation on 64-bit floats
8.0 : tensor cores supporting double float precision

The compute capability is not the same as the CUDA version.
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checking the card with deviceQuery on pascal
$ /usr/local/cuda/samples/1_Utilities/deviceQuery/deviceQuery
/usr/local/cuda/samples/1_Utilities/deviceQuery/deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 2 CUDA Capable device(s)

Device 0: "Tesla P100-PCIE-16GB"
CUDA Driver Version / Runtime Version 11.0 / 8.0
CUDA Capability Major/Minor version number: 6.0
Total amount of global memory: 16276 MBytes (17066885120 bytes)
(56) Multiprocessors, ( 64) CUDA Cores/MP: 3584 CUDA Cores
GPU Max Clock rate: 405 MHz (0.41 GHz)
Memory Clock rate: 715 Mhz
Memory Bus Width: 4096-bit
L2 Cache Size: 4194304 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Enabled
Device supports Unified Addressing (UVA): Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 2 / 0
Compute Mode:

< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
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running bandwidthTest on pascal
$ /usr/local/cuda/samples/1_Utilities/bandwidthTest/bandwidthTest
[CUDA Bandwidth Test] - Starting...
Running on...

Device 0: Tesla P100-PCIE-16GB
Quick Mode

Host to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers

Transfer Size (Bytes) Bandwidth(MB/s)
33554432 11530.1

Device to Host Bandwidth, 1 Device(s)
PINNED Memory Transfers

Transfer Size (Bytes) Bandwidth(MB/s)
33554432 12848.3

Device to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers

Transfer Size (Bytes) Bandwidth(MB/s)
33554432 444598.8

Result = PASS

$
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checking the card with deviceQuery on ampere
$ /usr/local/cuda/samples/bin/x86_64/linux/release/deviceQuery
/usr/local/cuda/samples/bin/x86_64/linux/release/deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "NVIDIA A100 80GB PCIe"
CUDA Driver Version / Runtime Version 12.4 / 12.4
CUDA Capability Major/Minor version number: 8.0
Total amount of global memory: 81038 MBytes (84974239744 bytes)
(108) Multiprocessors, (064) CUDA Cores/MP: 6912 CUDA Cores
GPU Max Clock rate: 1410 MHz (1.41 GHz)
Memory Clock rate: 1512 Mhz
Memory Bus Width: 5120-bit
L2 Cache Size: 41943040 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total shared memory per multiprocessor: 167936 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 3 copy engine(s)
Run time limit on kernels: Yes
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Enabled
Device supports Unified Addressing (UVA): Yes
Device supports Managed Memory: Yes
Device supports Compute Preemption: Yes
Supports Cooperative Kernel Launch: Yes
Supports MultiDevice Co-op Kernel Launch: Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 202 / 0
Compute Mode:

< Default (multiple host threads can use ::cudaSetDevice() with device
simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 12.4, CUDA Runtime
Version = 12.4, NumDevs = 1
Result = PASS
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running bandwidthTest on ampere
$ /usr/local/cuda/samples/bin/x86_64/linux/release/bandwidthTest
[CUDA Bandwidth Test] - Starting...
Running on...

Device 0: NVIDIA A100 80GB PCIe
Quick Mode

Host to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers

Transfer Size (Bytes) Bandwidth(GB/s)
32000000 25.2

Device to Host Bandwidth, 1 Device(s)
PINNED Memory Transfers

Transfer Size (Bytes) Bandwidth(GB/s)
32000000 26.3

Device to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers

Transfer Size (Bytes) Bandwidth(GB/s)
32000000 1313.8

Result = PASS

$
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steps to write code for the GPU

Five steps to get GPU code running:

1 C and C++ functions are labeled with CUDA keywords
__device__, __global__, or __host__.

2 Determine the data for each thread to work on.

3 Transferring data from/to host (CPU) to/from the device (GPU).

4 Statements to launch data-parallel functions, called kernels.

5 Compilation with nvcc.
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the NVCC compilation process

C program with CUDA extension

NVCC compiler

host code device code

host C preprocessor,
compiler, linker

device just-in-time
compiler

heterogeneous computing platform with CPUs and GPUs
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step 1: CUDA extensions to functions

Three keywords before a function declaration:
__host__ : The function will run on the host (CPU).
__device__ : The function will run on the device (GPU).
__global__ : The function is called from the host but

runs on the device. This function is called a kernel.

CUDA extensions to C function declarations:

executed on callable from
__device__ double D() device device
__global__ void K() device host
__host__ int H() host host
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step 2: data for each thread

The grid consists of N blocks, with blockIdx.x ∈ {0,N − 1}.

Within each block, threadIdx.x ∈ {0,blockDim.x− 1}.

thread block 0︷ ︸︸ ︷
0 1 2 3 . . .

thread block 1︷ ︸︸ ︷
0 1 2 3 . . .

thread block 2︷ ︸︸ ︷
0 1 2 3 . . .

int threadId = blockIdx.x *
blockDim.x + threadIdx.x

...
float x = input[threadID]
float y = f(x)
output[threadID] = y
...
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step 3: allocating and transferring data

cudaDoubleComplex *xhost = new cudaDoubleComplex[n];

// we copy n complex numbers to the device
size_t s = n*sizeof(cudaDoubleComplex);
cudaDoubleComplex *xdevice;
cudaMalloc((void**)&xdevice,s);

cudaMemcpy(xdevice,xhost,s,cudaMemcpyHostToDevice);

// allocate memory for the result
cudaDoubleComplex *ydevice;
cudaMalloc((void**)&ydevice,s);

// copy results from device to host
cudaDoubleComplex *yhost = new cudaDoubleComplex[n];

cudaMemcpy(yhost,ydevice,s,cudaMemcpyDeviceToHost);
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step 4: launching the kernel

The kernel is declared as

__global__ void squareRoot
( int n, cudaDoubleComplex *x, cudaDoubleComplex *y )

// Applies Newton’s method to compute the square root
// of the n numbers in x and places the results in y.
{

int i = blockIdx.x*blockDim.x + threadIdx.x;
...

For frequency f, dimension n, and block size w, we do:

// invoke the kernel with n/w blocks per grid
// and w threads per block
for(int i=0; i<f; i++)

squareRoot<<<n/w,w>>>(n,xdevice,ydevice);

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 16 / 38



step 5: compiling with nvcc

If the makefile contains

runCudaComplexSqrt:
nvcc -ccbin /usr/bin/gcc -o run_cmpsqrt \

runCudaComplexSqrt.cu

typing make runCudaComplexSqrt at the command prompt does

nvcc -ccbin /usr/bin/gcc -o run_cmpsqrt runCudaComplexSqrt.cu

With -ccbin we define the location of the C compiler.
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defining complex numbers

#ifndef __CUDADOUBLECOMPLEX_CU__
#define __CUDADOUBLECOMPLEX_CU__

#include <cmath>
#include <cstdlib>
#include <iomanip>
#include <vector_types.h>
#include <math_functions.h>

typedef double2 cudaDoubleComplex;

We use the double2 of vector_types.h to define complex
numbers because double2 is a native CUDA type allowing for
coalesced memory access.
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random complex numbers

__host__ cudaDoubleComplex randomDoubleComplex()
// Returns a complex number on the unit circle
// with angle uniformly generated in [0,2*pi].
{

cudaDoubleComplex result;
int r = rand();
double u = double(r)/RAND_MAX;
double angle = 2.0*M_PI*u;
result.x = cos(angle);
result.y = sin(angle);
return result;

}
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calling sqrt of math_functions.h

__device__ double radius ( const cudaDoubleComplex c )
// Returns the radius of the complex number.
{

double result;
result = c.x*c.x + c.y*c.y;
return sqrt(result);

}
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overloading for output

__host__ std::ostream& operator<<
( std::ostream& os, const cudaDoubleComplex& c)

// Writes real and imaginary parts of c,
// in scientific notation with precision 16.
{

os << std::scientific << std::setprecision(16)
<< c.x << " " << c.y;

return os;
}
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defining complex addition

__device__ cudaDoubleComplex operator+
( const cudaDoubleComplex a, const cudaDoubleComplex b )

// Returns the sum of a and b.
{

cudaDoubleComplex result;
result.x = a.x + b.x;
result.y = a.y + b.y;
return result;

}

The rest of the arithmetical operations are defined
in a similar manner.

All definitions related to complex numbers are stored
in the file cudaDoubleComplex.cu.
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the kernel function
#include "cudaDoubleComplex.cu"

__global__ void squareRoot
( int n, cudaDoubleComplex *x, cudaDoubleComplex *y )

// Applies Newton’s method to compute the square root
// of the n numbers in x and places the results in y.
{

int i = blockIdx.x*blockDim.x + threadIdx.x;
cudaDoubleComplex inc;
cudaDoubleComplex c = x[i];
cudaDoubleComplex r = c;
for(int j=0; j<5; j++)
{

inc = r + r;
inc = (r*r - c)/inc;
r = r - inc;

}
y[i] = r;

}

Introduction to Supercomputing (MCS 572) Introduction to CUDA L-18 7 October 2024 25 / 38



the main function — command line arguments
int main ( int argc, char*argv[] )
{

if(argc < 5)
{

cout << "call with 4 arguments : " << endl;
cout << "dimension, block size, frequency, and check (0 or 1)"

<< endl;
}
else
{

int n = atoi(argv[1]); // dimension
int w = atoi(argv[2]); // block size
int f = atoi(argv[3]); // frequency
int t = atoi(argv[4]); // test or not
// we generate n random complex numbers on the host
cudaDoubleComplex *xhost = new cudaDoubleComplex[n];
for(int i=0; i<n; i++) xhost[i] = randomDoubleComplex();

The main program generates n random complex numbers with radius 1.
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transferring data and launching the kernel

// copy the n random complex numbers to the device
size_t s = n*sizeof(cudaDoubleComplex);
cudaDoubleComplex *xdevice;
cudaMalloc((void**)&xdevice,s);
cudaMemcpy(xdevice,xhost,s,cudaMemcpyHostToDevice);
// allocate memory for the result
cudaDoubleComplex *ydevice;
cudaMalloc((void**)&ydevice,s);
// invoke the kernel with n/w blocks per grid
// and w threads per block
for(int i=0; i<f; i++)

squareRoot<<<n/w,w>>>(n,xdevice,ydevice);
// copy results from device to host
cudaDoubleComplex *yhost = new cudaDoubleComplex[n];
cudaMemcpy(yhost,ydevice,s,cudaMemcpyDeviceToHost);
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testing one random number

if(t == 1) // test the result
{

int k = rand() % n;
cout << "testing number " << k << endl;
cout << " x = " << xhost[k] << endl;
cout << " sqrt(x) = " << yhost[k] << endl;
cudaDoubleComplex z = Square(yhost[k]);
cout << "sqrt(x)^2 = " << z << endl;

}
}
return 0;

}
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a scalable programming model

?
block 6

block 4

block 2

block 0

block 7

block 5

block 3

block 1

core 1core 0

GPU with 2 cores

core 3core 2core 1core 0

GPU with 4 cores

?

block 0 block 1 block 2 block 3

block 4 block 5 block 6 block 7

multithreaded CUDA program

? ?

block 0 block 1 block 2 block 3 block 4 block 5 block 6 block 7
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running the code on pascal
A test on the correctness:

$ ./run_cmpsqrt 1 1 1 1
testing number 0

x = 5.3682227446949737e-01 -8.4369535119816541e-01
sqrt(x) = 8.7659063264145631e-01 -4.8123680528950746e-01

sqrt(x)^2 = 5.3682227446949726e-01 -8.4369535119816530e-01

On 64,000 numbers, 32 threads in a block, doing it 10,000 times:

$ time ./run_cmpsqrt 64000 32 10000 1
testing number 50325

x = 7.9510606509728776e-01 -6.0647039931517477e-01
sqrt(x) = 9.4739275517002119e-01 -3.2007337822967424e-01

sqrt(x)^2 = 7.9510606509728765e-01 -6.0647039931517477e-01

real 0m0.302s
user 0m0.095s
sys 0m0.207s
$
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changing #threads in a block
$ time ./run_cmpsqrt 128000 32 100000 0

real 0m1.639s
user 0m0.989s
sys 0m0.650s

$ time ./run_cmpsqrt 128000 64 100000 0

real 0m1.640s
user 0m1.001s
sys 0m0.639s

$ time ./run_cmpsqrt 128000 128 100000 0

real 0m1.652s
user 0m0.952s
sys 0m0.700s
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division of the work per thread

From the CUDA.jl tutorial:

Which is taken from the technical blog at
https://developer.nvidia.com/blog/even-easier-introduction-cuda
An Even Easier Introduction to CUDA, by Mark Harris.
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copied from the CUDA.jl tutorial

https://cuda.juliagpu.org/stable/tutorials/introduction

using CUDA
using Test

function gpu_add3!(y, x)
index = (blockIdx().x - 1) * blockDim().x

+ threadIdx().x
stride = gridDim().x * blockDim().x
for i = index:stride:length(y)

@inbounds y[i] += x[i]
end
return

end
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launching the kernel with 256 threads per block

N = 2^20
x_d = CUDA.fill(1.0f0, N) # N Float32 1.0 on GPU
y_d = CUDA.fill(2.0f0, N) # N Float32 2.0

# run with 256 threads per block

numblocks = ceil(Int, N/256)
@cuda threads=256 blocks=numblocks gpu_add3!(y_d, x_d)
result = (@test all(Array(y_d) .== 3.0f0))

println(result)

prints Test Passed
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summary and references

In five steps we wrote our first complete CUDA program in C.

We started chapter 3 of the textbook by Kirk & Hwu,
covering more of the CUDA Programming Guide.

Available in /usr/local/cuda/doc are
CUDA C Best Practices Guide
CUDA Programming Guide

Also available online at nvidia.com.

Many examples of CUDA applications are available in
/usr/local/cuda/samples.

Julia solves the two languages problem.
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exercises

1 Instead of 5 Newton iterations in runCudaComplexSqrt.cu
use k iterations where k is entered by the user at the command
line. What is the influence of k on the timings?

2 Modify the kernel for the complex square root so it takes on input
an array of complex coefficients of a polynomial of degree d .
Then the root finder applies Newton’s method, starting at random
points. Test the correctness and experiment to find the rate of
success, i.e.: for polynomials of degree d how many random trials
are needed to obtain d/2 roots of the polynomial?

3 Use the kernel in a python script with PyCUDA.
4 Use CUDA.jl (or Metal.jl, oneAPI.jl, AMDGPU.jl on your GPU) for

the square roots example.
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