
Introduction to OpenMP
1 Programming Shared Memory Parallel Computers

the composite trapezoidal rule for π
multithreading in Julia

2 the OpenMP Application Program Interface
running crews of threads
our first program with OpenMP
compiler directives and library routines
passing the number of threads at the command line

3 Numerical Integration with OpenMP
multithreading using OpenMP
private variables and critical sections

MCS 572 Lecture 10
Introduction to Supercomputing

Jan Verschelde, 18 September 2024

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 1 / 37

Introduction to OpenMP

1 Programming Shared Memory Parallel Computers
the composite trapezoidal rule for π
multithreading in Julia

2 the OpenMP Application Program Interface
running crews of threads
our first program with OpenMP
compiler directives and library routines
passing the number of threads at the command line

3 Numerical Integration with OpenMP
multithreading using OpenMP
private variables and critical sections

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 2 / 37

the composite trapezoidal rule for π

We can approximate π via
π

4
=

∫ 1

0

√
1− x2dx .

The trapezoidal rule for
∫ b

a
f (x)dx ≈ b − a

2
(f (a) + f (b)).

Using n subintervals of [a,b]:∫ b

a
f (x)dx ≈ h

2
(f (a) + f (b)) + h

n−1∑
i=1

f (a + ih), h =
b − a

n
.

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 3 / 37

integration with four threads

∫ 1/4

0
f

∫ 1/2

1/4
f

∫ 3/4

1/2
f

∫ 1

3/4
f

Each thread has its own a, b, and c =

∫ b

a
f .

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 4 / 37

processes and threads

With MPI, we identified processors with processes:
in mpirun -p as p is larger than the available cores,
as many as p processes are spawned.

Main difference between a process and a thread:

A process is a completely separate program
with its own variables and memory allocation.
Threads share the same memory space
and global variables between routines.

A process can have many threads of execution.

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 5 / 37

Introduction to OpenMP

1 Programming Shared Memory Parallel Computers
the composite trapezoidal rule for π
multithreading in Julia

2 the OpenMP Application Program Interface
running crews of threads
our first program with OpenMP
compiler directives and library routines
passing the number of threads at the command line

3 Numerical Integration with OpenMP
multithreading using OpenMP
private variables and critical sections

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 6 / 37

the composite trapezoidal rule in Julia
"""

function traprule(f::Function,
a::Float64, b::Float64,
n::Int)

returns the composite trapezoidal rule to
approximate the integral of f over [a,b]
using n function evaluations.
"""
function traprule(f::Function,

a::Float64, b::Float64,
n::Int)

h = (b-a)/n
y = (f(a) + f(b))/2
x = a + h
for i=1:n-1

y = y + f(x)
x = x + h

end
return h*y

end

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 7 / 37

using Threads in Julia
using Printf
using Base.Threads

nt = nthreads()
println("The number of threads : $nt")
subapprox = zeros(nt)

f(x) = sqrt(1 - x^2)
dx = 1/nt
bounds = [i for i=0:dx:1]

timestart = time()
@threads for i=1:nt

subapprox[i] = traprule(f, bounds[i], bounds[i+1], 1_000_000)
end
approxpi = 4*sum(subapprox)
elapsed = time() - timestart

println("The approximation for Pi : $approxpi")
err = @sprintf("%.3e", pi - approxpi)
println("with error : $err")
println("The elapsed time : $elapsed seconds")

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 8 / 37

on 2020 M1 MacBook Air, 8 GB memory
% JULIA_NUM_THREADS=1 julia mtcomptrap.jl
The number of threads : 1
The approximation for Pi : 3.141592652402481
with error : 1.187e-09
The elapsed time : 0.09319114685058594 seconds

% JULIA_NUM_THREADS=2 julia mtcomptrap.jl
The number of threads : 2
The approximation for Pi : 3.1415926532747154
with error : 3.151e-10
The elapsed time : 0.10139918327331543 seconds

% JULIA_NUM_THREADS=4 julia mtcomptrap.jl
The number of threads : 4
The approximation for Pi : 3.1415926533683467
with error : 2.214e-10
The elapsed time : 0.10673189163208008 seconds

% JULIA_NUM_THREADS=8 julia mtcomptrap.jl
The number of threads : 8
The approximation for Pi : 3.1415926534974554
with error : 9.234e-11
The elapsed time : 0.12252998352050781 seconds

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 9 / 37

Introduction to OpenMP

1 Programming Shared Memory Parallel Computers
the composite trapezoidal rule for π
multithreading in Julia

2 the OpenMP Application Program Interface
running crews of threads
our first program with OpenMP
compiler directives and library routines
passing the number of threads at the command line

3 Numerical Integration with OpenMP
multithreading using OpenMP
private variables and critical sections

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 10 / 37

about OpenMP

The collection of

1 compiler directives (specified by #pragma)

2 library routines (call gcc -fopenmp)
e.g.: to get the number of threads

3 environment variables
(e.g.: number of threads, scheduling policies)

defines collectively the specification of the OpenMP API
for shared-memory parallelism in C, C++, and Fortran programs.

OpenMP offers a set of compiler directives to extend C/C++.

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 11 / 37

the OpenMP Execution Model
An execution on one thread:

- a1 a2 a3 - b1 b2 b3 b4 - c1 c2 -

Suppose a1, a2, a3 can be executed in parallel,
and similarly for the execution of b1, b2, b3, b4, and of c1, c2.

An execution with parallel regions:

-s-�����
B
B
BBN

a1

a2

a3 �
�
��

B
B
BNs-
C
C
C
CW

JĴ

��
�
�
��

b4

b3

b2

b1

s
C
C
C
CWJĴ

�

�
�
�
��

�
��

A
AU

c1

c2 �
��

A
AUs- s : threads start

and/or join

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 12 / 37

running a crew of four threads
thread 0

s-
B
B
BBN

a1

a2

a3 �
�
��
s-
C
C
C
CW

JĴ

�

b4

b3

b2

b1

sJĴ

�

�
�
�
��A
AU

c1

c2 �
��
s- -�

�
��� B

B
BN

C
C
C
CW�
�� A

AU�
�
�
��

thread 1

-s�����
B
B
BBN

a1

a2

a3 �
�
��

B
B
BNs
C
C
C
CW

JĴ

�
�
�
��

b4

b3

b2

b1

s
C
C
C
CW

�

�
�
�
��

�
��

c1

c2

A
AUs-- -

� JĴ

A
AU �

��

thread 2

-s-�����
a1

a2

a3

B
B
BNs-
C
C
C
CW

��
�
�
��

b4

b3

b2

b1

s
C
C
C
CWJĴ

�
�
�
��

�
��

A
AU

c1

c2 �
��

A
AUs-

B
B
BBN �

�
��JĴ

�

thread 3

-s-�����
B
B
BBN

a1

a2

a3 �
�
��

B
B
BNs-
JĴ

��
�
�
��

b4

b3

b2

b1

s
C
C
C
CWJĴ

�
�
��

A
AU

c1

c2 �
��

A
AUs-

C
C
C
CW �

�
�
��

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 13 / 37

Introduction to OpenMP

1 Programming Shared Memory Parallel Computers
the composite trapezoidal rule for π
multithreading in Julia

2 the OpenMP Application Program Interface
running crews of threads
our first program with OpenMP
compiler directives and library routines
passing the number of threads at the command line

3 Numerical Integration with OpenMP
multithreading using OpenMP
private variables and critical sections

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 14 / 37

hello world!
#include <stdio.h>
#include <omp.h>

int main (int argc, char *argv[])
{

omp_set_num_threads(8);

#pragma omp parallel
{

#pragma omp master
{

printf("Hello from the master thread %d!\n",
omp_get_thread_num());

}
printf("Thread %d says hello.\n",

omp_get_thread_num());
}
return 0;

}

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 15 / 37

compiling and running

On Mac OS X, install with brew install libomp.

% make hello_openmp0
gcc -fopenmp hello_openmp0.c -o hello_openmp0

% ./hello_openmp0
Thread 1 says hello.
Thread 2 says hello.
Thread 3 says hello.
Thread 4 says hello.
Thread 5 says hello.
Thread 6 says hello.
Hello from the master thread 0!
Thread 0 says hello.
Thread 7 says hello.
%

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 16 / 37

Introduction to OpenMP

1 Programming Shared Memory Parallel Computers
the composite trapezoidal rule for π
multithreading in Julia

2 the OpenMP Application Program Interface
running crews of threads
our first program with OpenMP
compiler directives and library routines
passing the number of threads at the command line

3 Numerical Integration with OpenMP
multithreading using OpenMP
private variables and critical sections

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 17 / 37

library routines

We compile with gcc -fopenmp and put

#include <omp.h>

at the start of the program.

The program hello_openmp0.c uses two OpenMP library routines:

void omp_set_num_threads (int n);

sets the number of threads to be used
for subsequent parallel regions.

int omp_get_thread_num (void);

returns the thread number, within the current team,
of the calling thread.

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 18 / 37

the parallel construct

We use the parallel construct as

#pragma omp parallel
{

S1;
S2;
...
Sm;

}

to execute the statements S1, S2, ..., Sm in parallel.

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 19 / 37

the master construct

#pragma omp parallel
{

#pragma omp master
{

printf("Hello from the master thread %d!\n",
omp_get_thread_num());

}
/* instructions omitted */

}

The master construct specifies a structured block
that is executed by the master thread of the team.

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 20 / 37

the single construct

Extending the hello_openmp0.c program with

#pragma omp parallel
{

/* instructions omitted */
#pragma omp single
{

printf("Only one thread %d says more ...\n",
omp_get_thread_num());

}
}

The single construct specifies that the associated block is executed
by only one of the threads in the team (not necessarily the master
thread), in the context of its implicit task.
The other threads in the team, which do not execute the block,
wait at an implicit barrier at the end of the single construct.

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 21 / 37

running example of the single construct

% ./hello_openmp1
Thread 1 says hello.
Only one thread 1 says more ...
Thread 3 says hello.
Thread 2 says hello.
Thread 4 says hello.
Thread 6 says hello.
Hello from the master thread 0!
Thread 0 says hello.
Thread 7 says hello.
Thread 5 says hello.
%

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 22 / 37

Introduction to OpenMP

1 Programming Shared Memory Parallel Computers
the composite trapezoidal rule for π
multithreading in Julia

2 the OpenMP Application Program Interface
running crews of threads
our first program with OpenMP
compiler directives and library routines
passing the number of threads at the command line

3 Numerical Integration with OpenMP
multithreading using OpenMP
private variables and critical sections

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 23 / 37

passing the number of threads at the command line

We start our C programs as

#include <stdio.h>
#include <omp.h>

int main (int argc, char *argv[])

In every C program
1 argc is the number of command line arguments,

the first argument is the name of the executable.
2 argv is an array of argc strings,

with the command line arguments.
Application: pass the number of threads when launching the program.

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 24 / 37

extending our first hello_openmp0 again

% ./hello_openmp2 4
Thread 1 says hello.
Hello from the master thread 0!
Thread 0 says hello.
Thread 3 says hello.
Thread 2 says hello.
%

If the user does not specify the number of threads:

% ./hello_openmp2
Please specify the number threads,
as the first argument of the program.
%

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 25 / 37

using command line arguments

#include <stdio.h>
#include <omp.h>

int main (int argc, char *argv[])
{

if(argc == 1)
{

printf("Please specify the number threads,\n");
printf("as the first argument of the program.\n");

return 1;
}
else
{

int nbtreads = atoi(argv[1]);

omp_set_num_threads(nbtreads);
}

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 26 / 37

the function traprule

The first argument of the C function for the composite trapezoidal rule
is the function that defines the integrand f.

double traprule
(double (*f) (double x), double a, double b, int n)

{
int i;
double h = (b-a)/n;
double y = (f(a) + f(b))/2.0;
double x;

for(i=1,x=a+h; i < n; i++,x+=h) y += f(x);

return h*y;
}

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 27 / 37

the main program

double integrand (double x)
{

return sqrt(1.0 - x*x);
}

int main (int argc, char *argv[])
{

int n = 1000000;
double my_pi = 0.0;
double pi,error;

my_pi = traprule(integrand,0.0,1.0,n);
my_pi = 4.0*my_pi; pi = 2.0*asin(1.0); error = my_pi-pi;
printf("Approximation for pi = %.15e \

with error = %.3e\n", my_pi,error);

return 0;
}

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 28 / 37

running on one core on the M1 MacBook Air
Evaluating

√
1− x2 one million times:

% make comptrap
gcc comptrap.c -o comptrap -lm

% /usr/bin/time ./comptrap
Approximation for pi = 3.141592652402481e+00 \
with error = -1.187e-09

0.01 real
0.01 user
0.00 sys

This took 10 milliseconds ...

Last line of gcc -v output:

gcc version 12.0.1 20220312 (experimental) (GCC)

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 29 / 37

Introduction to OpenMP

1 Programming Shared Memory Parallel Computers
the composite trapezoidal rule for π
multithreading in Julia

2 the OpenMP Application Program Interface
running crews of threads
our first program with OpenMP
compiler directives and library routines
passing the number of threads at the command line

3 Numerical Integration with OpenMP
multithreading using OpenMP
private variables and critical sections

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 30 / 37

the private clause of parallel

int main (int argc, char *argv[])
{

int i;
int p = 8;
int n = 1000000;
double my_pi = 0.0;
double a,b,c,h,y,pi,error;

omp_set_num_threads(p);

h = 1.0/p;

#pragma omp parallel private(i,a,b,c)
/* each thread has its own i,a,b,c */
{

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 31 / 37

updating in a critical section

#pragma omp parallel private(i,a,b,c)
/* each thread has its own i,a,b,c */
{

i = omp_get_thread_num();
a = i*h;
b = (i+1)*h;
c = traprule(integrand,a,b,n);
#pragma omp critical
/* critical section protects shared my_pi */

my_pi += c;
}
my_pi = 4.0*my_pi; pi = 2.0*asin(1.0); error = my_pi-pi;
printf("Approximation for pi = %.15e \

with error = %.3e\n",my_pi,error);

return 0;
}

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 32 / 37

Introduction to OpenMP

1 Programming Shared Memory Parallel Computers
the composite trapezoidal rule for π
multithreading in Julia

2 the OpenMP Application Program Interface
running crews of threads
our first program with OpenMP
compiler directives and library routines
passing the number of threads at the command line

3 Numerical Integration with OpenMP
multithreading using OpenMP
private variables and critical sections

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 33 / 37

private variables

A private variable is a variable in a parallel region
providing access to a different block of storage for each thread.

#pragma omp parallel private(i,a,b,c)
/* each thread has its own i,a,b,c */
{

i = omp_get_thread_num();
a = i*h;
b = (i+1)*h;
c = traprule(integrand,a,b,n);

Thread i integrates from a to b, where h = 1.0/p
and stores the result in c.

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 34 / 37

the critical construct

The critical construct restricts execution of the associated
structured block in a single thread at a time.

#pragma omp critical
/* critical section protects shared my_pi */

my_pi += c;

A thread waits at the beginning of a critical region until no threads
is executing a critical region.
The critical construct enforces exclusive access.

In the example, no two threads may increase my_pi simultaneously.

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 35 / 37

running with 8 threads

% /usr/bin/time ./comptrap_omp
Approximation for pi = 3.141592653497455e+00 \
with error = -9.234e-11

0.01 real
0.01 user
0.00 sys

Compare on one core (error = -1.187e-09):

0.01 real
0.01 user
0.00 sys

Same times but the 8-threaded result is much more accurate.

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 36 / 37

Summary + Exercises

OpenMP Application Program Interface Version 5.2 Nov 2021
is available at http://www.openmp.org.

Exercises:
1 Modify the hello world! program with OpenMP so that the

master thread prompts the user for a name which is used in the
greeting displayed by thread 5. Note that only one thread, the one
with number 5, greets the user.

2 Modify the comptrap_omp program so that the number of
threads is passed at the command line.
Run experiments with various number of threads, starting at 2 and
then doubling to 4, 8, 16, and 32. Make a table with wall clock
times (the reported real) and the errors.

3 Compute the flops (floating point operations per second) for the
comptrap_omp run in the lecture slides.

Introduction to Supercomputing (MCS 572) Introduction to OpenMP L-10 18 September 2024 37 / 37

	Programming Shared Memory Parallel Computers
	the composite trapezoidal rule for
	multithreading in Julia

	the OpenMP Application Program Interface
	running crews of threads
	our first program with OpenMP
	compiler directives and library routines
	passing the number of threads at the command line

	Numerical Integration with OpenMP
	multithreading using OpenMP
	private variables and critical sections

