Tasking with Julia

0 The NCSA Supercomputer Delta
@ using a real supercomputer

e Programming Parallel Shared Memory Computers
@ tasking with Julia

e Parallel Recursive Functions
@ the Fibonacci numbers
@ parallel recursive quadrature
@ parallel merge sort

e Basic Linear Algebra Subprograms
@ multithreaded matrix multiplication

MCS 572 Lecture 13
Introduction to Supercomputing
Jan Verschelde, 25 September 2024

Introduction to Supercomputing (MCS 572) Tasking with Julia L-13 25 September 2025 1/35

Tasking with Julia

ﬂ The NCSA Supercomputer Delta

@ using a real supercomputer

Introduction to Supercomputing (MCS 572)

Tasking with Julia

The NCSA Supercomputer Delta

From the top 500 of June 2024:

Rmax Rpeak
Rank System Cores (PFlop/s) (PFlop/s)
227 Delta - Apollo 6500, AMD EPYC 7763 64C 2.45GHz, NVIDIA 49,600 3.81 8.05
A100, Slingshot-10, HPE
NCSA

United States

Our course has access to the CPU nodes of Delta.

Delta offers 124 CPU nodes consisting of:
@ Dual AMD 64-core 2.45 GHz Milan processors
@ 256 GB DDR4-3200 RAM
@ 800 GB NVMe solid-state disk

Introduction to Supercomputing (MCS 572) Tasking with Julia L-13 25 September 2025 3/ 35

getting started

Consider mpi_hello_world.c from Lecture 4.
Use scp to get the program on your NCSA account.

Then at the terminal when logged in at an interactive node, type
mpicc —-o hello mpi_hello_world.c

to compile the program. The output is in the file hello.
Type accounts to see the balance on our project.
Our account name should be used in the s1urm script.

Look at the NCSA System Documentation Hub, on Delta.
The sample scripts of the Quick Start Guide are great.

SLURM = Simple Linux Utility for Resource Management.

Introduction to Supercomputing (MCS 572) Tasking with Julia L-13 25 September 2025 4/35

the script to run 8 mpi jobs on delta

#!/bin/bash

#SBATCH —--mem=4g

#SBATCH --nodes=8

#SBATCH --ntasks-per-node=1

#SBATCH —--cpus—-per—-task=1

#SBATCH --partition=cpu

#SBATCH --account=bdje-delta-cpu # returned by "accounts"
#SBATCH —--job-name=mpi_hello_world

#SBATCH —-time=00:01:00 # hh:mm:ss for the job
#SBATCH —--constraint="scratch"

#SBATCH -e slurm-%j.err

#SBATCH -o slurm-%j.out

module reset # drop modules
module load openmpi # load modules needed
module list # job documentation and metadata

echo "job is starting on ‘hostname“"
srun hello

Introduction to Supercomputing (MCS 572) Tasking with Julia L-13 25 September 2025 5/ 35

submitting a job

If the script is saved as mpi_hello_world.slurm,
submit the job with sbatch:

sbatch mpi_hello_world.slurm

Type squeue | more to see your job.

The output will be in a file with extension out
and error messages in the file with extension err.

Introduction to Supercomputing (MCS 572) Tasking with Julia L-13 25 September 2025 6/35

Tasking with Julia

e Programming Parallel Shared Memory Computers
@ tasking with Julia

Introduction to Supercomputing (MCS 572)

Tasking with Julia

tasking with Julia

Julia is a new programming language for scientific computing
designed for performance.

The tasking in Julia is inspired by parallel programming systems
like Cilk, Intel Threading Building Blocks, and Go.

This lecture is based on a blogpost, of 23 July 2019,
https://julialang.org/blog/2019/07/multithreading
by Jeff Bezanson, Jameson Nash, and Kiran Pamnany,

as an early preview of Julia version 1.3.0.

Tasks are units of work, mapped to threads.

Introduction to Supercomputing (MCS 572) Tasking with Julia L-13 25 September 2025 8/35

Tasking with Julia

e Parallel Recursive Functions

@ the Fibonacci numbers

Introduction to Supercomputing (MCS 572)

Tasking with Julia

the Fibonacci numbers

The sequence of Fibonacci numbers F, are defined as
Fo=0, F =1, andforn>1:F,=F,_1+ Fp_o.
This leads to a natural recursive function.

@ The recursion generates many function calls.

©@ Wihile inefficient to compute Fp,
this recursion serves as a parallel pattern.

The parallel version is the opener of the blogpost.

Introduction to Supercomputing (MCS 572) Tasking with Julia L-13 25 September 2025

10/35

a parallel recursive Fibonacci function

The Fibonacci function with tasking

@ demonstrates the generation of a large number of tasks
with one thread.

@ No parallelism will result from this example.

But it is instructive to introduce basic task constructs.

@ Witht = @spawn F ()
we start a task t to compute F (), for some function F.

@ The fetch (t) waits for t to complete
and gets its return value.

Introduction to Supercomputing (MCS 572) Tasking with Julia L-13 25 September 2025

11/35

command line arguments

Shows the name of the Julia program
and the command line arguments.

print (PROGRAM_FILE, " has ", length(ARGS))
println (" arguments.")
println ("The command line arguments :")
for x in ARGS

println (x)
end

Introduction to Supercomputing (MCS 572) Tasking with Julia L-13 25 September 2025

12/35

the number of threads

If the file showthreads. j1 contains

using Base.Threads

nbt = nthreads/()
println ("The number of threads : ", nbt)

then run via typing
JULIA_NUM_THREADS=8 julia showthreads.jl
at the command prompt. Alternatively, type

julia -t 8 showthreads.jl

Introduction to Supercomputing (MCS 572) Tasking with Julia L-13 25 September 2025

13/35

a parallel recursive Fibonacci function
import Base.Threads.(@spawn

function fib(n::Int)
if n < 2
return n
end
t = @spawn fib(n-2)
return fib(n-1) + fetch(t)
end

if length (ARGS) > 0
nbr = parse(Int64, ARGS[1])
println (fib (nbr))

else
println (fib (10))

end

Introduction to Supercomputing (MCS 572) Tasking with Julia

L-13 25 September 2025

14/35

about fibmt. j1

Run typing
time JULIA_NUM_THREADS=8 julia fibmt.jl 10

at the command prompt to compute the 10-th Fibonacci number
with tasks mapped to 8 threads.

The recursive function £ib illustrates the starting of a task
and the synchronization of the sibling task.

@ t = @spawn fib (n-2) starts atask to compute fib (n-2)
@ fetch (t) waits for t to complete and gets its return value

There can not be any speedup because of the only computation,
the 7 +’ happens after the synchronization.

Introduction to Supercomputing (MCS 572) Tasking with Julia L-13 25 September 2025

15/35

Tasking with Julia

e Parallel Recursive Functions

@ parallel recursive quadrature

Introduction to Supercomputing (MCS 572)

Tasking with Julia

parallel recursive quadrature

b
Apply a numerical integration rule R(f, a, b, n) to / f(x)dx.
a

The rule R(f, a, b, n) takes on input
@ the function f, bounds a, b of [a, b], and
@ the number n of function evaluations.

The rule returns and approximation A and an error estimate e.

If e is larger than some tolerance, then
@ c = (b- a)/2is the middle of [a, b],
@ compute Ay, e; = R(f, a, c, n),
© compute Az, e; = R(f, c, a, n),
© return Ay + A, 1 + 65.

This is the same pattern as Fibonacci.

Introduction to Supercomputing (MCS 572) Tasking with Julia L-13 25 September 2025 17/35

the composite Trapezoidal rule applied recursively
Using n subintervals of [a, b], the rule is
n—1 b_a

R(f.a.b.n) = (@) +1(b) + hY_ fla+ i), h=""
i=

:
Our setup: f(x) = &, [a,b] = [0, 1], / edx — e 1.

0
Keep n fixed. Let d be the depth of the recursion. The level is ¢.

F(,d, f,a b,n):
If £ = d then
return R(f, a, b, n)
else
c=(b—a)/2
return F(¢+1,d,f,a,c,n)+ F({+1,d,f,c, b,n).

Introduction to Supercomputing (MCS 572) Tasking with Julia L-13 25 September 2025 18/35

the tree of function calls

The root of the tree is the first call, omitting the value for n.

F(0,2,1,0,1)

T

F(1,2,£,0,%) F(1,2,f,5,1)

/ /N

F(2,2,£,0,1) F(2,2.f,5 1) F@2f132) F22f31)

FNEN

At the leaves, the rule is applied.

As all computations are concentrated at the leaves,
we expect speedups from a parallel execution.

Introduction to Supercomputing (MCS 572) Tasking with Julia L-13 25 September 2025 19/35

a recursive parallel integration function

function rectraprule(level::Int64,depth::Int64,
f::Function,a::Floaté64,
b::Float64,n::Int64)
if level == depth
return traprule(f,a,b,n)
else
middle = (b-a)/2

t = @spawn rectraprule (level+1l,depth, \
f,a,middle, n)
return rectraprule (level+1l,depth, \

f,middle,b,n) + fetch(t)

end
end

Introduction to Supercomputing (MCS 572) Tasking with Julia L-13 25 September 2025

20/35

runs with Julia 1.5.3 on pascal, depth = 4

$ time JULIA_NUM_THREADS=2 julia traprulerecmt.jl 4
1.7182818284590451e+00
1.7182818292271964e+00 error : 7.68e-10

real 0m5.207s
user O0m9.543s
sys Om0.734s

$ time JULIA_NUM_THREADS=4 julia traprulerecmt.jl 4
1.7182818284590451e+00
1.7182818292271964e+00 error : 7.68e-10

real Om3.120s
user 0m9.872s
sys Om0.727s

$ time JULIA_NUM_THREADS=8 julia traprulerecmt.jl 4
1.7182818284590451e+00
1.7182818292271964e+00 error : 7.68e-10

real Oml.985s
user Oml0.617s
sys Om0.735s
$

Introduction to Supercomputing (MCS 572) Tasking with Julia L-13 25 September 2025

21/835

Tasking with Julia

e Parallel Recursive Functions

@ parallel merge sort

Introduction to Supercomputing (MCS 572)

Tasking with Julia

parallel merge sort

Merge sort works by divide and conquer, recursively as:
@ If no or one element, then return.
@ Split in two equal halves.
@ Sort the first half.
© Sort the second half.
@ Merge the sorted halves.
The two above sort statements are recursive.

The sort algorithm will work in place, modifying the input,
without returning. Instead of fetch, we use wait.

The wait (t) waits on task t to finish.

Introduction to Supercomputing (MCS 572) Tasking with Julia L-13 25 September 2025 23/35

the function psort!

Sorts the elements of v in place, from hi to lo.
nwnn
function psort! (v, lo::Int=1, hi::Int=length(v))
if lo >= hi
return v

end

if hi - lo < 100000 # no multithreading
sort! (view(v, lo:hi), alg = MergeSort)
return v

end

The above code handles the base cases.

Introduction to Supercomputing (MCS 572) Tasking with Julia L-13 25 September 2025 24/35

split and sort

The function continues:

mid = (lo+hi)>>>1 # find the midpoint

task to sort the first half starts
half = @spawn psort! (v, lo, mid)

runs with the current call below
psort! (v, mid+1, hi)

wait for the lower half to finish
wait (half)

then next comes the merge ...

Introduction to Supercomputing (MCS 572) Tasking with Julia L-13 25 September 2025 25/35

merging the sorted halves

temp = v[lo:mid] # workspace for merging

i, k, j =1, lo, mid+l # merge the two sorted sub-arrays

@inbounds while k < j <= hi
if v[j] < temp[i]

v(ik] = v[]]
jo+=1
else
v[k] = temp[i]
i+=1
end
k += 1
end
@inbounds while k < j
v[i] = temp[i]
k += 1
i +=1
end
return v

end

Introduction to Supercomputing (MCS 572) Tasking with Julia

the main function, with @t ime

Calls the psort! once
to avoid compilation overhead.
function main ()

a = rand(100)

b = copy(a)

psort! (b)
a = rand(20000000)
b = copy (a)
@time psort! (b)
end
main ()

Introduction to Supercomputing (MCS 572) Tasking with Julia L-13 25 September 2025

27/35

runs with Julia 1.5.3 on pascal

$ for n in 1 2 4 8; do JULIA_NUM_THREADS=$n julia mergesortmt.jl; done
2.219275 seconds (3.31 k allocations: 686.950 MiB, 3.34% gc time)
1.439491 seconds (3.59 k allocations: 686.959 MiB, 6.41% gc time
0.920875 seconds (3.63 k allocations: 686.963 MiB, 3.90% gc time
0.625733 seconds (3.73 k allocations: 686.969 MiB, 4.45% gc time

Compare to the wall clock time:

$ time JULIA_NUM_THREADS=8 julia mergesortmt.jl
0.618549 seconds (3.72 k allocations: 686.969 MiB, 4.78% gc time)

real Oml.220s
user 0m3.579s
sys Oml.015s
$

Introduction to Supercomputing (MCS 572) Tasking with Julia L-13 25 September 2025 28/35

Tasking with Julia

o Basic Linear Algebra Subprograms

@ multithreaded matrix multiplication

Introduction to Supercomputing (MCS 572)

Tasking with Julia

inplace matrix matrix multiplication

julia> using LinearAlgebra

julia> A=[1.0 2.0; 3.0 4.0]; B=[1.0 1.0; 1.0 1.01;
julia> C = similar(B); mul! (C, A, B)

2X2 Array{Float64,2}:

3.0 3.0
7.0 7.0

Introduction to Supercomputing (MCS 572) Tasking with Julia L-13 25 September 2025 30/35

multithreaded matrix multiplication

Basic Linear Algebra Subprograms (BLAS) specifies common
elementary linear algebra operations.

help?> BLAS.set_num_threads
set_num_threads (n)

Set the number of threads the BLAS library should use.

Setting the number of threads provides a parallel matrix multiplication.

Introduction to Supercomputing (MCS 572) Tasking with Julia L-13 25 September 2025 31/35

a Julia program matmatmulmt. j1

using LinearAlgebra

if length (ARGS) < 2
println ("use as")
print (" julia ", PROGRAM_FILE)
println (" dimension nthreads")
else
n = parse(Int, ARGS[1])
o) parse (Int, ARGSI[2])

BLAS.set_num_threads (p)

A = rand(n, n)
B = rand(n, n)
C = similar (B)

@time mul! (C, A, B)
end

Introduction to Supercomputing (MCS 572) Tasking with Julia L-13 25 September 2025 32/35

runs with Julia 1.5.3 on pascal

$ julia matmatmulmt.jl 8000 1
20.823673 seconds (2.70 M allocations: 130.252 MiB)

$ julia matmatmulmt.jl 8000 2
11.338446 seconds (2.70 M allocations: 130.252 MiB)

$ julia matmatmulmt.jl 8000 4
6.242092 seconds (2.70 M allocations: 130.252 MiB)

$ julia matmatmulmt.jl 8000 8
3.853406 seconds (2.70 M allocations: 130.252 MiB)

$ julia matmatmulmt.jl 8000 16
2.487637 seconds (2.70 M allocations: 130.252 MiB)

$ julia matmatmulmt.jl 8000 32
1.864454 seconds (2.70 M allocations: 130.252 MiB)

Introduction to Supercomputing (MCS 572) Tasking with Julia L-13 25 September 2025 33/35

the peak flops performance

peakflops computes the peak flop rate of the computer
by using double precision gemm! .

julia> using LinearAlgebra

julia> peakflops (8000)
3.331289611013868el1l

julia> peakflops (16000)
3.475269847112081ell

julia> peakflops (4000)
3.130204729573054el11

Introduction to Supercomputing (MCS 572) Tasking with Julia L-13 25 September 2025 34/35

Exercises

@ Use Delta to solve exercise 2 of Lecture 9.

@ Execute the recursive trapezoidal rule for different number of
evaluations and increasing depths of recursion.
For which values do you observe the best speedups?

@ Run the peakflops on your computer.
For which dimension do you see the highest value?
Compute the number of flops and relate this to the specifications
of your computer.

Introduction to Supercomputing (MCS 572) Tasking with Julia L-13 25 September 2025 35/35

	The NCSA Supercomputer Delta
	using a real supercomputer

	Programming Parallel Shared Memory Computers
	tasking with Julia

	Parallel Recursive Functions
	the Fibonacci numbers
	parallel recursive quadrature
	parallel merge sort

	Basic Linear Algebra Subprograms
	multithreaded matrix multiplication

