
Thread Organization and Matrix Multiplication

1 Thread Organization
grids, blocks, and threads
using threadIdx and blockIdx
setting the execution configuration parameters

2 Matrix Matrix Multiplication
accessing submatrices with thread identifiers
CUDA code for thread organization
submatrices with threads in CUDA.jl
thread synchronization
revisiting the kernel of matrixMul

MCS 572 Lecture 21
Introduction to Supercomputing

Jan Verschelde, 14 October 2024

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 1 / 33

Thread Organization and Matrix Multiplication

1 Thread Organization
grids, blocks, and threads
using threadIdx and blockIdx
setting the execution configuration parameters

2 Matrix Matrix Multiplication
accessing submatrices with thread identifiers
CUDA code for thread organization
submatrices with threads in CUDA.jl
thread synchronization
revisiting the kernel of matrixMul

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 2 / 33

grids, blocks, and threads

The code that runs on the GPU is defined in a function, the kernel.

A kernel launch
creates a grid of blocks, and
each block has one or more threads.

The organization of the grids and blocks can be 1D, 2D, or 3D.

During the running of the kernel:
Threads in the same block are executed simultaneously.
Blocks are scheduled by the streaming multiprocessors.

The P100 has 56 Streaming Multiprocessors (SMs) and
threads are executed in groups of 32 (the warp size).
Each SM has 64 cores.
This implies: 56× 64 = 3584 threads can run simultaneously.
The A100 has 108 SMs, also with 64 cores each.

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 3 / 33

a scalable programming model

?
block 6

block 4

block 2

block 0

block 7

block 5

block 3

block 1

core 1core 0

GPU with 2 cores

core 3core 2core 1core 0

GPU with 4 cores

?

block 0 block 1 block 2 block 3

block 4 block 5 block 6 block 7

multithreaded CUDA program

? ?

block 0 block 1 block 2 block 3 block 4 block 5 block 6 block 7

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 4 / 33

Thread Organization and Matrix Multiplication

1 Thread Organization
grids, blocks, and threads
using threadIdx and blockIdx
setting the execution configuration parameters

2 Matrix Matrix Multiplication
accessing submatrices with thread identifiers
CUDA code for thread organization
submatrices with threads in CUDA.jl
thread synchronization
revisiting the kernel of matrixMul

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 5 / 33

identifying threads

All threads execute the same code, defined by the kernel.

The builtin variable threadIdx

identifies every thread in a block uniquely; and
defines the data processed by the thread.

The builtin variable blockDim holds the number of threads in a block.

In a one dimensional organization, we use only threadIdx.x and
blockDim.x. For 2D and 3D, the other components

threadIdx.y belongs to the range 0..blockDim.y;
threadIdx.z belongs to the range 0..blockDim.z.

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 6 / 33

data for each thread

The grid consists of N blocks, with blockIdx.x ∈ {0,N − 1}.

Within each block, threadIdx.x ∈ {0,blockDim.x− 1}.

thread block 0︷ ︸︸ ︷
0 1 2 3 . . .

thread block 1︷ ︸︸ ︷
0 1 2 3 . . .

thread block 2︷ ︸︸ ︷
0 1 2 3 . . .

int threadId = blockIdx.x *
blockDim.x + threadIdx.x

...
float x = input[threadID]
float y = f(x)
output[threadID] = y
...

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 7 / 33

Thread Organization and Matrix Multiplication

1 Thread Organization
grids, blocks, and threads
using threadIdx and blockIdx
setting the execution configuration parameters

2 Matrix Matrix Multiplication
accessing submatrices with thread identifiers
CUDA code for thread organization
submatrices with threads in CUDA.jl
thread synchronization
revisiting the kernel of matrixMul

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 8 / 33

setting the execution configuration parameters

Suppose the kernel is defined by the function F
with input arguments x and output arguments y, then

dim3 dimGrid(128,1,1);
dim3 dimBlock(32,1,1);
F<<<dimGrid,dimBlock>>>(x,y);

launches a grid of 128 blocks. The grid is a one dimensional array.

Each block in the grid is also one dimensional and has 32 threads.

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 9 / 33

multidimensional thread organization

Limitations of the P100 and V100:
Maximum number of threads per block: 1,024.

Maximum sizes of each dimension of a block: 1,024× 1,024× 64.
Because 1,024 is the upper limit for the number of threads in a
block, the largest square 2D block is 32× 32, as 322 = 1,024.

Maximum sizes of each dimension of a grid:
2,147,483,647× 65,535× 65,535.
2,147,483,647 is the upper limit for the builtin variable
gridDim.x, while 65,535 is the upper limit for the builtin variables
gridDim.y and gridDim.z.

The same limitations apply for the A100.

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 10 / 33

a 3D example

Suppose the function F defines the kernel,
with argument x, then

dim3 dimGrid(3,2,4);
dim3 dimBlock(5,6,2);
F<<<dimGrid,dimBlock>>>(x);

launches a grid with
3× 2× 4 blocks; and
each block has 5× 6× 2 threads.

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 11 / 33

Thread Organization and Matrix Multiplication

1 Thread Organization
grids, blocks, and threads
using threadIdx and blockIdx
setting the execution configuration parameters

2 Matrix Matrix Multiplication
accessing submatrices with thread identifiers
CUDA code for thread organization
submatrices with threads in CUDA.jl
thread synchronization
revisiting the kernel of matrixMul

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 12 / 33

submatrices

Consider a grid of dimension 2× 2× 1
to store a 4-by-4 matrix in tiles of dimensions 2× 2× 1:

3

0

2

1

1

2

0

3

(0,0,0)

a0,0 a0,1

a1,0 a1,1

(0,1,0)

b0,0 b0,1

b1,0 b1,1

(1,0,0)

c0,0 c0,1

c1,0 c1,1

(1,1,0)

d0,0 d0,1

d1,0 d1,1

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 13 / 33

mapping threads to entries in the matrix

A kernel launch with a grid of dimensions 2× 2× 1
where each block has dimensions 2× 2× 1 creates 16 threads.

3

0

2

1

1

2

0

3

(0,0,0)

a0,0 a0,1

a1,0 a1,1

(0,1,0)

b0,0 b0,1

b1,0 b1,1

(1,0,0)

c0,0 c0,1

c1,0 c1,1

(1,1,0)

d0,0 d0,1

d1,0 d1,1 3

0

2

1

1

2

0

3

(0,0,0)

0 1

2 3

(0,1,0)

4 5

6 7

(1,0,0)

8 9

10 11

(1,1,0)

12 13

14 15

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 14 / 33

linear address calculation

A kernel launch with a grid of dimensions 2× 2× 1
where each block has dimensions 2× 2× 1 creates 16 threads.

3

0

2

1

1

2

0

3

(0,0,0)

0 1

2 3

(0,1,0)

4 5

6 7

(1,0,0)

8 9

10 11

(1,1,0)

12 13

14 15

x[0][0][0][0][0][0] = 0
x[0][0][0][0][1][0] = 1
x[0][0][0][1][0][0] = 2
x[0][0][0][1][1][0] = 3
x[0][1][0][0][0][0] = 4
x[0][1][0][0][1][0] = 5
x[0][1][0][1][0][0] = 6
x[0][1][0][1][1][0] = 7
x[1][0][0][0][0][0] = 8
x[1][0][0][0][1][0] = 9
x[1][0][0][1][0][0] = 10
x[1][0][0][1][1][0] = 11
x[1][1][0][0][0][0] = 12
x[1][1][0][0][1][0] = 13
x[1][1][0][1][0][0] = 14
x[1][1][0][1][1][0] = 15

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 15 / 33

Thread Organization and Matrix Multiplication

1 Thread Organization
grids, blocks, and threads
using threadIdx and blockIdx
setting the execution configuration parameters

2 Matrix Matrix Multiplication
accessing submatrices with thread identifiers
CUDA code for thread organization
submatrices with threads in CUDA.jl
thread synchronization
revisiting the kernel of matrixMul

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 16 / 33

the main program

int main (int argc, char* argv[])
{

const int xb = 2; /* gridDim.x */
const int yb = 2; /* gridDim.y */
const int zb = 1; /* gridDim.z */
const int xt = 2; /* blockDim.x */
const int yt = 2; /* blockDim.y */
const int zt = 1; /* blockDim.z */
const int n = xb*yb*zb*xt*yt*zt;

printf("allocating array of length %d...\n",n);

/* allocating and initializing on the host */

int *xhost = (int*)calloc(n,sizeof(int));
for(int i=0; i<n; i++) xhost[i] = -1.0;

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 17 / 33

copy to device and kernel launch

int *xdevice;
size_t sx = n*sizeof(int);
cudaMalloc((void**)&xdevice,sx);
cudaMemcpy(xdevice,xhost,sx,cudaMemcpyHostToDevice);

/* set the execution configuration for the kernel */

dim3 dimGrid(xb,yb,zb);
dim3 dimBlock(xt,yt,zt);
matrixFill<<<dimGrid,dimBlock>>>(xdevice);

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 18 / 33

the kernel definition

__global__ void matrixFill (int *x)
/*
* Fills the matrix using blockIdx and threadIdx. */

{
int bx = blockIdx.x;
int by = blockIdx.y;
int tx = threadIdx.x;
int ty = threadIdx.y;
int row = by*blockDim.y + ty;
int col = bx*blockDim.x + tx;
int dim = gridDim.x*blockDim.x;
int i = row*dim + col;
x[i] = i;

}

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 19 / 33

copying to host and writing the result

/* copy data from device to host */
cudaMemcpy(xhost,xdevice,sx,cudaMemcpyDeviceToHost);
cudaFree(xdevice);

int *p = xhost;
for(int i1=0; i1 < xb; i1++)

for(int i2=0; i2 < yb; i2++)
for(int i3=0; i3 < zb; i3++)

for(int i4=0; i4 < xt; i4++)
for(int i5=0; i5 < yt; i5++)

for(int i6=0; i6 < zt; i6++)
printf("x[%d][%d][%d][%d][%d][%d] = %d\n",

i1,i2,i3,i4,i5,i6,*(p++));
return 0;

}

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 20 / 33

Thread Organization and Matrix Multiplication

1 Thread Organization
grids, blocks, and threads
using threadIdx and blockIdx
setting the execution configuration parameters

2 Matrix Matrix Multiplication
accessing submatrices with thread identifiers
CUDA code for thread organization
submatrices with threads in CUDA.jl
thread synchronization
revisiting the kernel of matrixMul

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 21 / 33

organization.jl
using CUDA

"""
function matFill!(A)

fills the array using the blockIdx and threadIdx.
"""
function matFill!(A)

bx = blockIdx().x - 1
by = blockIdx().y - 1
tx = threadIdx().x - 1
ty = threadIdx().y - 1
row = by*blockDim().y + ty
col = bx*blockDim().x + tx
dim = gridDim().x*blockDim().x
idx = 1 + row*dim + col
A[idx] = idx
return nothing

end

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 22 / 33

organization.jl continued

xb = 2 # gridDim.x
yb = 2 # gridDim.y
zb = 1 # gridDim.z
xt = 2 # blockDim.x
yt = 2 # blockDim.y
zt = 1 # blockDim.z

dim = xb*yb*zb*xt*yt*zt
A_h = zeros(dim)
A_d = CuArray(A_h)

@cuda threads=(xt, yt, zt) blocks=(xb, yb, zb)
matFill!(A_d)

A_h = Array(A_d)
println(A_d)
println(A_h)

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 23 / 33

Thread Organization and Matrix Multiplication

1 Thread Organization
grids, blocks, and threads
using threadIdx and blockIdx
setting the execution configuration parameters

2 Matrix Matrix Multiplication
accessing submatrices with thread identifiers
CUDA code for thread organization
submatrices with threads in CUDA.jl
thread synchronization
revisiting the kernel of matrixMul

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 24 / 33

thread synchronization

In a block all threads run independently.

CUDA allows threads in the same block to coordinate their activities
using a barrier synchronization function:

__syncthreads().

The thread executing __syncthreads() will be held at the calling
location in the code until every thread in the block reaches the location.

Placing a __syncthreads() ensures that all threads in a block have
completed a task before moving on.

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 25 / 33

applied to matrix multiplication with shared memory

Ci,j =

m/w∑
k=1

Ai,k · Bk ,j

A C

B

i

� m -

j
6

m

?

� p -

6

n

?

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 26 / 33

application of __syncthreads()

With tiled matrix matrix multiplication using shared memory,
all threads in the block collaborate to copy the tiles Ai,k and Bk ,j from
global memory to shared memory.

→ Before the calculation of the inner products, all threads must finish
their copy statement: they all execute the __syncthreads().

Every thread computes one inner product.

→ Before moving on to the next tile, all threads must finish, therefore,
they all execute the __syncthreads() after computing their inner
product and moving on to the next phase.

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 27 / 33

Thread Organization and Matrix Multiplication

1 Thread Organization
grids, blocks, and threads
using threadIdx and blockIdx
setting the execution configuration parameters

2 Matrix Matrix Multiplication
accessing submatrices with thread identifiers
CUDA code for thread organization
submatrices with threads in CUDA.jl
thread synchronization
revisiting the kernel of matrixMul

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 28 / 33

the kernel of matrixMul

template <int BLOCK_SIZE> __global__ void
matrixMul(float* C, float* A, float* B, int wA, int wB)
{

int bx = blockIdx.x; // Block index
int by = blockIdx.y;
int tx = threadIdx.x; // Thread index
int ty = threadIdx.y;
// Index of the first sub-matrix of A processed by the block
int aBegin = wA * BLOCK_SIZE * by;
// Index of the last sub-matrix of A processed by the block
int aEnd = aBegin + wA - 1;
// Step size used to iterate through the sub-matrices of A
int aStep = BLOCK_SIZE;
// Index of the first sub-matrix of B processed by the block
int bBegin = BLOCK_SIZE * bx;
// Step size used to iterate through the sub-matrices of B
int bStep = BLOCK_SIZE * wB;

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 29 / 33

the submatrices

// Csub is used to store the element of the block sub-matrix
// that is computed by the thread
float Csub = 0;

// Loop over all the sub-matrices of A and B
// required to compute the block sub-matrix
for (int a = aBegin, b = bBegin;

a <= aEnd;
a += aStep, b += bStep) {

// Declaration of the shared memory array As used to
// store the sub-matrix of A
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

// Declaration of the shared memory array Bs used to
// store the sub-matrix of B
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 30 / 33

loading and multiplying
// Load the matrices from device memory
// to shared memory; each thread loads
// one element of each matrix
AS(ty, tx) = A[a + wA * ty + tx];
BS(ty, tx) = B[b + wB * ty + tx];

// Synchronize to make sure the matrices are loaded
__syncthreads();

// Multiply the two matrices together;
// each thread computes one element
// of the block sub-matrix

#pragma unroll
for (int k = 0; k < BLOCK_SIZE; ++k)

Csub += AS(ty, k) * BS(k, tx);

// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of A and B in the next iteration
__syncthreads();

}

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 31 / 33

the end of the kernel

// Write the block sub-matrix to device memory;
// each thread writes one element
int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
C[c + wB * ty + tx] = Csub;

}

Recommended reading:
NVIDIA CUDA Programming Guide.
Available at http://developer.nvdia.com.

Vasily Volkov and James W. Demmel: Benchmarking GPUs to tune
dense linear algebra. In Proceedings of the 2008 ACM/IEEE
conference on Supercomputing. IEEE Press, 2008. Article No. 31.

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 32 / 33

summary and exercises

We covered more about the essentials of GPU acceleration.

1 Find the limitations of the grid and block sizes for the graphics
card on your laptop or desktop.

2 Extend the simple code with the three dimensional thread
organization to a tiled matrix-vector multiplication for numbers
generated at random as 0 or 1.

3 Use Julia to define an accelerated tiled matrix matrix
multiplication. Verify its correctness and examine its performance.

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-21 14 October 2024 33 / 33

	Thread Organization
	grids, blocks, and threads
	using threadIdx and blockIdx
	setting the execution configuration parameters

	Matrix Matrix Multiplication
	accessing submatrices with thread identifiers
	CUDA code for thread organization
	submatrices with threads in CUDA.jl
	thread synchronization
	revisiting the kernel of matrixMul

