
Memory Coalescing Techniques
1 Accessing Global and Shared Memory

acceleration with graphics processing units
memory coalescing to global memory
avoiding bank conflicts in shared memory

2 Memory Coalescing Techniques
accessing global memory for a matrix
using shared memory for coalescing

3 Avoiding Bank Conflicts
data staging algorithms
arrays of composite data
computing consecutive powers

MCS 572 Lecture 31
Introduction to Supercomputing

Jan Verschelde, 6 November 2024

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 1 / 37

Memory Coalescing Techniques

1 Accessing Global and Shared Memory
acceleration with graphics processing units
memory coalescing to global memory
avoiding bank conflicts in shared memory

2 Memory Coalescing Techniques
accessing global memory for a matrix
using shared memory for coalescing

3 Avoiding Bank Conflicts
data staging algorithms
arrays of composite data
computing consecutive powers

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 2 / 37

acceleration with graphics processing units

Graphics Processing Units (GPUs) achieve teraflop performance:
can execute a trillion floating-point operations per second.

Instruction level, data parallel algorithms are required:
1 blocks of threads execute the same instructions on different data,
2 many more threads than the number of cores must be launched,

to keep the GPU fully occupied and achieve teraflop performance.

Blocks of threads are launched by the Central Processing Unit (CPU),
called the host, and the device (GPU) accelerates the computations.

In this lecture, we look at how threads access memory,
we define memory coalescing and bank conflicts.

Avoiding bank conflicts leads to better performing algorithms.

Data staging algorithms arrange data for memory coalescing.

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 3 / 37

Memory Coalescing Techniques

1 Accessing Global and Shared Memory
acceleration with graphics processing units
memory coalescing to global memory
avoiding bank conflicts in shared memory

2 Memory Coalescing Techniques
accessing global memory for a matrix
using shared memory for coalescing

3 Avoiding Bank Conflicts
data staging algorithms
arrays of composite data
computing consecutive powers

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 4 / 37

dynamic random access memories (DRAMs)

Accessing data in the global memory is critical to the performance
of a CUDA application.

In addition to tiling techniques utilizing shared memories
we discuss memory coalescing techniques to move data efficiently
from global memory into shared memory and registers.

Global memory is implemented with dynamic random access
memories (DRAMs). Reading one DRAM is a very slow process.

Modern DRAMs use a parallel process:
Each time a location is accessed, many consecutive locations that
includes the requested location are accessed.

If an application uses data from consecutive locations before moving
on to other locations, the DRAMs work close to the advertised peak
global memory bandwidth.

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 5 / 37

memory coalescing

Recall that all threads in a warp execute the same instruction.

When all threads in a warp execute a load instruction, the hardware
detects whether the threads access consecutive memory locations.

The most favorable global memory access is achieved when the same
instruction for all threads in a warp accesses global memory locations.

In this favorable case, the hardware coalesces all memory accesses
into a consolidated access to consecutive DRAM locations.

Definition (memory coalescing)
If, in a warp, thread 0 accesses location n, thread 1 accesses location
n + 1, . . . thread 31 accesses location n + 31, then all these accesses
are coalesced, that is: combined into one single access.

The CUDA C Best Practices Guide gives a high priority
recommendation to coalesced access to global memory.

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 6 / 37

an example of a global memory access by a warp

from Figure G-1 of the NVIDIA Programming Guide.

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 7 / 37

aligned memory access for higher compute capability

Figure 16 of the 2016 NVIDIA Programming Guide

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 8 / 37

mis-aligned memory access

Figure 16 of the 2016 NVIDIA Programming Guide

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 9 / 37

alignment in memory

In /usr/local/cuda/include/vector_types.h
we find the definition of the type double2 as

struct __device_builtin__ __builtin_align__(16) double2
{

double x, y;
};

The __align__(16) causes the doubles in double2 to be 16-byte
or 128-bit aligned.

Using the double2 type for the real and imaginary part of a complex
number allows for coalesced memory access.

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 10 / 37

exploring the effects of misaligned memory access

With a simple copy kernel we can explore
what happens when access to global memory is misaligned:

__global__ void copyKernel
(float *output, float *input, int offset)

{
int i = blockIdx.x*blockDim.x + threadIdx.x + offset;
output[i] = input[i];

}

The bandwidth will decrease significantly for offset > 1.

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 11 / 37

Memory Coalescing Techniques

1 Accessing Global and Shared Memory
acceleration with graphics processing units
memory coalescing to global memory
avoiding bank conflicts in shared memory

2 Memory Coalescing Techniques
accessing global memory for a matrix
using shared memory for coalescing

3 Avoiding Bank Conflicts
data staging algorithms
arrays of composite data
computing consecutive powers

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 12 / 37

shared memory and memory banks

Shared memory has 32 banks that are organized such that
successive 32-bit words are assigned to successive banks,
i.e.: interleaved.

The bandwidth of shared memory is 32 bits per bank per clock cycle.
Because shared memory is on chip, uncached shared memory latency
is roughly 100× lower than global memory.

Definition (bank conflict)
A bank conflict occurs if two or more threads access any bytes within
different 32-bit words belonging to the same bank.

If two or more threads access any bytes within the same 32-bit word,
then there is no bank conflict between these threads.

The CUDA C Best Practices Guide gives a medium priority
recommendation to shared memory access without bank conflicts.

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 13 / 37

examples of strided shared memory accesses

from Figure G-2 of the NVIDIA Programming Guide.

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 14 / 37

irregular and colliding shared memory accesses

from Figure G-3 of the NVIDIA Programming Guide.

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 15 / 37

computing all prefix sumss s
?

����������������9+
?

����������������9+
?

����������������9+
?

����������������9+
?

����������������9+
?

����������������9+
?

����������������9+
?

����������������9+
?

����������������9+
?

����������������9+
?

����������������9+
?

����������������9+
?

����������������9+
?

����������������9+
?

����������������9+
?

����������������9+

?

��������9+
?

��������9+
?

��������9+
?

��������9+
?

��������9+
?

��������9+
?

��������9+
?

��������9+

?
�����

+
?

�����
+

?
�����

+
?

�����
+

?
�

�	
+

?
�

�	
+

?
�
��

+

The kernel was discussed earlier.

Sequential addressing is free of bank conflicts.

Mark Harris. Parallel Prefix Sum (Scan) with CUDA.
NVIDIA, April 2007.

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 16 / 37

Memory Coalescing Techniques

1 Accessing Global and Shared Memory
acceleration with graphics processing units
memory coalescing to global memory
avoiding bank conflicts in shared memory

2 Memory Coalescing Techniques
accessing global memory for a matrix
using shared memory for coalescing

3 Avoiding Bank Conflicts
data staging algorithms
arrays of composite data
computing consecutive powers

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 17 / 37

accessing the elements in a matrix

Consider two ways of accessing the elements in a matrix:
1 elements are accessed row after row; or
2 elements are accessed column after column.




-ccccccccccccccccc -ccccccccccccccccc -ccccccccccccccccc




?

cccccccccccccccc
?

cccccccccccccccc
?

cccccccccccccccc

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 18 / 37

linear address system

Consider a 4-by-4 matrix:

PP��

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

a0,0 a0,1 a0,2 a0,3 a1,0 a1,1 a1,2 a1,3 a2,0 a2,1 a2,2 a2,3 a3,0 a3,1 a3,2 a3,3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In C, the matrix is stored row wise as a one dimensional array.

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 19 / 37

first access
Threads t0, t1, t2, and t3 access the elements on the first two columns:

? ?

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

6 6 6 6

first load t0 t1 t2 t3
6 6 6 6

second load t0 t1 t2 t3

a0,0 a0,1 a0,2 a0,3 a1,0 a1,1 a1,2 a1,3 a2,0 a2,1 a2,2 a2,3 a3,0 a3,1 a3,2 a3,3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 20 / 37

second access
Four threads t0, t1, t2, and t3 access elements on the first two rows:

-

-a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

6 6 6 6

first load t0 t1 t2 t3
6 6 6 6

second load t0 t1 t2 t3

a0,0 a0,1 a0,2 a0,3 a1,0 a1,1 a1,2 a1,3 a2,0 a2,1 a2,2 a2,3 a3,0 a3,1 a3,2 a3,3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 21 / 37

uncoalesced versus coalesced access

6 6 6 6

first load t0 t1 t2 t3
6 6 6 6

second load t0 t1 t2 t3

a0,0 a0,1 a0,2 a0,3 a1,0 a1,1 a1,2 a1,3 a2,0 a2,1 a2,2 a2,3 a3,0 a3,1 a3,2 a3,3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

6 6 6 6

first load t0 t1 t2 t3
6 6 6 6

second load t0 t1 t2 t3

a0,0 a0,1 a0,2 a0,3 a1,0 a1,1 a1,2 a1,3 a2,0 a2,1 a2,2 a2,3 a3,0 a3,1 a3,2 a3,3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 22 / 37

Memory Coalescing Techniques

1 Accessing Global and Shared Memory
acceleration with graphics processing units
memory coalescing to global memory
avoiding bank conflicts in shared memory

2 Memory Coalescing Techniques
accessing global memory for a matrix
using shared memory for coalescing

3 Avoiding Bank Conflicts
data staging algorithms
arrays of composite data
computing consecutive powers

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 23 / 37

tiled matrix-matrix multiplication

Ci,j =

m/w∑
k=1

Ai,k · Bk ,j

A C

B












i

� m -

j
6

m

?

� p -

6

n

?

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 24 / 37

tiled matrix multiplication with shared memory

For Ci,j =

m/w∑
k=1

Ai,k · Bk ,j , A ∈ Rn×m, B ∈ Rm×p, Ai,k ,Bk ,j ,Ci,j ∈ Rw×w ,

every warp reads one tile Ai,k of A and one tile Bk ,j of B: every thread
in the warp reads one element of Ai,k and one element of Bk ,j .

The number of threads equals w , the width of one tile, and threads are
identified with tx = threadIdx.x and ty = threadIdx.y.
The by = blockIdx.y and bx = blockIdx.x correspond
respectively to the first and the second index of each tile, so we have
row = by*w+ ty and col = bx*w+ tx.

Row wise access to A uses A[row*m + (k*w + tx)]. For B:
B[(k*w+ty)*m + col] = B[(k*w+ty)*m + bx*w+tx].

Adjacent threads in a warp have adjacent tx values
so we have coalesced access also to B.

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 25 / 37

tiled matrix multiplication kernel

__global__ void mul (float *A, float *B, float *C, int m)
{

__shared__ float As[w][w];
__shared__ float Bs[w][w];
int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;
int col = bx*w + tx; int row = by*w + ty;
float Cv = 0.0;
for(int k=0; k<m/w; k++)
{

As[ty][tx] = A[row*m + (k*w + tx)];
Bs[ty][tx] = B[(k*w + ty)*m + col];
__syncthreads();
for(int ell=0; ell<w; ell++)

Cv += As[ty][ell]*Bs[ell][tx];
C[row][col] = Cv;

}
}

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 26 / 37

Memory Coalescing Techniques

1 Accessing Global and Shared Memory
acceleration with graphics processing units
memory coalescing to global memory
avoiding bank conflicts in shared memory

2 Memory Coalescing Techniques
accessing global memory for a matrix
using shared memory for coalescing

3 Avoiding Bank Conflicts
data staging algorithms
arrays of composite data
computing consecutive powers

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 27 / 37

data staging algorithms

All threads in the same warp execute the same instruction.

When retrieving/storing data from global memory, one instruction in a
kernel defines the retrieval/storage of 32 data elements.

With memory coalescing, retrieving/storing 32 data elements requires
as much time as retrieving/storing one data element.

Definition (data staging algorithm)
A data staging algorithm arranges the data for memory coalescing.

Arranging data involves positioning the input and output data
so that adjacent data elements are accessed by adjacent threads.

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 28 / 37

Memory Coalescing Techniques

1 Accessing Global and Shared Memory
acceleration with graphics processing units
memory coalescing to global memory
avoiding bank conflicts in shared memory

2 Memory Coalescing Techniques
accessing global memory for a matrix
using shared memory for coalescing

3 Avoiding Bank Conflicts
data staging algorithms
arrays of composite data
computing consecutive powers

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 29 / 37

arrays of composite data

Consider an array of complex numbers and/or multiple doubles.

The elements of such arrays are composite.
Every complex number has a real and imaginary part.
These parts can be one double, or a multiple double.
A quad double consists of a most significant double,
the second most, third most, fourth most significant double.

Using the straighforward representation will lead to bank conflicts.

Instead of an array of complex doubles, use two arrays:
1 one array with the real doubles,
2 another array with the imaginary doubles.

An array of complex quad doubles is stored in 8 arrays.

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 30 / 37

Memory Coalescing Techniques

1 Accessing Global and Shared Memory
acceleration with graphics processing units
memory coalescing to global memory
avoiding bank conflicts in shared memory

2 Memory Coalescing Techniques
accessing global memory for a matrix
using shared memory for coalescing

3 Avoiding Bank Conflicts
data staging algorithms
arrays of composite data
computing consecutive powers

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 31 / 37

consecutive powers

Consider the following problem:

Input : x0, x1, x2, . . . x31, all of type float.

Output : x2
0 , x

3
0 , x

4
0 , . . . , x

33
0 , x2

1 , x
3
1 , x

4
1 , . . . , x

33
1 , x2

2 , x
3
2 , x

4
2 , . . . , x

33
2 ,

. . ., x2
31, x

3
31, x

4
31, . . . , x

33
31 .

This gives 32 threads in a warp 1,024 multiplications to do.

Assume the input and output resides in shared memory.

How to compute without bank conflicts?

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 32 / 37

writing with stride

Observe the order of the output sequence:

Input : x0, x1, x2, . . . x31, all of type float.

Output : x2
0 , x

3
0 , x

4
0 , . . . , x

33
0 , x2

1 , x
3
1 , x

4
1 , . . . , x

33
1 , x2

2 , x
3
2 , x

4
2 , . . . , x

33
2 ,

. . ., x2
31, x

3
31, x

4
31, . . . , x

33
31 .

If thread i computes x2
i , x

3
i , x

4
i , . . . , x

33
i , then after the first step,

all threads write x2
0 , x

2
1 , x

2
2 , . . . , x

2
31 to shared memory.

If the stride is 32, all threads write into the same bank.

Instead of a simultaneous computation of 32 powers at once,
the writing to shared memory will be serialized.

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 33 / 37

changed order of storage

If we alter the order in the output sequence:

Input : x0, x1, x2, . . . x31, all of type float.

Output : x2
0 , x

2
1 , x

2
1 , . . . , x

2
31, x3

0 , x
3
1 , x

3
2 , . . . , x

3
31, x4

0 , x
4
1 , x

4
2 , . . . , x

4
31,

. . ., x33
0 , x33

1 , x33
2 , . . . , x33

31 .

After the first step, thread i writes x2
i in adjacent memory,

next to x2
i−1 (if i > 0) and x2

i+1 (if i < 31).

Without bank conflicts, the speedup will be close to 32.

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 34 / 37

a basic Julia version
using CUDA

"""
function gpupwr32!(a, b)

raises the elements in the array a
to the powers 2, 3, .., 33,
writing the results in the array b.
"""
function gpupwr32!(a, b)

i = threadIdx().x # starts at 1
idx = 1 + 32*(i-1)
b[idx] = a[i]*a[i]
idx = idx + 1
for p=3:33

b[idx] = a[i]*b[idx-1]
idx = idx + 1

end
return nothing

end

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 35 / 37

launching the kernel

dx = convert(Float32, 0.2/31)
x_h = [0.9f0 + (k-1)*dx for k=1:32]
y_h = [0.0f0 for k=1:32*32] # output
println("the input numbers : ", x_h)
x_d = CuArray(x_h)
y_d = CuArray(y_h)

run with 32 threads

@cuda threads=32 gpupwr32!(x_d, y_d)

The complete code compares with the output of cpupwr32!.

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 36 / 37

summary and exercises

Writing GPU accelerated code requires the application of data staging
algorithms: the arrangement of data for memory coalescing.

We covered §6.2 in the book of Kirk & Hwu.
1 Run copyKernel for large enough arrays for zero offset and

an offset equal to two. Measure the timings and deduce the
differences in memory bandwidth between the two different values
for offset.

2 Consider the kernel of matrixMul in the GPU computing SDK.
Is the loading of the tiles into shared memory coalesced?
Justify your answer.

3 Write a CUDA program for the computation of consecutive
powers, using coalesced access of the values for the input
elements. Compare the two orders of storing the output sequence
in shared memory: once with and once without bank conflicts.

Introduction to Supercomputing (MCS 572) Memory Coalescing Techniques L-31 6 November 2024 37 / 37

	Accessing Global and Shared Memory
	acceleration with graphics processing units
	memory coalescing to global memory
	avoiding bank conflicts in shared memory

	Memory Coalescing Techniques
	accessing global memory for a matrix
	using shared memory for coalescing

	Avoiding Bank Conflicts
	data staging algorithms
	arrays of composite data
	computing consecutive powers

