
Parallel Gaussian Elimination

1 LU and Cholesky Factorization
factoring a square matrix
tiled Cholesky factorization

2 Blocked LU Factorization
deriving blocked formulations of LU
right and left looking LU factorizations
tiled algorithm for LU factorization

3 The PLASMA Software Library and the cuSOLVER API
Parallel Linear Algebra Software for Multicore Architectures
the cuSOLVER library

MCS 572 Lecture 35
Introduction to Supercomputing

Jan Verschelde, 15 November 2024

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 1 / 29

Parallel Gaussian Elimination

1 LU and Cholesky Factorization
factoring a square matrix
tiled Cholesky factorization

2 Blocked LU Factorization
deriving blocked formulations of LU
right and left looking LU factorizations
tiled algorithm for LU factorization

3 The PLASMA Software Library and the cuSOLVER API
Parallel Linear Algebra Software for Multicore Architectures
the cuSOLVER library

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 2 / 29

solving Ax = b with the LU factorization

To solve an n-dimensional linear system Ax = b
we factor A as a product of two triangular matrices, A = LU:

L is lower triangular, L = [ℓi,j], ℓi,j = 0 if j > i and ℓi,i = 1.
U is upper triangular U = [ui,j], ui,j = 0 if i > j .

Solving Ax = b is equivalent to solving L(Ux) = b:
1 Forward substitution: Ly = b.
2 Backward substitution: Ux = y.

Factoring A costs O(n3), solving triangular systems costs O(n2).

For numerical stability, we apply partial pivoting and compute PA = LU,
where P is a permutation matrix.

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 3 / 29

LU factorization of the matrix A

for column j = 1,2, . . . ,n − 1 in A do
1 find the largest element ai,j in column j (for i ≥ j);
2 if i ̸= j , then swap rows i and j ;

3 for i = j + 1, . . .n, for k = j + 1, . . . ,n do ai,k := ai,k −
(

ai,j

aj,j

)
aj,k .

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 4 / 29

Cholesky factorization
If A is symmetric, AT = A, and positive semidefinite: ∀x : xT Ax ≥ 0,
then we better compute a Cholesky factorization: A = LLT ,
where L is a lower triangular matrix.

Because A is positive semidefinite, no pivoting is needed,
and we need about half as many operations as LU.

for j = 1,2, . . . ,n do
for k = 1,2, . . . , j − 1 do

aj,j := aj,j − a2
j,k ;

aj,j :=
√aj,j ;

for i = j + 1, . . . ,n do
for k = 1,2, . . . , j do

ai,j := ai,j − ai,kaj,k
ai,j := ai,j/aj,j

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 5 / 29

Parallel Gaussian Elimination

1 LU and Cholesky Factorization
factoring a square matrix
tiled Cholesky factorization

2 Blocked LU Factorization
deriving blocked formulations of LU
right and left looking LU factorizations
tiled algorithm for LU factorization

3 The PLASMA Software Library and the cuSOLVER API
Parallel Linear Algebra Software for Multicore Architectures
the cuSOLVER library

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 6 / 29

tiled matrices

Let A be a symmetric, positive definite n-by-n matrix.

For tile size b, let n = p × b and consider

A =


A1,1 A2,1 · · · Ap,1
A2,1 A2,2 · · · Ap,2

...
...

. . .
...

Ap,1 Ap,2 · · · Ap,p

 ,

where Ai,j is an b-by-b matrix.

A crude classification of memory hierarchies distinguishes between
registers (small), cache (medium), and main memory (large).

To reduce data movements, we want to keep data in registers
and cache as much as possible.

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 7 / 29

tiled Cholesky factorization

for k = 1,2, . . . ,p do
DPOTF2(Ak ,k ,Lk ,k) — — Lk ,k := Cholesky(Ak ,k)
for i = k + 1, . . . ,p do
DTRSM(Lk ,k ,Ai,k ,Li,k) — — Li,k := Ai,kL−T

k ,k
end for
for i = k + 1, . . . ,p do

for j = k + 1, . . . ,p do
DGSMM(Li,k ,Lj,k ,Ai,j) — — Ai,j := Ai,j − Li,kLT

j,k
end for

end for

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 8 / 29

Parallel Gaussian Elimination

1 LU and Cholesky Factorization
factoring a square matrix
tiled Cholesky factorization

2 Blocked LU Factorization
deriving blocked formulations of LU
right and left looking LU factorizations
tiled algorithm for LU factorization

3 The PLASMA Software Library and the cuSOLVER API
Parallel Linear Algebra Software for Multicore Architectures
the cuSOLVER library

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 9 / 29

blocked LU factorization

The optimal size of the blocks is machine dependent.

 A1,1 A1,2 A1,3
A2,1 A2,2 A2,3
A3,1 A3,2 A3,3

 =

 L1,1
L2,1 L2,2
L3,1 L3,2 L3,3

 U1,1 U1,2 U1,3
U2,2 U2,3

U3,3


Expanding the right hand side and equating to the matrix at the left
gives formulations for the LU factorization.

A1,1 = L1,1U1,1 A1,2 = L1,1U1,2 A1,3 = L1,1U1,3
A2,1 = L2,1U1,1 A2,2 = L2,1U1,2 + L2,2U2,2 A2,3 = L2,1U1,3 + L2,2U2,3
A3,1 = L3,1U1,1 A3,2 = L3,1U1,2 + L3,2U2,2 A3,3 = L3,1U1,3 + L3,2U2,3

+ L3,3U3,3

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 10 / 29

right looking LU
We store the Li,j ’s and Ui,j ’s in the original matrix: A1,1 A1,2 A1,3

A2,1 A2,2 A2,3
A3,1 A3,2 A3,3

 =

 L1,1
L2,1 I
L3,1 I

 U1,1 U1,2 U1,3
B2,2 B2,3
B3,2 B3,3


The matrices Bi,j ’s are obtained after a first block LU step.
To find L2,2, L3,2, and U2,2 we use{

A2,2 = L2,1U1,2 + L2,2U2,2
A3,2 = L3,1U1,2 + L3,2U2,2

and
{

A2,2 = L2,1U1,2 + B2,2
A3,2 = L3,1U1,2 + B3,2

Eliminating A2,2 − L2,1U1,2 and A3,2 − L3,1U1,2 gives{
B2,2 = L2,2U2,2
B3,2 = L3,2U2,2

Via LU on B2,2 we obtain L2,2 and U2,2. Then: L3,2 := B3,2U−1
2,2 .

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 11 / 29

Parallel Gaussian Elimination

1 LU and Cholesky Factorization
factoring a square matrix
tiled Cholesky factorization

2 Blocked LU Factorization
deriving blocked formulations of LU
right and left looking LU factorizations
tiled algorithm for LU factorization

3 The PLASMA Software Library and the cuSOLVER API
Parallel Linear Algebra Software for Multicore Architectures
the cuSOLVER library

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 12 / 29

right and left looking

The formulas we derived are similar to the scalar case
and are called right looking.

But we may organize the LU factorization differently:

@
@

@
@
@
@
@
@
@
@

right looking

@
@
@
@
@
@
@
@
@

@

left looking

What is good looking? Left is best for data access.

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 13 / 29

left looking formulas

Going from P1A to P2P1A: L1,1
L2,1 I
L3,1 I

 U1,1 A1,2 A1,3
A2,2 A2,3
A3,2 A3,3

 →

 L1,1
L2,1 L2,2
L3,1 L3,2 I

 U1,1 U1,2 A1,3
U2,2 A2,3

A3,3


We keep the original Ai,j ’s and postpone updating to the right.

1 We get U1,2 via A1,2 = L1,1U1,2 and compute U1,2 = L−1
1,1A1,2.

2 To compute L2,2 and L3,2 do
[

B2,2
B3,2

]
=

[
A2,2
A3,2

]
−
[

L2,1
L3,1

]
U1,2.

and factor P2

[
B2,2
B3,2

]
=

[
L2,2
L3,2

]
U2,2 as before.

Replace
[

A2,3
A3,3

]
:= P2

[
A2,3
A3,3

]
and

[
L2,1
L3,1

]
:= P2

[
L2,1
L3,1

]
.

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 14 / 29

Parallel Gaussian Elimination

1 LU and Cholesky Factorization
factoring a square matrix
tiled Cholesky factorization

2 Blocked LU Factorization
deriving blocked formulations of LU
right and left looking LU factorizations
tiled algorithm for LU factorization

3 The PLASMA Software Library and the cuSOLVER API
Parallel Linear Algebra Software for Multicore Architectures
the cuSOLVER library

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 15 / 29

tiled LU factorization

for k = 1,2, . . . ,p do
DGETF(Ak ,k ,Lk ,k ,Uk ,k ,Pk ,k) — — Lk ,k ,Uk ,k ,Pk ,k := LU(Ak ,k)
for j = k + 1, . . . ,p do
DGESSM(Ak ,j ,Lk ,k ,Pk ,k ,Uk ,j) — — Uk ,j := L−1

k ,kPk ,kAk ,j

end for
for i = k + 1, . . . ,p do

DTSTRF(Uk ,k ,Ai,k ,Pi,k) — — Uk ,k ,Li,k ,Pi,k := LU
([

Uk ,k
Ai,k

])
for j = k + 1, . . . ,p do

DSSSM(Uk ,j ,Ai,j ,Li,k ,Pi,k) — —
[

Uk ,j
Ai,j

]
:= L−1

i,k Pi,k

[
Uk ,j
Ai,j

]
end for

end for

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 16 / 29

Parallel Gaussian Elimination

1 LU and Cholesky Factorization
factoring a square matrix
tiled Cholesky factorization

2 Blocked LU Factorization
deriving blocked formulations of LU
right and left looking LU factorizations
tiled algorithm for LU factorization

3 The PLASMA Software Library and the cuSOLVER API
Parallel Linear Algebra Software for Multicore Architectures
the cuSOLVER library

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 17 / 29

the PLASMA software library

Parallel Linear Algebra Software for Multicore Architectures.
Software using FORTRAN and C.
Design for efficiency on homogeneous multicore processors
and multi-socket systems of multicore processors.
Built using a small set of sequential routines as building blocks,
referred to as core BLAS.
Free to download from http://icl.cs.utk.edu/plasma.

Capabilities and limitations:
Can solve dense linear systems and least squares problems.
Unlike LAPACK, PLASMA currently does not solve eigenvalue or
singular value problems and provide no support for band matrices.

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 18 / 29

Basic Linear Algebra Subprograms: BLAS

1 Level-1 BLAS: vector-vector operations, O(n) cost.
inner products, norms, x ± y, αx + y.

2 Level-2 BLAS: matrix-vector operations, O(mn) cost.
▶ y = αAx + βy
▶ A = A + αxyT , rank one update
▶ x = T−1b, for T a triangular matrix

3 Level-3 BLAS: matrix-matrix operations, O(kmn) cost.
▶ C = αAB + βC
▶ C = αAAT + βC, rank k update of symmetric matrix
▶ B = αTB, for T a triangular matrix
▶ B = αT−1B, solve linear system with many right hand sides

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 19 / 29

graph driven asynchronous execution

We view a blocked algorithm as a Directed Acyclic Graph (DAG):
nodes are computational tasks performed in kernel subroutines;
edges represent the dependencies among the tasks.

Given a DAG, tasks are scheduled asynchronously and independently,
considering the dependencies imposed by the edges in the DAG.

A critical path in the DAG connects those nodes that have the highest
number of outgoing edges.

The scheduling policy assigns higher priority to those tasks
that lie on the critical path.

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 20 / 29

copied from tutorial slides

From ISC High Performance 2017, Frankfurt
Tutorial 03: Linear Algebra Software for High Performance Computing
Hartwig Anzt

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 21 / 29

running example_cposv

Adjusted dimensions:

int cores = 2;
int N = 10000;
int LDA = 10000;
int NRHS = 5;
int LDB = 10000;

Cholesky factorization with the dimension equal to 10,000.

$ time ./example_cposv
-- PLASMA is initialized to run on 2 cores.
============
Checking the Residual of the solution
-- ||Ax-B||_oo/((||A||_oo||x||_oo+||B||_oo).N.eps) = 2.846077e-03
-- The solution is CORRECT !
-- Run of CPOSV example successful !

real 2m48.451s
user 5m29.606s
sys 0m2.830s
$

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 22 / 29

checking the speedups

The wall clock times for Cholesky on dimension 10,000:

#cores real time speedup
1 2m 40.913s
2 1m 22.271s 1.96
4 42.621s 3.78
8 23.480s 6.85

16 12.647s 12.72

Ran on two 8-core Intel Xeon E5-2670 Sandy Bridge at 2.60GHz,
128GB of internal memory at 1600MHz.

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 23 / 29

Parallel Gaussian Elimination

1 LU and Cholesky Factorization
factoring a square matrix
tiled Cholesky factorization

2 Blocked LU Factorization
deriving blocked formulations of LU
right and left looking LU factorizations
tiled algorithm for LU factorization

3 The PLASMA Software Library and the cuSOLVER API
Parallel Linear Algebra Software for Multicore Architectures
the cuSOLVER library

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 24 / 29

the cuSOLVER library

The cuSOLVER library is a high level package
based on cuBLAS and cuSPARSE,
offering two APIs: for single and multiple GPUs.

The cuSolverDN is for dense matrices,
while cuSolverSP is for sparse matrices.

Offers solvers for eigenvalue problems and
singular value decompositions can be computed.

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 25 / 29

a sample from the CUDA Libraries

The folder cuSolverDn_LinearSolver in
/usr/local/cuda/samples/7_CUDALibraries/
has an example that demonstrates cuSolverDN’s LU, QR,
and Cholesky factorization.

The example solves Ax = b, where b is a vector of ones.

The matrix A comes from the Florida Sparse Matrix Collection,
at http://www.cise.ufl.edu/research/sparse/matrices.

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 26 / 29

running on the V100 gpu
$./cuSolverDn_LinearSolver
GPU Device 0: "Quadro GV100" with compute capability 7.0

step 1: read matrix market format
Using default input file [./gr_900_900_crg.mtx]
sparse matrix A is 900 x 900 with 7744 nonzeros, base=1
step 2: convert CSR(A) to dense matrix
step 3: set right hand side vector (b) to 1
step 4: prepare data on device
step 5: solve A*x = b
timing: cholesky = 0.001399 sec
step 6: evaluate residual
|b - A*x| = 1.136868E-13
|A| = 1.600000E+01
|x| = 2.357708E+01
|b - A*x|/(|A|*|x|) = 3.013701E-16
$

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 27 / 29

suggested reading

E. Agullo, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, J. Langou,
H. Ltaief, P. Luszczek, and A. YarKhan. PLASMA Users’ Guide.
Parallel Linear Algebra Software for Multicore Architectures.
Version 2.0.

A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. A class of
parallel tiled linear algebra algorithms for multicore
architectures. Parallel Computing 35: 38-53, 2009.

V. Volkov and J. W. Demmel. Benchmarking GPUs to tune
dense linear algebra. In Proceedings of the 2008 ACM/IEEE
conference on Supercomputing. IEEE Press, 2008. Article No. 31.

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 28 / 29

Summary + Exercises

In Wilkinson and Allen, parallel linear system solving is in §11.3.2.

Exercises:
1 Write your own parallel shared memory version of the Cholesky

factorization, using OpenMP, Pthreads, or the Intel TBB.
2 Derive right looking LU factorization formulas with pivoting, i.e.:

introducing permutation matrices P. Develop first the formulas for
a 3-by-3 block matrix and then generalize the formulas into an
algorithm for any p-by-p block matrix.

3 Take an appropriate example from the PLASMA installation to test
the speedup of the multicore LU factorization routines.

Introduction to Supercomputing (MCS 572) parallel Gaussian elimination L-35 15 November 2024 29 / 29

	LU and Cholesky Factorization
	factoring a square matrix
	tiled Cholesky factorization

	Blocked LU Factorization
	deriving blocked formulations of LU
	right and left looking LU factorizations
	tiled algorithm for LU factorization

	The PLASMA Software Library and the cuSOLVER API
	Parallel Linear Algebra Software for Multicore Architectures
	the cuSOLVER library

