
Performance Considerations
1 Dynamic Partitioning of Resources

acceleration with graphics processing units
streaming multiprocessor resources
profiling code

2 Data Prefetching and Instruction Mix
registers between global and shared memory
maximizing instruction throughput

3 Thread Coarsening
giving threads more work
applied to matrix matrix multiplication
performance bottleck

MCS 572 Lecture 33
Introduction to Supercomputing

Jan Verschelde, 11 November 2024

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 1 / 39



Performance Considerations

1 Dynamic Partitioning of Resources
acceleration with graphics processing units
streaming multiprocessor resources
profiling code

2 Data Prefetching and Instruction Mix
registers between global and shared memory
maximizing instruction throughput

3 Thread Coarsening
giving threads more work
applied to matrix matrix multiplication
performance bottleck

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 2 / 39



acceleration with graphics processing units

Graphics Processing Units (GPUs) achieve teraflop performance:
can execute a trillion floating-point operations per second.

Instruction level, data parallel algorithms are required:
1 blocks of threads execute the same instructions on different data,
2 many more threads than the number of cores must be launched,

to keep the GPU fully occupied and achieve teraflop performance.

Blocks of threads are launched by the Central Processing Unit (CPU),
called the host, and the device (GPU) accelerates the computations.

In each kernel launch, we must configure the dimensions of the grid
and the number of threads in each block in the grid.

Using too many registers in a block can lead to a performance cliff.

In this lecture, we address performance profiling.

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 3 / 39



Performance Considerations

1 Dynamic Partitioning of Resources
acceleration with graphics processing units
streaming multiprocessor resources
profiling code

2 Data Prefetching and Instruction Mix
registers between global and shared memory
maximizing instruction throughput

3 Thread Coarsening
giving threads more work
applied to matrix matrix multiplication
performance bottleck

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 4 / 39



streaming multiprocessor resources – part I

Comparing GPUs with respective compute capabilities 1.1, 2.0, 3.5,
and 6.0: GeForce 9400M, Tesla C2050/C2070, K20C, P100:

compute capability 1.1 2.0 3.5 6.0
maximum number of threads per block 512 1,024
maximum number of resident blocks
per streaming multiprocessor 8 16 32
warp size 32
maximum number of resident warps
per streaming multiprocessor 24 48 64
maximum number of resident threads
per streaming multiprocessor 768 1,536 2,048

data in the table from the CUDA C Programming Guide appendix G

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 5 / 39



dynamic partitioning of thread slots

During runtime, thread slots are partitioned
and assigned to thread blocks.

Streaming multiprocessors are versatile by their ability to dynamically
partition the thread slots among thread blocks.

They can
either execute many thread blocks of few threads each,
or execute a few thread blocks of many threads each.

In contrast, fixed partitioning where the number of blocks and threads
per block are fixed will lead to waste.

Goal: keep multiprocessors fully occupied.

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 6 / 39



interactions between resource limitations – C2050

The Tesla C2050/C2070 has 1,536 thread slots per streaming
multiprocessor. As 1,536 = 32× 48, we have

number of thread slots = warp size × number of warps per block.

For 32 threads per block, we have 1,536/32 = 48 blocks
↔ at most 8 blocks per streaming multiprocessor.

To fully utilize both the block and thread slots,
to have 8 blocks, we should have

1,536/8 = 192 threads per block, or
192/32 = 6 warps per block.

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 7 / 39



interactions between resource limitations – K20C

The K20C has 2,048 thread slots per streaming multiprocessor.
As 2,048 = 32× 64, we have

number of thread slots = warp size × number of warps per block.

For 32 threads per block, we have 2,048/32 = 64 blocks
↔ at most 16 blocks per streaming multiprocessor.

To fully utilize both the block and thread slots,
to have 16 blocks, we should have

2,048/16 = 128 threads per block, or
128/32 = 4 warps per block.

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 8 / 39



interactions between resource limitations – P100

The P100 has 2,048 thread slots per streaming multiprocessor.
As 2,048 = 32× 64, we have

number of thread slots = warp size × number of warps per block.

For 32 threads per block, we have 2,048/32 = 64 blocks
↔ at most 32 blocks per streaming multiprocessor.

To fully utilize both the block and thread slots,
to have 32 blocks, we should have

2,048/32 = 64 threads per block, or
64/32 = 2 warps per block.

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 9 / 39



streaming multiprocessor resources – part II
Comparing GPUs with respective compute capabilities 1.1, 2.0, 3.5,
and 6.0: GeForce 9400M, Tesla C2050/C2070, K20C, and P100.

compute capability 1.1 2.0 3.5 6.0
number of 32-bit registers
per streaming multiprocessor 8K 32K 64K
maximum amount of shared memory
per streaming multiprocessor 16KB 48KB 64KB
number of shared memory banks 16 32
amount of local memory per thread 16KB 512KB
constant memory size 64KB
cache working set for constant memory
per streaming memory 8KB 10KB

Local memory resides in device memory, so local memory accesses
have the same high latency and low bandwidth as global memory.

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 10 / 39



dynamic partitioning of resources

Registers hold frequently used programmer and compiler-generated
variables to reduce access latency and conserve memory bandwidth.

Variables in a kernel that are not arrays
are automatically placed into registers.

By dynamically partitioning the registers among blocks,
a streaming multiprocessor can accommodate

more blocks if they require few registers, and
fewer blocks if they require many registers.

As with block and thread slots, there is a potential interaction between
register limitations and other resource limitations.

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 11 / 39



interactions between resource limitations
Consider the matrix-matrix multiplication example. Assume

the kernel uses 21 registers, and
we have 16-by-16 thread blocks.

How many threads can run on each Streaming Multiprocessor (SM)?

1 We calculate the number of registers for each block:
16× 16× 21 = 5,376 registers.

2 We have 32× 1,024 registers per SM:
32× 1,024/5,376 = 6 blocks

and 6 < 8 = the maximum number of blocks per SM.

3 We calculate the number of threads per SM:
16× 16× 6 = 1,536 threads

and we can have at most 1,536 threads per SM.

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 12 / 39



a performance cliff

Suppose we use one extra register, 22 instead of 21.

1 We calculate the number of registers for each block:
16× 16× 22 = 5,632 registers.

2 We have 32× 1,024 registers per SM:
32× 1,024/5,632 = 5 blocks.

3 We calculate the number of threads per SM:
16× 16× 5 = 1,280 threads

and with 21 registers we could use all 1,536 threads per SM.

Adding one register led to a reduction of 17% in the parallelism.

Definition (performance cliff)
When a slight increase in one resource leads to a dramatic reduction
in parallelism and performance, one speaks of a performance cliff.

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 13 / 39



Performance Considerations

1 Dynamic Partitioning of Resources
acceleration with graphics processing units
streaming multiprocessor resources
profiling code

2 Data Prefetching and Instruction Mix
registers between global and shared memory
maximizing instruction throughput

3 Thread Coarsening
giving threads more work
applied to matrix matrix multiplication
performance bottleck

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 14 / 39



spreadsheet in /usr/local/cuda/tools

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 15 / 39



getting started with computeprof

Compute Visual Profiler is a graphical user interface based profiling
tool to measure performance and to find potential opportunities for
optimization in order to achieve maximum performance.

To use the profiler, ssh -X must work when logging in, go to
/usr/local/cuda/bin/computeprof
to launch the program computeprof.

We look at one of the example projects matrixMul.

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 16 / 39



GPU time summary of matrixMul

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 17 / 39



limiting factor identification

IPC = Instructions Per Cycle

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 18 / 39



memory throughput analysis

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 19 / 39



instruction throughput analysis

IPC = Instructions Per Cycle

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 20 / 39



occupancy analysis

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 21 / 39



Performance Considerations

1 Dynamic Partitioning of Resources
acceleration with graphics processing units
streaming multiprocessor resources
profiling code

2 Data Prefetching and Instruction Mix
registers between global and shared memory
maximizing instruction throughput

3 Thread Coarsening
giving threads more work
applied to matrix matrix multiplication
performance bottleck

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 22 / 39



accessing global memory

One of the most important resource limitations is access to global
memory and long latencies.

Scheduling other warps while waiting for memory access is powerful,
but often not enough.

A complementary to warp scheduling solution is to prefetch the next
data elements while processing the current data elements.

Combined with tiling, data prefetching provides extra independent
instructions to enable the scheduling of more warps to tolerate long
memory access latencies.

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 23 / 39



prefetching in registers

For the tiled matrix-matrix multiplication,
the code below combines prefetching with tiling:

load first tile from global memory into registers;
loop
{

deposit tile from registers to shared memory;
__syncthreads();
load next tile from global memory into registers;
process current tile;
__syncthreads();

}

The prefetching adds independent instructions between loading the
data from global memory and processing the data.

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 24 / 39



Performance Considerations

1 Dynamic Partitioning of Resources
acceleration with graphics processing units
streaming multiprocessor resources
profiling code

2 Data Prefetching and Instruction Mix
registers between global and shared memory
maximizing instruction throughput

3 Thread Coarsening
giving threads more work
applied to matrix matrix multiplication
performance bottleck

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 25 / 39



throughput of arithmetic instructions

Number of operations per clock cycle per multiprocessor:

compute capability 1.x 2.0 3.5 6.0
32-bit floating-point
add, multiply, multiply-add 8 32 192 64
64-bit floating-point
add, multiply, multiply-add 1 16 64 4
32-bit integer
add, logical operation, shift, compare 8 32 160 128
32-bit floating-point
reciprocal, square root, log, exp,
sine, cosine 2 4 32 32

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 26 / 39



loop unrolling

Consider the following code snippet:

for(int k = 0; k < m; k++)
C[i][j] += A[i][k]*B[k][j];

Counting all instructions:
1 loop branch instruction (k < m);
1 loop counter update instruction (k++);
3 address arithmetic instructions ([i][j], [i][k], [k][j]);
2 floating-point arithmetic instructions (+ and *).

Of the 7 instructions, only 2 are floating point.

Loop unrolling reduces the number of loop branch instructions,
loop counter updates, address arithmetic instructions.

Note: gcc -funroll-loops is enabled with gcc -O2.

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 27 / 39



Performance Considerations

1 Dynamic Partitioning of Resources
acceleration with graphics processing units
streaming multiprocessor resources
profiling code

2 Data Prefetching and Instruction Mix
registers between global and shared memory
maximizing instruction throughput

3 Thread Coarsening
giving threads more work
applied to matrix matrix multiplication
performance bottleck

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 28 / 39



thread coarsening

Acceleration by GPUs applies fine grained parallelism, often at the
instruction level, following the single instruction multiple data model.

Definition (thread coarsening)
By thread coarsening, each thread is given more work,
to reduce the overhead caused by parallelism.

One typical situation occurs with the block size limitation,
when the number of threads is insufficient.

As a consequence of thread coarsening, the number of threads
in a block decreases, overcoming the block size limitation.

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 29 / 39



Performance Considerations

1 Dynamic Partitioning of Resources
acceleration with graphics processing units
streaming multiprocessor resources
profiling code

2 Data Prefetching and Instruction Mix
registers between global and shared memory
maximizing instruction throughput

3 Thread Coarsening
giving threads more work
applied to matrix matrix multiplication
performance bottleck

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 30 / 39



matrix multiplication with shared memory

Ci,j =

m/w∑
k=1

Ai,k · Bk ,j

A C

B












i

� m -

j
6

m

?

� p -

6

n

?

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 31 / 39



matrix multiplication by one block, on one tile

Ci,j =

m/w∑
k=1

Ai,k · Bk ,j

A C

B












i

� m -

j
6

m

?

� p -

6

n

?

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 32 / 39



matrix multiplication with thread coarsening

Ci,j =

m/w∑
k=1

Ai,k · Bk ,j

A C

B












i

� m -

j
6

m

?

� p -

6

n

?

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 33 / 39



thread coarsening for matrix multiplication

In the matrix matrix multiplication with shared memory,
one output tile is computed by one block of threads:

Each block loads one tile of A and one tile of B.
Shared memory is not shared among the blocks.

Each output tile is processed by a different block.
The same input tiles for A are loaded for output tiles.

With thread coarsening, one block of threads
loads one tile of A, and
several vertically adjacent tiles of B.

The coarse factor equals the number of tiles of B
that are multiplied in the inner loop of the new kernel.

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 34 / 39



pseudo code

To multiply matrices A and B to make C:

block of threads loads a tile of A
block of threads loads a tile of B
block of threads updates a tile of C

With thread coarsening, the code is expanded into:

block of threads loads a tile of A
for k in 1, 2, ..., coarse factor do

block of threads loads the next tile of B
block of threads updates the next tile of C

The fourth edition of Programming Massively Parallel Processors by
Wen-mei Hwu, David B. Kirk, and Izzat El Hajj contains explicit C code.

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 35 / 39



some pitfalls

Thread coarsening is similar to the topic of granularity and
while it is a powerful optimization, there are pitfalls:

1 Do not apply when not needed.
Example: vector addition.

2 Thread coarsening may lead to underutilization.
Coarsening factors depend on the type of a device
and/or the specifics of the data that is processed.

3 Thread coarsening may reduce the occupancy.
After thread coarsening, threads may use more registers and/or
too much shared memory reducing the occupancy of the device.

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 36 / 39



Performance Considerations

1 Dynamic Partitioning of Resources
acceleration with graphics processing units
streaming multiprocessor resources
profiling code

2 Data Prefetching and Instruction Mix
registers between global and shared memory
maximizing instruction throughput

3 Thread Coarsening
giving threads more work
applied to matrix matrix multiplication
performance bottleck

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 37 / 39



Know Your Computation’s Bottleck!

Definition (performance bottleneck)
The resource that limits the performance of a computation
is a performance bottleneck.

If an optimization does not target the performance bottleneck,
then the optimization attempt may even hurt performance.

Examples:
Is the computation compute or memory bound?
Is the performance limited by occupancy?

Recommendations:
Understand the GPU architecture.
Familiarize yourself with profiling tools.

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 38 / 39



summary and exercises
We covered most of the fundamential concepts of GPU acceleration,
using data from Appendix G in the CUDA programming Guide.

1 Consider a GPU with 2048 threads/SM, 32 blocks/SM,
64K registers/SM, and 96KB of shared memory/SM.

I Kernel A uses 64 threads/block, 27 registers per thread,
and 4KB of shared memory/block.

I Kernel B uses 256 threads/block, 31 registers per thread,
and 8KB of shared memory/block.

Determine if the kernels achieve full occupancy.
If not, specify the limiting factor(s).

2 Read the user guide of the compute visual profiler and perform a
run on GPU code you wrote (of some previous exercise or your
code for the third project). Explain the analysis of the kernel.

3 Redo the first “interactions between resource limitations” of this
lecture using the specifications for compute capability 1.1.

Introduction to Supercomputing (MCS 572) Performance Considerations L-33 11 November 2024 39 / 39


	Dynamic Partitioning of Resources
	acceleration with graphics processing units
	streaming multiprocessor resources
	profiling code

	Data Prefetching and Instruction Mix
	registers between global and shared memory
	maximizing instruction throughput

	Thread Coarsening
	giving threads more work
	applied to matrix matrix multiplication
	performance bottleck


