
Pipelined Sorting and Sieving
1 Sorting Numbers

a parallel version of insertion sort
MPI code for a pipeline version of insertion sort

2 Prime Number Generation
the sieve of Erathosthenes
type 2 pipelining
sieving processors in a pipeline

3 Solving Triangular Systems
forward substitution formulas
a third type of pipeline
using an n-stage pipeline

MCS 572 Lecture 26
Introduction to Supercomputing

Jan Verschelde, 25 October 2024

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 1 / 34



Pipelined Sorting and Sieving

1 Sorting Numbers
a parallel version of insertion sort
MPI code for a pipeline version of insertion sort

2 Prime Number Generation
the sieve of Erathosthenes
type 2 pipelining
sieving processors in a pipeline

3 Solving Triangular Systems
forward substitution formulas
a third type of pipeline
using an n-stage pipeline

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 2 / 34



a data archival application

Consider a pipeline of four processors:

- P0
- P1

- P2
- P3

-

The most recent data is stored on P0.
1 When P0 receives new data, its older data is moved to P1.
2 When P1 receives new data, its older data is moved to P2.
3 When P2 receives new data, its older data is moved to P3.
4 When P3 receives new data, its older data is archived to tape.

This is a type 1 pipeline. Every processor does the same three steps:
(1) receive new data, (2) sort data, (3) send old data.

This leads to a pipelined sorting of numbers.

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 3 / 34



sorting 66 25 19 24 - P0
- P1

- P2
- P3

-

66 25 19 - P0
-

24

P1
- P2

- P3
-

66 25 - P0
-

19<24?

P1
- P2

- P3
-

66 - P0
-

25<19?

P1
-

24

P2
- P3

-

- P0
-

66<19?

P1
-

25<24?

P2
- P3

-

- P0
-

19

P1
-

66<24?

P2
-

25

P3
-

- P0
-

19

P1
-

24

P2
-

66<25?

P3
-

- P0
-

19

P1
-

24

P2
-

25

P3
-

66

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 4 / 34



a parallel version of insertion sort
Sorting p numbers with p processors.

Processor i does p − i steps in the algorithm:

for step 0 to p − i − 1 do
manager receives number;
worker i receives number from i − 1;
if step = 0 then

initialize the smaller number;
else if number > smaller number then

send number to i + 1 ;
else

send smaller number to i + 1;
smaller number := number;

end if;
end for.

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 5 / 34



a pipeline session with MPI
$ mpirun -np 4 /tmp/pipe_sort
The 4 numbers to sort : 24 19 25 66
Manager gets 24.
Manager gets 19.
Node 0 sends 24 to 1.
Manager gets 25.
Node 0 sends 25 to 1.
Manager gets 66.
Node 0 sends 66 to 1.
Node 1 receives 24.
Node 1 receives 25.
Node 1 sends 25 to 2.
Node 1 receives 66.
Node 1 sends 66 to 2.
Node 2 receives 25.
Node 2 receives 66.
Node 2 sends 66 to 3.
Node 3 receives 66.
The sorted sequence : 19 24 25 66

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 6 / 34



Pipelined Sorting and Sieving

1 Sorting Numbers
a parallel version of insertion sort
MPI code for a pipeline version of insertion sort

2 Prime Number Generation
the sieve of Erathosthenes
type 2 pipelining
sieving processors in a pipeline

3 Solving Triangular Systems
forward substitution formulas
a third type of pipeline
using an n-stage pipeline

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 7 / 34



the program pipe_sort.c
int main ( int argc, char *argv[] )
{

int i,p,*n,j,g,s;
MPI_Status status;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&p);
MPI_Comm_rank(MPI_COMM_WORLD,&i);
if(i==0) /* manager generates p random numbers */
{

n = (int*)calloc(p,sizeof(int));
srand(time(NULL));
for(j=0; j<p; j++) n[j] = rand() % 100;
if(verbose>0)
{

printf("The %d numbers to sort : ",p);
for(j=0; j<p; j++) printf(" %d", n[j]);
printf("\n"); fflush(stdout);

}
}

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 8 / 34



the function main continued
for(j=0; j<p-i; j++) /* processor i performs p-i steps */

if(i==0)
{

g = n[j];
if(verbose>0){

printf("Manager gets %d.\n",n[j]); fflush(stdout);
}
Compare_and_Send(i,j,&s,&g);

}
else
{

MPI_Recv(&g,1,MPI_INT,i-1,tag,MPI_COMM_WORLD,&status);
if(verbose>0){

printf("Node %d receives %d.\n",i,g); fflush(stdout);
}
Compare_and_Send(i,j,&s,&g);

}
MPI_Barrier(MPI_COMM_WORLD); /* to synchronize for printing */
Collect_Sorted_Sequence(i,p,s,n);
MPI_Finalize();
return 0;

}

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 9 / 34



the function Compare_and_Send

void Compare_and_Send
( int myid, int step, int *smaller, int *gotten )

/* Processor "myid" initializes smaller with gotten

* at step zero, or compares smaller to gotten and

* sends the larger number through. */
{

if(step==0)

*smaller = *gotten;
else

if(*gotten > *smaller)
{

MPI_Send(gotten,1,MPI_INT,myid+1,tag,MPI_COMM_WORLD);
if(verbose>0)
{

printf("Node %d sends %d to %d.\n",
myid,*gotten,myid+1);

fflush(stdout);
}

}

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 10 / 34



Compare_and_Send continued

else
{

MPI_Send(smaller,1,MPI_INT,myid+1,tag,
MPI_COMM_WORLD);

if(verbose>0)
{

printf("Node %d sends %d to %d.\n",
myid,*smaller,myid+1);

fflush(stdout);
}

*smaller = *gotten;
}

}

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 11 / 34



the function Collect_Sorted_Sequence
void Collect_Sorted_Sequence
( int myid, int p, int smaller, int *sorted ) {

/* Processor "myid" sends its smaller number to the

* manager who collects the sorted numbers in the

* sorted array, which is then printed. */
MPI_Status status;
int k;
if(myid==0) {

sorted[0] = smaller;
for(k=1; k<p; k++)

MPI_Recv(&sorted[k],1,MPI_INT,k,tag,
MPI_COMM_WORLD,&status);

printf("The sorted sequence : ");
for(k=0; k<p; k++) printf(" %d",sorted[k]);
printf("\n");

}
else

MPI_Send(&smaller,1,MPI_INT,0,tag,MPI_COMM_WORLD);
}

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 12 / 34



Pipelined Sorting and Sieving

1 Sorting Numbers
a parallel version of insertion sort
MPI code for a pipeline version of insertion sort

2 Prime Number Generation
the sieve of Erathosthenes
type 2 pipelining
sieving processors in a pipeline

3 Solving Triangular Systems
forward substitution formulas
a third type of pipeline
using an n-stage pipeline

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 13 / 34



the sieve of Erathostenes

List all prime numbers between 2 and 21.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

A sieving method proceeds as follows:
1 Remove all multiples of 2.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
��@@ ��@@ ��@@ ��@@ ��@@ ��@@ ��@@ ��@@ ��@@

2 Remove all multiples of 3.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

��@@ ��@@ ��@@ ��@@ ��@@ ��@@ ��@@ ��@@ ��@@��@@ ��@@ ��@@

3 The next prime is 5.
As we have already removed all multiples of 2 and 3
and 5 × 5 = 25 > 21, the sieving stops.

Compute in parallel?

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 14 / 34



making a pipeline

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .

?
3 is no multiple of 2

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .

?
5 is no multiple of 3

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .

?
7 is no multiple of 5

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .

?
11 is no multiple of 7

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 15 / 34



Pipelined Sorting and Sieving

1 Sorting Numbers
a parallel version of insertion sort
MPI code for a pipeline version of insertion sort

2 Prime Number Generation
the sieve of Erathosthenes
type 2 pipelining
sieving processors in a pipeline

3 Solving Triangular Systems
forward substitution formulas
a third type of pipeline
using an n-stage pipeline

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 16 / 34



a pipelined sieve algorithm

One stage in the pipeline:
1 receive a prime,
2 receive a sequence of numbers,
3 remove from the sequence all multiples of the prime,
4 send the filtered list to the next stage.

This pipeline algorithm is of type 2: data are passed to the next stage
before the completion of the current stage.

The before is critical to obtain parallelism.

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 17 / 34



a 2-stage pipeline for all primes ≤ 21

To compute all primes ≤ 21 with the sieve algorithm:
1 P1 removes all multiples of 2, in nine multiplications;
2 P2 removes all multiples of 3, in five multiplications.

Although the second stage in the pipeline starts
only after we determined that 3 is not a multiple of 2,
there are fewer multiplications in the second stage.

The space-time diagram with the multiplications is below,
the subscript of each ⋆ is a removed number:

- time

?space

P1

P2

⋆4 ⋆6 ⋆8 ⋆10 ⋆12 ⋆14 ⋆16 ⋆18 ⋆20

⋆9 ⋆12 ⋆15 ⋆18 ⋆21

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 18 / 34



Pipelined Sorting and Sieving

1 Sorting Numbers
a parallel version of insertion sort
MPI code for a pipeline version of insertion sort

2 Prime Number Generation
the sieve of Erathosthenes
type 2 pipelining
sieving processors in a pipeline

3 Solving Triangular Systems
forward substitution formulas
a third type of pipeline
using an n-stage pipeline

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 19 / 34



one sieving processor in a pipeline

The input of a sieving processor is a tuple (x, i):
1 x is a sequence of numbers of fixed size n;
2 i is either n + 1 or the index to the next prime,

▶ if i = n + 1, then all multiples have been removed from x,
▶ if i ̸= n + 1, then xi is no multiple of any previous number in x.

If i ̸= n + 1, the sieving processor has two tasks:
1 Determine the first index j , j > i , so that

xj is no multiple of any previous number in x,
or otherwise set j = n + 1 if at the end of the sequence.

2 Send (x, j) to the next sieving processor in the pipeline.

Remove all multiples of xi from x.

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 20 / 34



running a ring of four sieving processors

- P0
- P1

- P2
- P3

-
6

P0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .
��@@ ��@@ ��@@ ��@@

?
3 is no multiple of 2

P1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .
�
�@
@ �

�@
@ �

�@
@�

�@
@�

�@
@

?
5 is no multiple of 3

P2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .
��@@ ��@@ ��@@��@@��@@

?
7 is no multiple of 5

P3 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .
�
�@
@ �

�@
@ �

�@
@�

�@
@�

�@
@

?
11 is no multiple of 7

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 21 / 34



mind the gap ...

P0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .
�
�@
@ �

�@
@ �

�@
@ �

�@
@

?
3 is no multiple of 2

P1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .
��@@ ��@@ ��@@��@@��@@

?
5 is no multiple of 3

P2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .
��@@ ��@@ ��@@��@@��@@

?
7 is no multiple of 5

P3 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .
��@@ ��@@ ��@@��@@��@@

?
11 is no multiple of 7

In order for P3 to determine that 11 is the next prime,
P0 must have removed already 8 and 10, and
P1 must have removed already 9.

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 22 / 34



the data vector

The data vector x is an array of booleans:
xi = 1, if xi is a multiple of some number;
xi = 0, if xi is not a multiple.

On a parallel shared memory computer,
there is only one copy of x;
processors set the values of multiples to 1.

On a parallel distributed memory computer,
there are as many copies of x as there are processors;
the first processor at the end collects all copies of x.

In both implementations, the numbers that need to be removed
before passing the sequence to the next step will depend
on the number of sieving processors in the pipeline.

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 23 / 34



Pipelined Sorting and Sieving

1 Sorting Numbers
a parallel version of insertion sort
MPI code for a pipeline version of insertion sort

2 Prime Number Generation
the sieve of Erathosthenes
type 2 pipelining
sieving processors in a pipeline

3 Solving Triangular Systems
forward substitution formulas
a third type of pipeline
using an n-stage pipeline

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 24 / 34



formulas for forward substitution

Expanding the matrix-vector product Ly in Ly = b leads to

y1 = b1
ℓ2,1y1 + y2 = b2
ℓ3,1y1 + ℓ3,2y2 + y3 = b3

...
ℓn,1y1 + ℓn,2y2 + ℓn,3y3 + · · ·+ ℓn,n−1yn−1 + yn = bn

and solving for the diagonal elements gives

y1 = b1
y2 = b2 − ℓ2,1y1
y3 = b3 − ℓ3,1y1 − ℓ3,2y2

...
yn = bn − ℓn,1y1 − ℓn,2y2 − · · · − ℓn,n−1yn−1

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 25 / 34



formula and algorithm

For k = 1,2, . . . ,n:

yk = bk −
k−1∑
i=1

ℓk ,iyi .

As an algorithm:

for k from 1 to n do
yk := bk ;
for i from 1 to k − 1 do

yk := yk − ℓk ,i ⋆ yi .

We count
1 + 2 + · · ·+ n − 1 =

n(n − 1)
2

multiplications and subtractions.

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 26 / 34



Pipelined Sorting and Sieving

1 Sorting Numbers
a parallel version of insertion sort
MPI code for a pipeline version of insertion sort

2 Prime Number Generation
the sieve of Erathosthenes
type 2 pipelining
sieving processors in a pipeline

3 Solving Triangular Systems
forward substitution formulas
a third type of pipeline
using an n-stage pipeline

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 27 / 34



a third type of pipeline

Three types of pipelines:
1 Speedup only if multiple instances. Example: instruction pipeline.
2 Speedup already if one instance. Example: pipeline sorting.
3 Worker continues after passing information through.

Example: solve Ly = b.
Typical for the 3rd type of pipeline is the varying length of each job.

- time

?space

P0

P1

P2

P3

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 28 / 34



Pipelined Sorting and Sieving

1 Sorting Numbers
a parallel version of insertion sort
MPI code for a pipeline version of insertion sort

2 Prime Number Generation
the sieve of Erathosthenes
type 2 pipelining
sieving processors in a pipeline

3 Solving Triangular Systems
forward substitution formulas
a third type of pipeline
using an n-stage pipeline

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 29 / 34



using an n-stage pipeline

We assume that L is available on every processor.

for n = 4 = p : y1 := b1
y2 := b2 − ℓ2,1 ⋆ y1
y3 := b3 − ℓ3,1 ⋆ y1 − ℓ3,2 ⋆ y2
y4 := b4 − ℓ4,1 ⋆ y1 − ℓ4,2 ⋆ y2 − ℓ4,3 ⋆ y3

b4b3b2b1
- P0

b4b3b2y1
- P1

b4b3y2y1
- P2

b4y3y2y1
- P3

y4y3y2y1
-

- time

?space

P0

P1

P2

P3

:=

⋆ − :=

⋆ − ⋆ − :=

⋆ − ⋆ − ⋆ − :=

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 30 / 34



type 3 pipelining
Make y1 available in the next pipeline cycle:

b1
- P0

y1
- P1

y1
- P2

y1
- P3

y1
-

- time

?space

P0

P1

P2

P3

:=

⋆ − :=

⋆ − ⋆ − :=

⋆ − ⋆ − ⋆ − :=

- time

?space

P0

P1

P2

P3

y1

y1 y2

y1 y2 y3

y1 y2 y3 y4

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 31 / 34



counting the steps

- time

?space

P0

P1

P2

P3

y1

y1 y2

y1 y2 y3

y1 y2 y3 y4

We count the steps for p = 4 or in general, for p = n:
1 The latency takes 4 steps for y1 to be at P4,

or in general: n steps for y1 to be at Pn.
2 It takes then 6 additional steps for y4 to be computed by P4,

or in general: 2n − 2 additional steps for yn to be computed by Pn.
So it takes n + 2n − 2 = 3n − 2 steps to solve
an n-dimensional triangular system by an n-stage pipeline.

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 32 / 34



Summary + Exercises

We ended chapter 5 in the book of Wilkinson and Allen.

Exercises:
1 Write the pipelined sorting algorithm with OpenMP or Julia.

Demonstrate the correctness of your implementation with some
good examples.

2 Use message passing to implement the pipelined sieve algorithm.
Relate the number of processors in the network to the number of
multiples which must be computed before sending off the
sequence to the next processor.

3 Implement the pipelined sieve algorithm with OpenMP and Julia.
Can the constraint on the number of computed multiples be
formulated with dependencies?

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 33 / 34



one last exercise

4 Consider the upper triangular system Ux = y, with U = [ui,j ],
ui,j = 0 if i > j . Derive the formulas and general algorithm to
compute the components of the solution x.
For n = 4, draw the third type of pipeline.

Introduction to Supercomputing (MCS 572) Pipelined Sorting and Sieving L-26 25 October 2024 34 / 34


	Sorting Numbers
	a parallel version of insertion sort
	MPI code for a pipeline version of insertion sort

	Prime Number Generation
	the sieve of Erathosthenes
	type 2 pipelining
	sieving processors in a pipeline

	Solving Triangular Systems
	forward substitution formulas
	a third type of pipeline
	using an n-stage pipeline


