
Pipelined Computations

1 Functional Decomposition
car manufacturing with three plants
speedup for n inputs in a p-stage pipeline
loop unrolling

2 Pipeline Implementations
processors in a ring topology
pipelined addition
pipelined addition with MPI

MCS 572 Lecture 25
Introduction to Supercomputing

Jan Verschelde, 23 October 2024

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 1 / 32

Pipelined Computations

1 Functional Decomposition
car manufacturing with three plants
speedup for n inputs in a p-stage pipeline
loop unrolling

2 Pipeline Implementations
processors in a ring topology
pipelined addition
pipelined addition with MPI

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 2 / 32

car manufacturing

Consider a simplified car manufacturing process in three stages:
(1) assemble exterior, (2) fix interior, and (3) paint and finish:

input sequence
c5 c4 c3 c2 c1 - P1

- P2
- P3

-

The corresponding space-time diagram is below:

- time

6
space

P1

P2

P3

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c5

c5

c5

After 3 time units, one car per time unit is completed.

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 3 / 32

denoising a signal

Every second we take 256 samples of a signal:
P1: apply FFT, P2: remove low amplitudes, and P3: inverse FFT.

input signals
s5 s4 s3 s2 s1 - P1

- P2
- P3

-

An alternative space-time diagram is below:

- time

?space
P3

P2

P1

s1

s1

s1

s2

s2

s2

s3

s3

s3

s4

s4

s4

s5

s5

s5

Observe: the consumption of a signal is sequential.

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 4 / 32

p-stage pipelines

A pipeline with p processors is a p-stage pipeline.

Suppose every process takes one time unit to complete.

How long till a p-stage pipeline completes n inputs?

A p-stage pipeline on n inputs:
After p time units the first input is done.
Then, for the remaining n − 1 items,
the pipeline completes at a rate of one item per time unit.

⇒ p + n − 1 time units for the p-stage pipeline to complete n inputs.

A time unit is called a pipeline cycle.

The time taken by the first p − 1 cycles is the pipeline latency.

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 5 / 32

Pipelined Computations

1 Functional Decomposition
car manufacturing with three plants
speedup for n inputs in a p-stage pipeline
loop unrolling

2 Pipeline Implementations
processors in a ring topology
pipelined addition
pipelined addition with MPI

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 6 / 32

speedup

Consider n inputs for a p-stage pipeline:

S(p) =
n × p

p + n − 1
.

For fixed number p of processors:

lim
n→∞

p × n
n + p − 1

= p.

Pipelining speeds up multiple sequences of heterogeneous jobs.
Pipelining is a functional decomposition method
to develop parallel programs.

Recall the classification of Flynn:
MISD = Multiple Instruction Single Data stream.

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 7 / 32

floating-point addition

A floating-point number consists of a sign bit,
an exponent and a fraction (or mantissa): ± e (8 bits) f (23 bits)

Floating-point addition could be done in 6 cycles:
1 unpack fractions and exponents
2 compare exponents
3 align fractions
4 add fractions
5 normalize result
6 pack fraction and exponent of result

Adding two vectors of n floats with 6-stage pipeline
takes n + 6 − 1 pipeline cycles, instead of 6n cycles.
⇒ Capable of performing one flop per clock cycle.

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 8 / 32

Intel Architecture Software Developer’s Manual

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 9 / 32

Pipelined Computations

1 Functional Decomposition
car manufacturing with three plants
speedup for n inputs in a p-stage pipeline
loop unrolling

2 Pipeline Implementations
processors in a ring topology
pipelined addition
pipelined addition with MPI

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 10 / 32

the Leibniz series

The Leibniz series

π

4
= 1 − 1

3
+

1
5
− 1

7
+

1
9
− 1

11
+ · · ·

converges very slowly.

This example is based on section 3.2.2 on loop unrolling in
Scientific Programming and Computer Architecture
by Divakar Viswanath, Springer-Verlag, 2017.

The above reference offers a very detailed explanation.

We can already illustrate the main point in Julia.

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 11 / 32

a straightforward implementation
The branching in the straightforward code below prevents
a pipelined execution of the floating-point operations.

function leibniz1(N::Int)
s = 1.0
for i=1:N

if(i%2 == 1)
s = s - 1.0/(2.0*i + 1.0)

else
s = s + 1.0/(2.0*i + 1.0)

end
end
return s

end

π

4
= 1 − 1

3
+

1
5
− 1

7
+

1
9
− 1

11
+ · · ·

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 12 / 32

applying loop unrolling

Summing the even and odd terms separately avoids branching,
allows a pipelined executions of the floating-point operations.

function leibniz2(N::Int)
s = 1.0
for i=2:2:N

s = s + 1.0/(2.0*i + 1.0)
end
for i=1:2:N

s = s - 1.0/(2.0*i + 1.0)
end
return s

end

1 − 1
3
+

1
5
− 1

7
+

1
9
− 1

11
+ · · · = 1 +

1
5
+

1
9
+ · · · − 1

3
− 1

7
− 1

11
− · · ·

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 13 / 32

benchmarking
using BenchmarkTools

println(4.0*leibniz1(10^8))
@btime leibniz1(10^8)

println(4.0*leibniz2(10^8))
@btime leibniz2(10^8)

with output:

3.141592663589326
239.600 ms (0 allocations: 0 bytes)

3.1415926635801443
125.266 ms (0 allocations: 0 bytes)

Julia 1.8.5 on pascal:
two 22-core Intel Xeon E5-2699v4 Broadwell at 2.20GHz,
256GB of internal memory at 2400MHz.

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 14 / 32

Pipelined Computations

1 Functional Decomposition
car manufacturing with three plants
speedup for n inputs in a p-stage pipeline
loop unrolling

2 Pipeline Implementations
processors in a ring topology
pipelined addition
pipelined addition with MPI

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 15 / 32

processors in a ring topology

A ring topology is a natural way to implement a pipeline.

- P0
- P1

- P2
- P3

-
6

A manager/worker organization:
Node 0 receives input and sends to node 1.
Every node i , for i = 1,2, . . . ,p − 1:

1 receives an item from node i − 1,
2 performs operations on the item,
3 sends processed item to node (i + 1) mod p.

At the end of one cycle, node 0 has the output.

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 16 / 32

one pipeline cycle with MPI

$ mpirun -np 4 ./pipe_ring
One pipeline cycle for repeated doubling.
Reading a number...
2
Node 0 sends 2 to the pipe...
Processor 1 receives 2 from node 0.
Processor 2 receives 4 from node 1.
Processor 3 receives 8 from node 2.
Node 0 received 16.
$

This example is a type 1 pipeline
efficient only if we have more than one instance to compute.

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 17 / 32

space time diagrams for type 2 and type 3 pipelines

Type 2: - time

?space

P0

P1

P2

P3

Type 3: - time

?space

P0

P1

P2

P3

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 18 / 32

MPI code for the manager

void manager (int p)
/*
* The manager prompts the user for a number

* and passes this number to node 1 for doubling.

* The manager receives from node p-1 the result. */
{

int n;
MPI_Status status;

printf("One pipeline cycle for repeated doubling.\n");
printf("Reading a number...\n"); scanf("%d",&n);
printf("Node 0 sends %d to the pipe...\n",n);
fflush(stdout);
MPI_Send(&n,1,MPI_INT,1,tag,MPI_COMM_WORLD);
MPI_Recv(&n,1,MPI_INT,p-1,tag,MPI_COMM_WORLD,&status);
printf("Node 0 received %d.\n",n);

}

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 19 / 32

MPI code for the workers
void worker (int p, int i)
/*
* Worker with identification label i of p

* receives a number,

* doubles it and sends it to node i+1 mod p. */
{

int n;
MPI_Status status;

MPI_Recv(&n,1,MPI_INT,i-1,tag,MPI_COMM_WORLD,&status);
printf("Processor %d receives %d from node %d.\n",

i,n,i-1);
fflush(stdout);
n *= 2; /* double the number */
if(i < p-1)

MPI_Send(&n,1,MPI_INT,i+1,tag,MPI_COMM_WORLD);
else

MPI_Send(&n,1,MPI_INT,0,tag,MPI_COMM_WORLD);
}

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 20 / 32

Pipelined Computations

1 Functional Decomposition
car manufacturing with three plants
speedup for n inputs in a p-stage pipeline
loop unrolling

2 Pipeline Implementations
processors in a ring topology
pipelined addition
pipelined addition with MPI

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 21 / 32

pipelined addition

Consider 4 processors in a ring topology:

- P0
- P1

- P2
- P3

-
6

To add a sequence of 32 numbers, with data partitioning:

a0,a1, . . . ,a7︸ ︷︷ ︸
Ak =

k∑
j=0

aj

,b0,b1, . . . ,b7︸ ︷︷ ︸
Bk =

k∑
j=0

bj

, c0, c1, . . . , c7︸ ︷︷ ︸
Ck =

k∑
j=0

cj

,d0,d1, . . . ,d7︸ ︷︷ ︸
Dk =

k∑
j=0

dj

.

The final sum is S = A7 + B7 + C7 + D7.

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 22 / 32

space-time diagram for pipelined addition

a0,a1, . . . ,a7︸ ︷︷ ︸
Ak =

k∑
j=0

aj

,b0,b1, . . . ,b7︸ ︷︷ ︸
Bk =

k∑
j=0

bj

, c0, c1, . . . , c7︸ ︷︷ ︸
Ck =

k∑
j=0

cj

,d0,d1, . . . ,d7︸ ︷︷ ︸
Dk =

k∑
j=0

dj

.

Denote S1 = A7 + B7, S2 = S1 + C7, S = S2 + D7.
1 2 3 4 5 6 7 8 9 10 11 12 - time

?space

P3

P2

P1

P0

A4

A3

A2

A1

B4

B3

B2

B1

C4

C3

C2

C1

D4

D3

D2

D1

A7

A7

A6

A5

B7

B7

B6

B5

C7

C7

C6

C5

D7

D7

D6

D5 A7 S1 S2 S

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 23 / 32

speedup for pipelined addition

We finished addition of 32 numbers in 12 cycles: 12 = 32/4 + 4.

In general, with p-stage pipeline to add n numbers:

S(p) =
n − 1
n
p
+ p

For fixed p: lim
n→∞

S(p) = p.

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 24 / 32

Pipelined Computations

1 Functional Decomposition
car manufacturing with three plants
speedup for n inputs in a p-stage pipeline
loop unrolling

2 Pipeline Implementations
processors in a ring topology
pipelined addition
pipelined addition with MPI

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 25 / 32

using 5-stage pipeline

$ mpirun -np 5 ./pipe_sum
The data to sum : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 \
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Manager starts pipeline for sequence 0...
Processor 1 receives sequence 0 : 3 3 4 5 6
Processor 2 receives sequence 0 : 6 4 5 6
Processor 3 receives sequence 0 : 10 5 6
Processor 4 receives sequence 0 : 15 6
Manager received sum 21.
Manager starts pipeline for sequence 1...
Processor 1 receives sequence 1 : 15 9 10 11 12
Processor 2 receives sequence 1 : 24 10 11 12
Processor 3 receives sequence 1 : 34 11 12
Processor 4 receives sequence 1 : 45 12
Manager received sum 57.

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 26 / 32

session continued

Manager starts pipeline for sequence 2...
Processor 1 receives sequence 2 : 27 15 16 17 18
Processor 2 receives sequence 2 : 42 16 17 18
Processor 3 receives sequence 2 : 58 17 18
Processor 4 receives sequence 2 : 75 18
Manager received sum 93.
Manager starts pipeline for sequence 3...
Processor 1 receives sequence 3 : 39 21 22 23 24
Processor 2 receives sequence 3 : 60 22 23 24
Processor 3 receives sequence 3 : 82 23 24
Processor 4 receives sequence 3 : 105 24
Manager received sum 129.

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 27 / 32

end of the session

Manager starts pipeline for sequence 4...
Processor 1 receives sequence 4 : 51 27 28 29 30
Processor 2 receives sequence 4 : 78 28 29 30
Processor 3 receives sequence 4 : 106 29 30
Processor 4 receives sequence 4 : 135 30
Manager received sum 165.
The total sum : 465
$

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 28 / 32

MPI code
void pipeline_sum (int i, int p)
/* performs a pipeline sum of p*(p+1) numbers */
{

int n[p][p-i+1];
int j,k;
MPI_Status status;

if(i==0) /* manager generates numbers */
{

for(j=0; j<p; j++)
for(k=0; k<p+1; k++) n[j][k] = (p+1)*j+k+1;

if(v>0)
{

printf("The data to sum : ");
for(j=0; j<p; j++)

for(k=0; k<p+1; k++) printf(" %d",n[j][k]);
printf("\n");

}
}

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 29 / 32

loop for manager

for(j=0; j<p; j++)
if(i==0) /* manager starts pipeline of j-th sequence */
{

n[j][1] += n[j][0];
printf("Manager starts pipeline for sequence %d...\n",

j);
MPI_Send(&n[j][1],p,MPI_INT,1,tag,MPI_COMM_WORLD);
MPI_Recv(&n[j][0],1,MPI_INT,p-1,tag,MPI_COMM_WORLD,

&status);
printf("Manager received sum %d.\n",n[j][0]);

}
else /* worker i receives p-i+1 numbers */

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 30 / 32

loop for workers
else /* worker i receives p-i+1 numbers */
{

MPI_Recv(&n[j][0],p-i+1,MPI_INT,i-1,tag,
MPI_COMM_WORLD,&status);

printf("Processor %d receives sequence %d : ",i,j);
for(k=0; k<p-i+1; k++) printf(" %d", n[j][k]);
printf("\n");
n[j][1] += n[j][0];
if(i < p-1)

MPI_Send(&n[j][1],p-i,MPI_INT,i+1,tag,
MPI_COMM_WORLD);

else
MPI_Send(&n[j][1],1,MPI_INT,0,tag,MPI_COMM_WORLD);

}
if(i==0) /* manager computes the total sum */
{

for(j=1; j<p; j++) n[0][0] += n[j][0];
printf("The total sum : %d\n",n[0][0]);

}

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 31 / 32

Summary + Exercises

We started chapter 5 in the book of Wilkinson and Allen.

Exercises:
1 Describe the application of pipelining technique for grading n

copies of an exam that has p questions. Explain the stages and
make a space-time diagram.

2 Write code to use the 4-stage pipeline to double numbers for a
sequence of 10 consecutive numbers starting at 2.

3 Consider the evaluation of a polynomial f (x) of degree d given by
its coefficient vector (a0,a1,a2, . . . ,ad), using Horner’s method,
e.g., for d = 4: f (x) = (((a4x + a3)x + a2)x + a1)x + a0.
Give MPI code of this algorithm to evaluate f at a sequence of n
values for x by a p-stage pipeline.

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 32 / 32

	Functional Decomposition
	car manufacturing with three plants
	speedup for n inputs in a p-stage pipeline
	loop unrolling

	Pipeline Implementations
	processors in a ring topology
	pipelined addition
	pipelined addition with MPI

