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car manufacturing

Consider a simplified car manufacturing process in three stages:
(1) assemble exterior, (2) fix interior, and (3) paint and finish:

input sequence
c5 c4 c3 c2 c1 - P1

- P2
- P3

-

The corresponding space-time diagram is below:

- time

6
space

P1

P2

P3

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c5

c5

c5

After 3 time units, one car per time unit is completed.

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 3 / 32



denoising a signal

Every second we take 256 samples of a signal:
P1: apply FFT, P2: remove low amplitudes, and P3: inverse FFT.

input signals
s5 s4 s3 s2 s1 - P1

- P2
- P3

-

An alternative space-time diagram is below:
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Observe: the consumption of a signal is sequential.
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p-stage pipelines

A pipeline with p processors is a p-stage pipeline.

Suppose every process takes one time unit to complete.

How long till a p-stage pipeline completes n inputs?

A p-stage pipeline on n inputs:
After p time units the first input is done.
Then, for the remaining n − 1 items,
the pipeline completes at a rate of one item per time unit.

⇒ p + n − 1 time units for the p-stage pipeline to complete n inputs.

A time unit is called a pipeline cycle.

The time taken by the first p − 1 cycles is the pipeline latency.
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speedup

Consider n inputs for a p-stage pipeline:

S(p) =
n × p

p + n − 1
.

For fixed number p of processors:

lim
n→∞

p × n
n + p − 1

= p.

Pipelining speeds up multiple sequences of heterogeneous jobs.
Pipelining is a functional decomposition method
to develop parallel programs.

Recall the classification of Flynn:
MISD = Multiple Instruction Single Data stream.
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floating-point addition

A floating-point number consists of a sign bit,
an exponent and a fraction (or mantissa): ± e (8 bits) f (23 bits)

Floating-point addition could be done in 6 cycles:
1 unpack fractions and exponents
2 compare exponents
3 align fractions
4 add fractions
5 normalize result
6 pack fraction and exponent of result

Adding two vectors of n floats with 6-stage pipeline
takes n + 6 − 1 pipeline cycles, instead of 6n cycles.
⇒ Capable of performing one flop per clock cycle.

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 8 / 32



Intel Architecture Software Developer’s Manual
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the Leibniz series

The Leibniz series

π

4
= 1 − 1

3
+
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5
− 1
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1
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− 1

11
+ · · ·

converges very slowly.

This example is based on section 3.2.2 on loop unrolling in
Scientific Programming and Computer Architecture
by Divakar Viswanath, Springer-Verlag, 2017.

The above reference offers a very detailed explanation.

We can already illustrate the main point in Julia.

Introduction to Supercomputing (MCS 572) Pipelined Computations L-25 23 October 2024 11 / 32



a straightforward implementation
The branching in the straightforward code below prevents
a pipelined execution of the floating-point operations.

function leibniz1(N::Int)
s = 1.0
for i=1:N

if(i%2 == 1)
s = s - 1.0/(2.0*i + 1.0)

else
s = s + 1.0/(2.0*i + 1.0)

end
end
return s

end
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applying loop unrolling

Summing the even and odd terms separately avoids branching,
allows a pipelined executions of the floating-point operations.

function leibniz2(N::Int)
s = 1.0
for i=2:2:N

s = s + 1.0/(2.0*i + 1.0)
end
for i=1:2:N

s = s - 1.0/(2.0*i + 1.0)
end
return s

end
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benchmarking
using BenchmarkTools

println(4.0*leibniz1(10^8))
@btime leibniz1(10^8)

println(4.0*leibniz2(10^8))
@btime leibniz2(10^8)

with output:

3.141592663589326
239.600 ms (0 allocations: 0 bytes)

3.1415926635801443
125.266 ms (0 allocations: 0 bytes)

Julia 1.8.5 on pascal:
two 22-core Intel Xeon E5-2699v4 Broadwell at 2.20GHz,
256GB of internal memory at 2400MHz.
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processors in a ring topology

A ring topology is a natural way to implement a pipeline.

- P0
- P1

- P2
- P3

-
6

A manager/worker organization:
Node 0 receives input and sends to node 1.
Every node i , for i = 1,2, . . . ,p − 1:

1 receives an item from node i − 1,
2 performs operations on the item,
3 sends processed item to node (i + 1) mod p.

At the end of one cycle, node 0 has the output.
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one pipeline cycle with MPI

$ mpirun -np 4 ./pipe_ring
One pipeline cycle for repeated doubling.
Reading a number...
2
Node 0 sends 2 to the pipe...
Processor 1 receives 2 from node 0.
Processor 2 receives 4 from node 1.
Processor 3 receives 8 from node 2.
Node 0 received 16.
$

This example is a type 1 pipeline
efficient only if we have more than one instance to compute.
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space time diagrams for type 2 and type 3 pipelines

Type 2: - time
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MPI code for the manager

void manager ( int p )
/*
* The manager prompts the user for a number

* and passes this number to node 1 for doubling.

* The manager receives from node p-1 the result. */
{

int n;
MPI_Status status;

printf("One pipeline cycle for repeated doubling.\n");
printf("Reading a number...\n"); scanf("%d",&n);
printf("Node 0 sends %d to the pipe...\n",n);
fflush(stdout);
MPI_Send(&n,1,MPI_INT,1,tag,MPI_COMM_WORLD);
MPI_Recv(&n,1,MPI_INT,p-1,tag,MPI_COMM_WORLD,&status);
printf("Node 0 received %d.\n",n);

}
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MPI code for the workers
void worker ( int p, int i )
/*
* Worker with identification label i of p

* receives a number,

* doubles it and sends it to node i+1 mod p. */
{

int n;
MPI_Status status;

MPI_Recv(&n,1,MPI_INT,i-1,tag,MPI_COMM_WORLD,&status);
printf("Processor %d receives %d from node %d.\n",

i,n,i-1);
fflush(stdout);
n *= 2; /* double the number */
if(i < p-1)

MPI_Send(&n,1,MPI_INT,i+1,tag,MPI_COMM_WORLD);
else

MPI_Send(&n,1,MPI_INT,0,tag,MPI_COMM_WORLD);
}
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pipelined addition

Consider 4 processors in a ring topology:

- P0
- P1

- P2
- P3

-
6

To add a sequence of 32 numbers, with data partitioning:

a0,a1, . . . ,a7︸ ︷︷ ︸
Ak =

k∑
j=0

aj

,b0,b1, . . . ,b7︸ ︷︷ ︸
Bk =

k∑
j=0

bj

, c0, c1, . . . , c7︸ ︷︷ ︸
Ck =

k∑
j=0

cj

,d0,d1, . . . ,d7︸ ︷︷ ︸
Dk =

k∑
j=0

dj

.

The final sum is S = A7 + B7 + C7 + D7.
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space-time diagram for pipelined addition

a0,a1, . . . ,a7︸ ︷︷ ︸
Ak =

k∑
j=0

aj

,b0,b1, . . . ,b7︸ ︷︷ ︸
Bk =

k∑
j=0

bj

, c0, c1, . . . , c7︸ ︷︷ ︸
Ck =

k∑
j=0

cj

,d0,d1, . . . ,d7︸ ︷︷ ︸
Dk =

k∑
j=0

dj

.

Denote S1 = A7 + B7, S2 = S1 + C7, S = S2 + D7.
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speedup for pipelined addition

We finished addition of 32 numbers in 12 cycles: 12 = 32/4 + 4.

In general, with p-stage pipeline to add n numbers:

S(p) =
n − 1
n
p
+ p

For fixed p: lim
n→∞

S(p) = p.
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using 5-stage pipeline

$ mpirun -np 5 ./pipe_sum
The data to sum : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 \
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Manager starts pipeline for sequence 0...
Processor 1 receives sequence 0 : 3 3 4 5 6
Processor 2 receives sequence 0 : 6 4 5 6
Processor 3 receives sequence 0 : 10 5 6
Processor 4 receives sequence 0 : 15 6
Manager received sum 21.
Manager starts pipeline for sequence 1...
Processor 1 receives sequence 1 : 15 9 10 11 12
Processor 2 receives sequence 1 : 24 10 11 12
Processor 3 receives sequence 1 : 34 11 12
Processor 4 receives sequence 1 : 45 12
Manager received sum 57.
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session continued

Manager starts pipeline for sequence 2...
Processor 1 receives sequence 2 : 27 15 16 17 18
Processor 2 receives sequence 2 : 42 16 17 18
Processor 3 receives sequence 2 : 58 17 18
Processor 4 receives sequence 2 : 75 18
Manager received sum 93.
Manager starts pipeline for sequence 3...
Processor 1 receives sequence 3 : 39 21 22 23 24
Processor 2 receives sequence 3 : 60 22 23 24
Processor 3 receives sequence 3 : 82 23 24
Processor 4 receives sequence 3 : 105 24
Manager received sum 129.
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end of the session

Manager starts pipeline for sequence 4...
Processor 1 receives sequence 4 : 51 27 28 29 30
Processor 2 receives sequence 4 : 78 28 29 30
Processor 3 receives sequence 4 : 106 29 30
Processor 4 receives sequence 4 : 135 30
Manager received sum 165.
The total sum : 465
$
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MPI code
void pipeline_sum ( int i, int p )
/* performs a pipeline sum of p*(p+1) numbers */
{

int n[p][p-i+1];
int j,k;
MPI_Status status;

if(i==0) /* manager generates numbers */
{

for(j=0; j<p; j++)
for(k=0; k<p+1; k++) n[j][k] = (p+1)*j+k+1;

if(v>0)
{

printf("The data to sum : ");
for(j=0; j<p; j++)

for(k=0; k<p+1; k++) printf(" %d",n[j][k]);
printf("\n");

}
}
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loop for manager

for(j=0; j<p; j++)
if(i==0) /* manager starts pipeline of j-th sequence */
{

n[j][1] += n[j][0];
printf("Manager starts pipeline for sequence %d...\n",

j);
MPI_Send(&n[j][1],p,MPI_INT,1,tag,MPI_COMM_WORLD);
MPI_Recv(&n[j][0],1,MPI_INT,p-1,tag,MPI_COMM_WORLD,

&status);
printf("Manager received sum %d.\n",n[j][0]);

}
else /* worker i receives p-i+1 numbers */
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loop for workers
else /* worker i receives p-i+1 numbers */
{

MPI_Recv(&n[j][0],p-i+1,MPI_INT,i-1,tag,
MPI_COMM_WORLD,&status);

printf("Processor %d receives sequence %d : ",i,j);
for(k=0; k<p-i+1; k++) printf(" %d", n[j][k]);
printf("\n");
n[j][1] += n[j][0];
if(i < p-1)

MPI_Send(&n[j][1],p-i,MPI_INT,i+1,tag,
MPI_COMM_WORLD);

else
MPI_Send(&n[j][1],1,MPI_INT,0,tag,MPI_COMM_WORLD);

}
if(i==0) /* manager computes the total sum */
{

for(j=1; j<p; j++) n[0][0] += n[j][0];
printf("The total sum : %d\n",n[0][0]);

}
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Summary + Exercises

We started chapter 5 in the book of Wilkinson and Allen.

Exercises:
1 Describe the application of pipelining technique for grading n

copies of an exam that has p questions. Explain the stages and
make a space-time diagram.

2 Write code to use the 4-stage pipeline to double numbers for a
sequence of 10 consecutive numbers starting at 2.

3 Consider the evaluation of a polynomial f (x) of degree d given by
its coefficient vector (a0,a1,a2, . . . ,ad), using Horner’s method,
e.g., for d = 4: f (x) = (((a4x + a3)x + a2)x + a1)x + a0.
Give MPI code of this algorithm to evaluate f at a sequence of n
values for x by a p-stage pipeline.
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