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fixed point formula for Gauss-Seidel relaxation

The fixed point formula for Ax = b where A = L + D + U,
L is strict lower triangular, L = [ai,j ], i > j , 0 otherwise
D is diagonal, D = [ai,j ], i = j , 0 otherwise
U is strict upper triangular, U = [ai,j ], i < j , 0 otherwise

Ax = b ⇔ (L + D + U)x = b
⇔ (L + D)x + Ux = b
⇔ (L + D)x = b− Ux

Observe that L + D is lower triangular.
We apply forward substitution in each step.
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the formulas for Gauss-Seidel relaxation

We want to solve Ax = b for A ∈ Rn×n, b ∈ Rn, for very large n.

Writing the method of Jacobi componentwise:

x (k+1)
i := x (k)

i +
1

ai,i

bi −
n∑

j=1

ai,jx
(k)
j

 , i = 1,2, . . . ,n

we observe that we can already use x (k+1)
j for j < i .

This leads to the following formulas

x (k+1)
i := x (k)

i +
1

ai,i

bi −
i−1∑
j=1

ai,jx
(k+1)
j −

n∑
j=i

ai,jx
(k)
j

 , i = 1,2, . . . ,n.
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the Gauss-Seidel method
Writing the formulas as an algorithm:

Input: A, b, x(0), ε, N.
Output: x(k), k is the number of iterations done.

for k from 1 to N do
for i from 1 to n do

∆xi := bi
for j from 1 to i − 1 do

∆xi := ∆xi − ai,jx
(k+1)
j

for j from i to n do
∆xi := ∆xi − ai,jx

(k)
j

∆xi := ∆xi/ai,i

x (k+1)
i := x (k)

i + ∆xi
exit when (||∆x|| ≤ ε)
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loop fusing

The method of Gauss-Seidel is an in-place method:
old values are overwritten by new ones as soon as computed.

The two loops in

for j from 1 to i − 1 do
∆xi := ∆xi − ai,jx

(k+1)
j

for j from i to n do
∆xi := ∆xi − ai,jx

(k)
j

are fused into one loop:

for j from 1 to n do
∆xi := ∆xi − ai,jxj
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C code for the Gauss-Seidel method

void run_gauss_seidel_method
( int n, double **A, double *b,
double epsilon, int maxit,
int *numit, double *x )

/*
* Runs the method of Gauss-Seidel for A*x = b.

*
* ON ENTRY :

* n the dimension of the system;

* A an n-by-n matrix A[i][i] /= 0;

* b an n-dimensional vector;

* epsilon accuracy requirement;

* maxit maximal number of iterations;

* x start vector for the iteration.

*
* ON RETURN :

* numit number of iterations used;

* x approximate solution to A*x = b. */
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code for run_gauss_seidel_method
{

double *dx = (double*) calloc(n,sizeof(double));
int i,j,k;
for(k=0; k<maxit; k++)
{

double sum = 0.0;
for(i=0; i<n; i++)
{

dx[i] = b[i];
for(j=0; j<n; j++)

dx[i] -= A[i][j]*x[j];
dx[i] /= A[i][i]; x[i] += dx[i];
sum += ( (dx[i] >= 0.0) ? dx[i] : -dx[i]);

}
printf("%4d : %.3e\n",k,sum);
if(sum <= epsilon) break;

}

*numit = k+1; free(dx);
}
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the test system

For the dimension n, we consider the diagonally dominant system:
n + 1 1 · · · 1

1 n + 1 · · · 1
...

...
. . .

...
1 1 · · · n + 1




x1
x2
...

xn

 =


2n
2n
...

2n

 .
The exact solution is x: for i = 1,2, . . . ,n, xi = 1.

We start the iterative method at x(0) = 0.

Values for the parameters:
ε = 10−4 as the tolerance on the accuracy; and
N = 2n2 for the maximum number of iterations.
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running on the test system
$ time ./gauss_seidel 1000

0 : 1.264e+03
1 : 3.831e+02
2 : 6.379e+01
3 : 1.394e+01
4 : 3.109e+00
5 : 5.800e-01
6 : 1.524e-01
7 : 2.521e-02
8 : 7.344e-03
9 : 1.146e-03

10 : 3.465e-04
11 : 5.419e-05

computed 12 iterations <----- 8407 with Jacobi
error : 1.477e-05

real 0m0.069s <----- 0m42.411s
user 0m0.063s <----- 0m42.377s
sys 0m0.005s <----- 0m0.028s
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granularity considerations

The method of Jacobi is suitable for strip partitioning of the (dense)
matrix and in a parallel distributed memory implementation,
every processor can keep its own portion of the solution vector x.

The Gauss-Seidel method makes the new xi directly available which
leads to communication overhead on distributed memory computers.

In a parallel shared memory implementation, consider:
1 Threads compute inner products of matrix rows with x.
2 Each ∆xi is updated in a critical section.

Introduction to Supercomputing (MCS 572) Domain Decomposition Methods L-30 4 November 2024 12 / 33



many threads compute one inner product

For example, three threads, assuming n is divisible by 3, compute:

[
ai,1 · · · ai,n/3

∣∣∣∣ai,n/3+1 · · · ai,2n/3

∣∣∣∣ai,2n/3+1 · · · ai,n

]



x1
...

xn/3
xn/3+1

...
x2n/3

x2n/3+1
...

xn


Each thread has its own variable to accumulate
its portion of the inner product.
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using p threads

void run_gauss_seidel_method
( int p, int n, double **A, double *b,
double epsilon, int maxit,
int *numit, double *x )

{
double *dx;
dx = (double*) calloc(n,sizeof(double));
int i,j,k,id,jstart,jstop;

int dnp = n/p;
double dxi;

for(k=0; k<maxit; k++)
{

double sum = 0.0;
for(i=0; i<n; i++)
{
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the parallel region

Threads collaborate at making one inner product.

dx[i] = b[i];
#pragma omp parallel \

shared(A,x) \
private(id,j,jstart,jstop,dxi)

{
id = omp_get_thread_num();
jstart = id*dnp;
jstop = jstart + dnp;
dxi = 0.0;
for(j=jstart; j<jstop; j++)

dxi += A[i][j]*x[j];
#pragma omp critical

dx[i] -= dxi;
}
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after the parallel region

The update instructions

dx[i] /= A[i][i];
x[i] += dx[i];
sum += ( (dx[i] >= 0.0) ? dx[i] : -dx[i]);

are executed after each parallel region.

This ensures the synchronization and the execution of the stop test:

if(sum <= epsilon) break;
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running times on 12-core Intel X5690, 3.47 GHz

$ time ./gauss_seidel_omp n p

p n real user sys speedup
1 10,000 7.165s 6.921s 0.242s

20,000 28.978s 27.914s 1.060s
30,000 1m 6.491s 1m 4.139s 2.341s

2 10,000 4.243s 7.621s 0.310s 1.689
20,000 16.325s 29.556s 1.066s 1.775
30,000 36.847s 1m 6.831s 2.324s 1.805

5 10,000 2.415s 9.440s 0.420s 2.967
20,000 8.403s 32.730s 1.218s 3.449
30,000 18.240s 1m11.031s 2.327s 3.645

10 10,000 2.173s 16.241s 0.501s 3.297
20,000 6.524s 45.629s 1.521s 4.442
30,000 13.273s 1m29.687s 2.849s 5.010
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the heat equation

The heat or diffusion equation

∂2u
∂x2 +

∂2u
∂y2 =

∂u
∂t

models the temperature distribution u(x , y , t)
evolving in time t for (x , y) in some domain.

Related Partial Differential Equations (PDEs) are

∂2u
∂x2 +

∂2u
∂y2 = 0 and

∂2u
∂x2 +

∂2u
∂y2 = f (x , y),

respectively called the Laplace and Poisson equations.
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initial and boundary conditions

For t > 0, we consider the domain of

∂2u
∂x2 +

∂2u
∂y2 =

∂u
∂t

to be [0,1]× [0,1], so 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

For numerical computations, we must specify this problem with
one initial condition: u(x , y ,0) = f (x , y); and
four boundary conditions:

1 u(0, y , t) = g1(y),
2 u(1, y , t) = g2(y),
3 u(x ,0, t) = g3(x), and
4 u(x ,1, t) = g4(x).

It suffices to know f , g1, g2, g3, g4 at the grid points.
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discretization of the derivatives

At a point (x0, y0, t0), we have

∂u
∂x

∣∣∣∣
(x0,y0,t0)

= lim
h→0

u(x0 + h, y0, t0)− u(x0, y0,h)

h︸ ︷︷ ︸
ux (x0,y0,t0)

so for positive h ≈ 0, ux (x0, y0, t0) ≈ ∂u
∂x

∣∣∣∣
(x0,y0,t0)

.

For the second derivative we use the finite difference uxx (x0, y0, t0)

=
1
h

(
u(x0 + h, y0, t0)− u(x0, y0, t0)

h
− u(x0, y0, t0)− u(x0 − h, y0, t0)

h

)
=

u(x0 + h, y0, t0)− 2u(x0, y0, t0) + u(x0 − h, y0, t0)

h2 .
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time stepping

ut (x0, y0, t0) =
u(x0, y0, t0 + h)− u(x0, y0, t0)

h

uxx (x0, y0, t0) =
u(x0 + h, y0, t0)− 2u(x0, y0, t0) + u(x0 − h, y0, t0)

h2

uyy (x0, y0, t0) =
u(x0, y0 + h, t0)− 2u(x0, y0, t0) + u(x0, y0 − h, t0)

h2

Then the equation
∂u
∂t

=
∂2u
∂x2 +

∂2u
∂y2 becomes

u(x0, y0, t0 + h) = u(x0, y0, t0)

+ (1/h) [ u(x0 + h, y0, t0) + u(x0 − h, y0, t0)

+ u(x0, y0 + h, t0) + u(x0, y0 − h, t0)− 4u(x0, y0, t0) ]

Locally, the error of this approximation is O(h2).
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synchronous iterations on a grid

For (x , y) ∈ [0,1]× [0,1], the division of [0,1] in n equal subintervals,
with h = 1/n, leads to a grid (xi = ih, yj = jh),
for i = 0,1, . . . ,n and j = 0,1, . . . ,n.

For t , we use the same step size h: tk = kh.
Denote u(k)

i,j = u(xi , yj , tk ), then

u(k+1)
i,j = u(k)

i,j +
1
h

[
u(k)

i+1,j + u(k)
i−1,j + u(k)

i,j+1 + u(k)
i,j−1 − 4u(k)

i,j

]
.

ui,jui−1,j ui+1,j

ui,j−1

ui,j+1
In every step, we update ui,j

based on ui−1,j , ui+1,j , ui,j−1,
and ui,j+1.
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iterative solving of linear systems

The formulas lead directly to the following algorithm:

for k = 1,2, . . . ,N do
for i = 0,1, . . . ,n do

for j = 0,1, . . . ,n do

u(k+1)
i,j = u(k)

i,j +
1
h

[
u(k)

i+1,j + u(k)
i−1,j + u(k)

i,j+1 + u(k)
i,j−1 − 4u(k)

i,j

]
.

The above loops are similar to Jacobi’s method.

Using the most recent values, as in the Gauss-Seidel method,
leads to faster convergence.

For this problem, there is a specific ordering that is better suited.
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red-black ordering

We divide the grid in red and black points:

u u u u u u u u u u u uuu uu uu uu uu uuu u u u u u u u u u u uuu uu uu uu uu uuu u u u u u u u u u u uuu uu uu uu uu uuu u u u u u u u u u u uuu uu uu uu uu uuu u u u u u u u u u u uuu uu uu uu uu uuu u u u u u u u u u u uuu uu uu uu uu uu

The computation is organized in two phases:
1 update all black points simultaneously; and then
2 update all red points simultaneously.
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domain decomposition

We can decompose a domain in strips,
but then there are n/p boundaries that must be shared.
To reduce the overlapping, we partition in squares:

e e e e e e e e e e e eee ee ee ee ee eee e e e e e e e e e e eee ee ee ee ee eee e e e e e e e e e e eee ee ee ee ee eee e e e e e e e e e e eee ee ee ee ee eee e e e e e e e e e e eee ee ee ee ee eee e e e e e e e e e e eee ee ee ee ee ee

e e e e e e e e e e e eee ee ee ee ee eee e e e e e e e e e e eee ee ee ee ee eee e e e e e e e e e e eee ee ee ee ee eee e e e e e e e e e e eee ee ee ee ee eee e e e e e e e e e e eee ee ee ee ee eee e e e e e e e e e e eee ee ee ee ee ee

Then the boundary elements are proportional to n/
√

p.
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comparing communication costs

In a square partition, every square has 4 edges, whereas a strip has
only 2 edges. For the communication cost, we multiply by 2 because
for every send there is a receive.

Comparing the communication cost for a strip partitioning

t strip
comm = 4

(
tstartup + ntdata

)
to the communication cost for a square partitioning (for p ≥ 9):

t square
comm = 8

(
tstartup +

n
√

p
tdata

)
.

A strip partition is best if the startup time is large
and if we have only very few processors.

If the startup time is low, and for p ≥ 4,
a square partition starts to look better.
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some numerical considerations

The discretization of the heat equation is the simplest one.

The explicit forward difference method is conditionally stable:
in order for the method to converge,
the step size in time depends on the step size in space.

Methods that are unconditionally stable are implicit and
require the solving of a linear system in each time step.
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PETSc

PETSc = The Portable, Extensible Toolkit for Scientific Computation.

PETSc provides data structures and routines for large-scale
application codes on parallel (and serial) computers, using MPI.
Support for Fortran, C, C++, Python, and MATLAB (serial).
Free and open source, available at http://petsc.org.
Part of the ACTS (Advanced CompuTational Software) Collection.
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suggested reading

Ronald F. Boisvert, L. A. Drummond, Osni A. Marques:
Introduction to the special issue on the Advanced
CompuTational Software (ACTS) collection.
ACM TOMS 31(3):281–281, 2005. Special issue on
the Advanced CompuTational Software (ACTS) Collection.

Visit https://petsc.org and browse the documentation.

Read The PETSc Community Is the Infrastructure
by Mark Adams, Satish Balay, Oana Marin,
Lois Curfman McInnes, Richard Tran Mills, Todd Munson,
Hong Zhang, Junchao Zhang, Jed Brown, Victor Eijkhout,
Jacob Faibussowitsch, Matthew Knepley, Fande Kong,
Scott Kruger, Patrick Sanan, Barry F. Smith, Hong Zhang.
https://arxiv.org/abs/2201.00967
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Summary + Exercises

We covered §6.3.2 in the book of Wilkinson and Allen, see also §11.4.

Exercises:
1 Take the running times of the OpenMP version of the method of

Gauss-Seidel and compute the efficiency for each of the 9 cases.
What can you conclude about the scalability?

2 Use MPI to write a parallel version of the method of Gauss-Seidel.
Compare the speedups with the OpenMP version.

3 Run an example of the PETSc tutorials collection with an
increasing number of processes to investigate the speedup.

4 Cellular automata (e.g.: Conway’s game of life) are synchronized
computations. Discuss a parallel implementation of Conway’s
game of life and illustrate your discussion with a computation.
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